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Abstract

We compare the confidence set centered at James-Stein point
estimator to the usual F-confidence set for the p regression
parameters of a linear model. Previous studies usually focused on
the known variance case and typically conclude that whatever holds
in the known variance case should hold in the unknown variance
case when the variance is replaced by its best linear estimator
82. We are surprised that this is not entirely the pictur@ we
observe here. In fact, in many unknown variance cases, the range
of the shrinkage factor a for the associate confidence set to
have uniformly higher coverage probabilities than its F
counterpart can be ten times bigger than 2(p-2) (the expected
upper bound in the known variance case). This is true especially

wvhen the degrees of freedom is small.
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I. Introduction.

In the past three decades, much progress has been made about
the problem of shrinkage estimation, mainly because of the impact
of the celebrated work of Stein (1955) and James-Stein (1961).
Recent interest in several other areas such as small area
estimation has seemed to boost the motivation of constructing
shrinkage estimation. There appears to be a need to design
procedures that will take advantage of the information from many
other strata or "borrow strength" from other populations in the
situation that the number of observations in each stratum is small
and the number of strata is huge.

The theory of shrinkage estimation appears to have been well
studied. However, the other companied problem of constructing
associated confidence set has been given less attention
relatively, although see Casella and Hwang (1983, 1987), Hwang and :
Casella (1982, 1984), Hwang and Chen (1986), Shinozaki (1988), and
Ullah et al (1988) from the frequentists’ view point and Morris
(1983) from the empirical Bayes view point. Here we will be
taking a frequentist’'s point of view. For such an approach a
review of the area can be found in Robert and Saleh (1989).

Assume a linear model
Y = XB + €, (1.1)

where e, are assumed to be i.i.d N(O.az) and X 1is an Nxp

matrix having a full rank p. The least squared estimator for J

is



B = (X'x) x'y.

The positive part James-Stein estimator

2
I~ S/ (N-p+2) -~
B = 1 - 2 ~ ~ B (1‘2)
Js [ ﬂ.X.XB ]*

where

2 A . A
s® = (y-XB)'(y-XB).
has been shown to have a uniformly smaller risk function than B
under the quadratic loss function (B-B)'(X'X)(B-B). if and only
if 0 < a < 2(p-2).
The problem, studied in this paper, is about the construction
of confidence sets superior to the F confidence set:
2

(B: (B-B)" (X' X) (B-P)/p € ® §5}- (1.3)

where c2 is chosen to be the a upper quantile of Fp N-p
distribution. Therefore the coverage probability of (1.3) is
l1-a. The obvious first stage development will focus on the

alternative James-Stein type confidence region:

(B: (Bg=B)" (X'X) (B yg-P)/p < c®S°/N-p). (1.4)

Although several papers including Chen and Hwang (1988), Robert

and Casella (1987), and Kim (1987) focus on the comparison of
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(1.4) to (1.3), (1.4) has not been proved to dominate (1.3), i.e.,
having higher coverage probability than (1.3). For the known
variance case, with 82 replaced by 02. the domination of (1.4)

over (1.3) has been established for a range of a. Furthermore,

for the unknown variance case, the evidence in Chen and Hwang

[

(1988) suggests that asymptotically this is true.

However, little has been done in the fixed sample size case,
which is our focus in this paper. Based on the calculation of the
coverage probability as |9| -+ o, one can specify the upper bound
of a 1in (1.2) for the confidence set (1.4) to have coverage
probability bigger than 1-a.

Although the technical argument similar to Hwang and Casella
(1982) has been used, the results produced here have been quite a
surprise. Based on the experience with the point estimation
problem as well as the confidence set problem with known 02. it :

has been expected that the upper bound of a for domination

should be about 2(p-2). However, the bound for the unknown
variance case determined by asymptotic formula can be much bigger
when N-p is small. It can sometimes be seven times as big as
2(p-2) for p =9 and N-p = 2 (in extreme cases, the ratio is
even much higher). Numerical calculation of the coverage
probabilities based on three dimensional integration indicates
that the true upper bound of a for uniform domination is near
the bound suggested by the asymptotic formula. For the case

p=9 and N-p = 8 (a case occurring in practice, say, a two way
table with three levels each way and 8 degrees of freedom in the
residual), the numerical calculation shows that the upper bound of

a for domination is at least 22, a number much larger than



ta

2(p-2) = 14. The numerical results also suggest that to gain
substantial improvement of coverage probability, a has to be
chosen much larger (especially when N-p is small) than what may

have been previously expected.

