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Summary

This paper derives the asymptotic expansions of the distribution function of the
maximum likelihood estimator (MLE) and the log likelihood ratio (LR) test in a nonlinear
regression model. We investigate the effects of nonlinearity of our model on the asymptotic
expansions by making use of two kinds of curvature measures: intrinsic curvature and

parameter effect curvature defined by Bates and Watts (1980). It is shown that, after suitable

1
transformation, the distribution function of the MLE up to O(T ™ 2) is shown to be related to
only the parameter effect curvature. The intrinsic curvature appears only in a term of O(T—l)
in the distribution of LR. Furthermore, we briefly discuss the relationship between the

intrinsic curvature and Efron's statistical curvature.

Keywords: Asymptotic expansion, Curvature measures, Log likelihood ratio test, Maximum

likelihood estimator, Nonlinear regression.
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1. Introduction

We investigate the effects of nonlinearity in a nonlinear regression model on the
asymptotic expansions of distribution functions of the maximum likelihood estimator (MLE)
and the log likelihood ratio (LR) test by making use of Edgeworth type asymptotic expansions
and relative curvature measures of nonlinearity defined by Bates and Watts (1980)

(abbreviated as BW hereafter). We deal the following nonlinear regression model:
@M y= f(xt,e) + €, t=12,.,T

where X is (kx1) vector of independent variables, 6 is a (px1) parameter vector, y, the
dependent variable, and f( ) the nonlinear response function. We make the following

assumptions on € and f( ) to develop asymptotic expansions.

Assumption 1. e, ~iid N (009, t=1..T.
Assumption 2. f(xt,e) is continuous and differentiable in 8 up to the necessary order.

Regularity conditions for valid asymptotic expansions in nonlinear regression are
discussed in detail by Ivanov (1976). However the proof of validity for asymptotic expansion
is beyond the scope of this paper, so we will not discuss it here. Under the normality

assumption on € the log likelihood function 4(0) for (1) is written as

2 U =- Zln 21 — Tlo — —62 E by, - f(xt,e)]
t=

The MLE @ is obtained as a solution of the first order condition
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of (x t,9)

where fgi) = . Furthermore we define

i

o%f (x

fﬂﬁﬁ)

i - tﬁ{§¢m=

j 19999
and we assume

Assumption 3. The moments of derivatives such as

T . T .\, T o\ fs T .2,
@t 2% o1 SOP o 2P0, @ r 26 00,

t=

and all sum of products associated 5 times differentiation such

have the order 0(1), where

(j 1w°»js) as
i = _am (O o

Note that these assumptions (a)~(e) are for the third order asymptotic expansions. If
we are concerned with the second order expansions, (€) can be omitted. (e¢) assures that the

remainder term in stochastic expansion of JT(6-6) up to O(T_l) has o(T_l).



As is easily seen, the MLE @ is the least square estimator (LSE) in the sense that

T 2
@ Il

is minimized with respect to ©.

Although the MLE 6 has desirable asymptotic properties, it is biased estimator. Box
(1971) derived the approximate bias of 6 in a more general case where there are more than
two response functions but the normality of the error terms are assumed. On the other hand,
BW proposed two kinds of measures of nonlinearity: intrinsic curvature and parameter effect
curvature in order to investigate the effects of nonlinearity in nonlinear regression models. To
have a clear physical and geometrical interpretation of these curvatures, the reader should refer

to BW's original paper and/or an excellent exposition by Ratkowsky (1983, p.p. 7-8). BW

showed that after a suitable reparameterization, Box's approximation of bias up to O(T'"}) in
the LSE could be expressed only in terms of parameter effect curvature. As a result, they
emphasized that "to the extent of Box's approximation, bias is strictly a property of the
parameterization". This result naturally leads us to the following questions:

To the extent of Edgeworth type asymptotic expansion, are distributional properties of
MLE and LR still related only to the parameter effect curvature? How could the intrinsic
curvature affect the distributional properties of them? These questions are the motivations of
this paper.

Section 2 of the paper derives the formal asymptotic expansion of distribution function
of MLE for a multi—parameter case. Since it was derived by Maekawa and Lu Xianzi (1988),
we only show the results omitting the detailed derivations. A supplement for details is
available on request. In Section 3, we rewrite the asymptotic expansion formulas in terms of
the curvature measures. Section 4 derives asymptotic expansions for MLE and LR, up to

O(T_l) in terms of curvatures. Section 5 has summary and conclusions.