II. Asymptotic Formula.

In comparing (1.3) with (1.4), one can obviously transform

the situation into a canonical one. This then reduces to the

2
model X ~ N(G.azl) independent of §§ ~ xi. n = N-P. Also (1.3)
o
and (1.4) reduce to
2 2 s2
cC o ={6:]x-8]% < pc” S}, (2.1)
X.S
and
as?/(n+2)] 412 ¢ o S &2
o = {6:]6-|1 - ]Xl < p — 87}, (2.2)
3s.s? Ix|* 2 "

where c2 is the (l1-a) quantile of Fp n’ the F distribution

with degrees of freedom p and n.

To derive the asymptotic coverage probability of C o (as
JS.S
|9| - ®) under a simpler notation, wve replace 3%5 by a and

2

c2 E by ¢ in the following derivation. Later, we can reverse

the substitution to get the asymptotic for (2.2).
Assume without loss of generality that 02 =1, X ~N(0,1),

and S2 ~ xﬁ are independent.



Lemma 2.1. For ¢ > O,

2
aS
P6(|[1 - T;T§]+x-a| < cS) (2.3)

-a82

= 1-a+E l I2(1-a($)-h(sn(as2—2(p-2))+0(|e|'3)
2|6

where 1-a = P(|X-6]| ¢ cS).

1-a(s) = P(|X-8] < ¢S | s = s)

and
-1 P 2.2
S) -c“S%/2
h(S) = 1-a(s)-2 (c e :
P-2)/2, (P
2 T(z)
Proof: We will condition on S and take a derivation similar to

the proof of Theorem 3.1 of Hwang and Casella (1984). VWe can
assume without loss of generality that 02 = 1. The key technical
difficulty is that S can be an arbitrary large positive number
and the Taylor expansion in Hwang and Casella (1984) is only

uniformly for S in a compact region. To get around the

difficulty, we note that
k -3
I s*f(s)ds = o(|e| 7). (2.4)
SZI9|1/2

where k 1is fixed and f(S) 1is the p.d.f. of S. In fact in

(2.4), the order is exponential in |le] and is much smaller than

|9|-3. Therefore it is sufficient to consider only S < |6|1/2.

We note also that

(s



2
l[l - a8 2]+x-e| < ¢S (2.5)
implies that for all 6
|x-8] ¢ (c+Va)s.
(This can be established by considering two separate regions of X

such that |X|2 ¢ as2 and [X|2 2 as2.)

Furthermore we can omit '+’ in the derivation, since

2
asS -3
P[lez > 1] =o(le| 7). (2.6)

To establish this, note that (2.6) is bounded above by
Pealo] > [X|2) + P(sZ > |o]) < P(alel > (lel+2)%) + B(s® > lel).

where Z 1is N(0,1). The second term of the right hand side is
0(|6|_3) by (2.4). The first term is bounded above, for

sufficiently large |9|. by

1 1 -zlel®
P(Z > §|e|) = O[TET e

Hence (2.6) follows. Therefore it is sufficient to look at only

the case



aS
|X|2 <1,
a82 aS2
in which case 1 - =1 - . Using these keys and
x> x|

following the derivation of Hwang and Casella (1984), we can show

that the probability, conditioning on S, that (2.5) holds equals

as? 2 -3
1-a(S) - 2|el2[1‘a(s)'h(s)](as -2(p-2)) + p(s)o(le| 7).

where p(S) 1is a polynomial of 8 degrees. Taking expectation

with respect to S and noting

E(1-a(S)) = 1-a and Ep(S) < =,

we establish the lemma.

Theorem 2.2. As |6]| » =

2
P(I[l - Ti|2]+x-e| < ¢S)

2acPr(21B2) (2(02p*2) _ 5(5-9))
c +1 + 0(|9|-3).

= l-a -
plo|2(e2+1) (P*2)2r By (D)

te
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Proof: The leading term on the right hand side of (2.3) is

c282

_ -1,p -5
a_ _p ¢ EsP*2 ¢ 2 (as?-2(p-2)). (2.7)

2|8 l2 2(p-2)/2r(%)

The expectation of the last expression is

282 282
aEsP*%e 2 _a(p-2)EsP*2e 2 . (2.8)
Using the equation
35k k+n
eske 2 - 22 r(2E)/((?+1) 2 r 3.
we show that (2.8) equals
p+4 p+2
a2 2 r(n+g+4) 2 2 F(Eigig)
n+p+4 - 2(p-2) n+p+2
(®+1) 2 (D (c2+1) 2 rd
p+2
2 n+p+2
0 n+g+2 (c2+1)
(c“+1) r(3)

Consequently (2.7) equals



2
-2ac” F(Bi%i_l) [a(n+p+2l - 2(p_2)]
plo|2(c2+1) (**P*2)2r Byr() L 24

establishing the theorem.

In order to compare to F confidence set, we replace S2 by
Sz/n. Therefore the James-Stein type confidence set is as given
in (2.2) as compared to (2.1), the usual confidence set.

For (2.1) to be a (l-a) confidence set, one can choose c2

to be the 1-a quantile of F distribution with p, n degrees

of freedom. The Theorem then implies

Corollary 2.3. The coverage probability of (2.2) is greater than

(2.1) for large |6]| if

0 < a < 2(p-2)B, (2.9)
where
B = _Eig_(223+1 (2.10)
T n+p+2' n ) ’

Note that, in point estimation context with respect to the
sum of squared error loss, it has been known that the range of a
for domination of James-Stein over X is given in (2.9) for
B =1. For the confidence set problem and the known variance
case, the similar phenomenon has emerged. The bound 2(p-2) has
been suggested by asymptotic calculation and is almost the bound
for the James-Stein confidence set to have uniform bigger coverage
probability. See Hwang and Casella (1984). Surprisingly, as seen
in Tables 1 and 2, the values of B in the Corollary can be quite

high and in the extreme case as high as 38. However in many

-10-
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practical cases, say a = .1, p = 19 and n = 20, B

1.46 1is
still larger than one. As n - ©, B approach one, followed from
(2.10) as well as shown in tables, in agreement with the common
belief that the problem reduces to the known variance case where
B =1.

Ve also took another'approach based on Edgeworth expansion
and obtained an asym?totic formula for the coverage probability of
the confidence set (é.2). Similar approach has been taken in
ﬁllah et al (1988). The asymptotic formula appears to be
different and can also be used to derive a bound on a so that
the asymptotic coverage probability after omitting 0(|9|—3) term
is greater than 1-a. The bound of a thus derived corresponds

to

_ 70,2 2,2

- (2.11)
Cp,47%2,4

where

2

G _F [Bc !n+8'!]
2,2' ~ "p+é,n+l’ n{p+e) J'

and Fk k is the cumulative distribution function of F with
1'7°2

degrees of freedom k1 and k2.
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Table 1. Values of B for a = .1.
thought to be close and less than one, which is far away from

truth when n 1is small.

p/n 2 4 8 20
3 8.42 2.76 1.61 1.19
5 10.8 3.31 1.8 1.25
7 12.3 3.68 1.94 1.3
9 13.3 3.94 2.04 1.34
19 15.8 4.63 2.34 1.46
20 15.9 4.67 2.35 1.46
40 17.3 5.09 2.56 1.57
80 18.1 5.35 2.7 1.65
160 18.5 5.49 2.78 1.7
Table 2. Value of B for a = .05.
p/n 2 4 8 20
3 17 3.96 1.94 1.29
5 21.9 4.81 2.2 1.37
7 25 5.38 2.39 1.43
9 27.1 5.8 2.53 1.47
19 32.3 6.86 2.93 1.63
20 32.6 6.93 2.96 1.64
40 35.5 7.59 3.24 1.77
80 37.2 7.99 3.43 1.87
160 38.1 8.21 3.54 1.94

-12-
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40

1.14
1.16
1.22
1.22

1.28

40

1.13

1.22

1.29

1.38

80

1.07
1.07
1.11
1.11

1.14

80

1.09

1.14
1.15
1.19

B has been

160

1.03
1.04
1.05
1.05

1.07

160

1.05
1.05
1.07

1.07

(]

o

(3]
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Although (2.11) looks different from (2.10) and we do not
have the analytic proof that they are identical, numerical
evaluation of the two bounds leads to the same answers as in
Tables 1 and 2. Therefore the two approaches lead to the same
bound. This provides an independent confirmation of the
correctness of Corollary 2.3.