2. Asymptotic expansion of MLE

Asymptotic expansions of MLE were studied by a considerable number of authors
based on different techniques and in different contexts. Among others, the most relevant
techniques to us are those in Takeuchi (1974) and Tankiguichi (1986), although the latter
author dealt with Gaussian ARMA processes. We shall formally follow their derivation of
asymptotic expansion.

Now we introduce the following definitions. Set

Z)©)" = (Z;;O)...Z; 0N,
__134(8)
11 Jr _B-Bi_’
1(224(0) o [o?40)
Z9; = Jr(9898” ~ E |S535 || = Zoyp) @),
2
1) = E[Z,®)Z,(®)’] =~ 1E [gggg@]
Jijk(e) = COV[Zli(e),szk(e)]

LKy 49 = cum(Z,0), Z,,(8), Z, £O)

3
1o [ e
Ricd® =TE [aa;ﬂg;;)m;]

where cum(x,y,z) denotes the third order cumulant of random variables X,y,z. Furthermore we

need:

Assumption 4. The matrix I(0) is positive definite for all 6.
Then it can be shown that under Assumptions 14, the stochastic expansion of the jth

element of standardized MLE u, = ﬂ(éj —6,) is given by



Theorem 1

4 = JT(6. —

4) u; »/I'(GJ 9J)
R B 1L N 'L
k=1 1k JTuov, w=l uv-lw

1 E: Iju vb,wc !
+ R I''1"z,.Z, 1+o_|T 2],
2 uv,w.be=1 uvw 1b”1c p[ ]

where 4 is the (i,j)th element of 1(9)_1
Proof. See Taniguchi and Maekawa (1988, Theorem 1).

Taking expectation of (3), it is not difficult to obtain:

Lemma 1
®)  E@w) -L & G + 3R ) +o[17Y

VT t,w,v=

"l

JT
(6) cum (uu.,) iy olL]=c., + o[T_%]

1] J
1i) 35p 3"
@ cum(uj,u.,,u.,,) = ——1-‘ E‘, I 1I 21 3 X
I VT ijdgidg=1

{2K. A P A A AP }+o[T“}]

1213 s Jpi3ly J3lids
l—-C srsrr+0, [T_%]

‘/r )

where the second equality signs in (5), (6), and (7) define cj, cii" and cjj ’j0



Using cJ cJJ i i’ the asymptotic expansion of distribution function of uy, u2,...,up, up to

0 [T—%] » is given by

Theorem 2
8 p(ul <Xq, u2 < xz,...,up < xp)

=11 P + 117rciHi(u)

1
* T o M + o173,

where u’ = (ul'“2’“"up)’

© 5w =CnyF|Q| Fexp [— %u’Qu], Q= (c)

andH H1

jk are Hermite polynomial defined by

S
0 B, - maﬁqﬁuﬂ)-
1 S

Proof. The proof of (8) is entirely analogous to that of Theorem 3 in Taniguchi and Maekawa
(1988).

If we calculate c. ;i i » G4 ik from our log likelihood function (2). We have the explicit

formula in terms of derivatives of f(xt,O) with respect to Oi. But since the result would be

extremely complicated, we only show the explicit formulas of components of cj, cjj ’y cjj 7§70
.

ij Jike” Kikg » and Ry .



Theorem
T

3, {D¢0)
t=1

;;® = t It

1
Rl
1 i)(k,0)
5, 0) = L 3t
k=27 20
Ky £6) =0

Ry (0 = T_<172 ;)51 (6009 1 (000, D0,

Proof. By direct calculation, we immediately obtain

1 £(9), ,0£(0)
1® = E(a—a'e—'i ) (a—(,g—i )

T .. T
1 i) ¢0)
=L (S ufO) S ufD)
To? 1=1t% =1 bt
T .,
1_ 5 ()
=1 50
T =1t
Similarly, J ik Z(O), Kik 2(9), and Rik 6(6) are easily obtained. 0
H 3 3 i’j) —_ -— -
We note that if the model (1) is linear, then £ = 0, J;, (8) =0, K,, 6) = 0 and
hence cj = 0. This agrees with the fact that in the standard linear regression model LSE and
MLE is unbiased. We also note that if p = 1 (0 is a single parameter), it is easy to see that the

bias ¢y is

2 3 {DLLD
t=lt t

©1=- 72
202D

which agrees with Box's (1971, p. 177) bias formula (2.25).