As reported in Tables 3 and 4, we numerically evaluated the
coverage probabilities of the confidence set (2.2). Like in the
known variance case, the asymptotic bound is only necessary for
uniform domination and not sufficient. In Table 3 we focus on the
case that n 1is moderate, since for large n the results are not
very different from the known variance case. For p =9 and
n = 2, the exact upper bound for a by Table 3 is at least 120.
This is larger than 8 times 2(p-2) and is closer to the
asymptotic bound 13.3 x 2(p-2) = 186.2 than 2(p-2) = 14. For
n = 8 and the same p. the exact bound is at least 22 about the
midpoint of the asymptotic bound 2.082+(p-2) = 29.12 and the
2(p-2) = 14. However the fact that the exact bound is so much
larger than 2(p-2) seems to be surprising. Note if one were
using the traditional choice a = p-2, the largest gain in
coverage probabilities may be small especially when n 1is small.
See column one of Tables 3 and 4. The maximum coverage
probability for p =9, n =2 and a = p-2 1is .907, which is
strikingly smaller than .999, the probability in the known
variance case (i.e., the same situation as here except n = ®).

The coverage probabilities are calculated based on three
dimensional integration. Namely by conditioning on S, we write

the conditional coverage probabilities as a double integral

-13-



similar to the first formula after (3.9) in Casella and Hwang
(1983). (Of course their v(+) function is a constant function
here.) Then we integrate out against S. Since the results seem
to be surprising and three dimensional integration seems to have
pushed to the limit of numerical integration, we also take another
approach of integrating (3.10) of Casella and Hwang (1983). (The
(n+1)! in the middle term of their (3.10) is a typographical error
and should be corrected as (n+i)!.) This approach reduces to a
double integration and leads to the numbers agreeing with Tables 3

and 4 up to the third decimal place.

Table 3. Exact coverage probabilities of (2.2). These numbers

are greater than .9, the coverage probability of the corresponding
usual F confidence sets.

p=29 p=29
n =2 n =8
a=p-2=7 a = 120 a=1 a = 22
le]
0 .907 .953 .961 .989
1 .907 .950 .958 .988
2 .905 .943 .952 .983
4 .903 .921 .933 . 947
6 .901 .906 .919 .902
8 .901 .901 .912 .902
10 .901 .901 .908 .905
12 .901 .901 .905 .904
15 .900 .901 .904 .903
20 .900 .901 .902 .902
30 .900 .900 .901 .901
40 .900 .900 .901 .900
50 .900 .900 .900 .900
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Table 4. Coverage probabilities of (2.2), greater than the
coverage probability 0.9 of the corresponding F sets

p =19 p =19
n =4 n = 20
a = 17 a = 120 a = 17 a = 40
le]
0 .935 .980 .993 1.000
1 .933 .979 .993 .999
2 .930 .975 .991 . 999
4 .922 .961 .982 . 996
6 .915 .939 .967 .946
8 .910 .915 .950 .904
10 .907 .903 .937 .912
12 . 905 .901 .928 .913
15 .904 .905 .919 .911
20 .902 .905 .911 . 907
30 . 900 .902 .905 .904
40 . 900 .901 .903 . 902
50 .900 .901 .902 .901

III. Conclusions.

For many problems, especially in decision theory, results
hold in the known variance case are proved to hold in the uﬁknown
variance case. However, we are surprised that this is not
entirely the picture we have seen here. For the known variance
case the shrinking constant a, for domination in coverage
probability, is less than 2(p-2) but for the unknown variance

case, it can be more than 8 times as big as 2(p-2).

-15-



It appears that we should choose a much larger shrinkage
factor for the unknown variance case to have a substantial gain.
This is especially true when the degree of freedom of 82 is

_small.

Given that a can be larger for the unknown variance case as
reported here, it is surprising that there has been so many
unsuccessful attempts for establishing analytical domination

results in confidence sets for the unknown variance case.
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