3. Representation in terms of Curvature Measure
This section derives the alternative representation of the asymptotic expansion of
distribution function of MLE in Eq.(8) in terms of the curvature measures defined by BW.
To do so we first introduce their curvature measures. Define (T x p) matrix

V= [VI’VZ"“’Vp] whose ith column is vy

Bf(xl,e) af(xz,e) af(xT,O) ’
Vi< |98, 98, o9 i=12,.p
i i i 0= 00
and define the second partial derivative (pxp) matrix {vﬁj}:
] {af (x ¢ 0)
(v...} = ) .
' 99,99 7g 8y

| vy |
It can be shown that V. has the QR decomposition such that

v.=QR=Q[.g.]1P X P
0]} (T —p)xp

where R is upper triangular and Q is an orthogonal matrix, where the first p column of Q is Vi
ie, Q=[V... N] (see BW (1980, eq.(2.10))
Let n(0) be a (T x 1) vector n(6) = (f(xl,e), f(x2,0),...,f(xT,0))'

then Taylor expansion of () at 0 = 90, up to the second order, is written as



(1) (®) =@ + V.0 = 8)) + 5 (0 —8)"V..0 — 8.
Now following BW, we reparameterize 6 to ¢ by

6=R'9=Lo
and rotate the coordinator of the sample space by orthogonal matrix Q’. A geometrical
interpretation of this rotation is given in BW article in p. 6. By these reparameterization and
rotation, Taylor expansion (11) is written

QL) = Q'NLo + Q" VLO — 80 + 5 Q"G — L’ V.L(b — b
where ¢ = L—leo.
The last term in rhs of the above formula can be written as a (T x 1) vector
(0~ 0p) Ay @ — )]
3Q @0 'L'V.LO -4y =5 |00 A2 @ =99 _14_ga. 00y

©—90)"Ar.. 0~ 00

where A.. is T—vector of p X p matrix:

'Al..'
T
A
A.= A2“ = T
N
A
AT"j

where Ai" is <;alled ith face of A.., and AT., AN, represent the first p faces and the last (T —P)
faces respectively. BW showed that the parameter effect curvature is defined by a linear
combination of elements of AT. and the intrinsic curvature by a linear combination of those of
Al

Now let W. be a (T x p) matrix of first order derivative in the ¢—co—ordinate whose ith

column is Wy

NOEL O anT(q»]'
i~ (799 9, I,

and
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W. = (WI’WZ"“’W ).

Similarly we define a (p x p) matrix {w,, k} of second order derivative where

11 (1))
Wik = W
We also define (p xp) x T rnatrik
(W) ]
W= twyy)
{WTU}

It is easy to see that
W.=VL and W..=L’V.L,
where W. and W.. are counterparts of U. and U.. in BW (p.p. 6-7). Using these notations and

the definition of AT., it can be shown that

T
(11)  a typical element of AT = Tw,
t=1

We are now ready to rewrite the asymptotic expansion (8) in terms of elements of A.. .

ti t]k
It is not difficult to show the following results:

Lemma 2. Let S = yT L8 — 0) = /T (6 — ¢), then cumulants of Sp 5 5 Which are

element of S, are written as

volrY =&, +olrd)

=1+ [T_%] fori=j
0+0[T_%] fori#j

Es) = El (x% Vi Vtio t

cum (s; ,s)—c +0[T_%]
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T
cum (si,sj,sk) = 5_‘,1 (w ti%e ik + W%k + wtkwtij) + o[T_ 2]
t=
=C ijk +0 [T_%]
Proof. See Appendix.

We note that C;» éijk are expressed in terms of elements of AT., and éij is a constant.
Therefore BW's transformation matrix L™ makes the covariance matrix of VT — ¢) the
asymptotically identity matrix. Applying the general formula of asymptotic expansion, we

obtain;

Theorem 4. The asymptotic expansion of distribution function of S =T (§ — ¢) is given by
(12) P(s1 < z), 8, < 22,...,sp < zp)

z; z - 1 P
=Jm “ e J_Z g(S,Q) [1 +7r—t=z.1ciHi(S)

1 ~ 1
- .y H.. wds_ + o(——
+ i,%kc ijk Hl _]k(s)]dsl b o(—)

where s = (sl,...,sp)’, Q= c‘:ij] and g(s,Q), Hi(s) and Hijk(s) are defined by (9) and (10).

We notice that, in reparameterizing 0 to ¢, the distribution function of S = VT( — ) is
expressed only in terms of elements of AT. ; components of parameter effect. This answers
our question and allow us to extend BW's statement in saying that not only bias but also
—1 . .
distribution up to O [T 2] is strictly a property of the parameterization. More precisely we

can say that discrepancy from normality of the approximate distribution of yT($ — ¢) up to

o) [T_ %] is strictly a property of the parameterization.
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4, Third Order Asymptotic Expansions of MLE and LR for p = 1
4.1  Expansion for LR
We consider the problem of testing a null hypothesis:
H:0 =0+ /YT (x>0)
and against an alternative
K:0= 8-
Likelihood ratio test statistic is defined by

LR = {8) — £8,), where 6, = 8, + EX )

Following Taniguchi (1986), we derive asymptotic expansion of LR. To do so we introduce

the following notations:

7, - L 24(0)
T %

s L [aze(e)_E 2240
27 11| 262 | 262
z -1 {33“9)-5 ’a3z(e)H
371 063 | %0




(@
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1 —2
cum(Zl,Zl,Zl,Zl) =rH+ O[T ]

2
E [L m} = 1(8) + A(B)/T + o(T D).
T %

We consider a standardized LR as

{LR ~Eq (LR)}/ {x/E [212]}
1

To obtain asymptotic expansion, up to O(T_l), we have only to consider an approximation
Y= {LR* _ Eel(LR*)}/(x,{IT)

where I’I‘ = I(8) + A(B)/{T and LR* is Taylor approximation:

LR* = — X |94(6) _x2 326’(9) _ x3 a3f(9)
T eo T 862 60 6T{T 66° 9o

_xt [t
ut> | 3% %

It is shown that
Varg (Yp) =1+ ﬁ by +p by +o(T ),

cumel(YT,YT,YT) = 4% cl + %‘ C2 + O(T—l)t

1 -1
c‘“’“91(Y'r’YT’YT’YT) =—1—d; +o(T ),
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where

2
= X3+K), b, = [Tz’;r](4L+3M+18N+6H),
K X H
Cy =— , C =—m(3N+2H)’ d, = .
1= pgrr 2 [21 J e

Taniguchi (1986, p. 15) derives the asymptotic expansions of YT under H and K, up to

O(T—l), under fairly general regularity conditions discussed in detail therein. The results are:

C

b, b
Pe (Yop < 2) = 0(a) — ¢(a)[ [{—T+-%]a+{_+ETJ (@2—1)

6{T

d b b,C

[221[-1- g%-] ad — 3a) + 1 (a4 —6a% + 3) (13)
, C12 3

(a —10a” + lSa)] +o(T™ )

and

Py (Yo 28) = 0(x’) — ¢(x’) — 6(x") b3, Bs x2-1)
0.\ T=%"~ [P — -
1 6 6

2
B, B By B
[ B P B oo
BZ
+ oy 77 = 10x"3 4 15x) [ + o(17Y)

where x” = x{I1. and B3 = —(37 + 2K)172,
B, = 3B3 — (4P + 3M + 12N + 3H)1Z,

B, < 1752 K> 12P + 9M + 36N + 8H
273673 ;g3 1212
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4.2 Relation to Curvature Measures

When p = 1 in our model (1) and log likelihood (2), it is easy to show that general formulas of

L J, K, M, N, H, P are reduced as follows:
) 4
1 1) _ 1 ) (1,1) o _
I—_‘ ng ’ J——ozsz f§ ,K—()’

0 t To™ t
2
_0 e D) LLY a1 e (L2
P‘T‘%fg fg ’M‘T tht
2 2
N=—9—zf§1) ft(l’l), H=0, A=0.
Tt

On the other hand, when p = 1 our V. and V.. defined in Section 3 are
= [¢(D (1) (D]’
V. = {fl D, ]

= [((LD) ((1,1) (L,D]’
V.= _fl » 577 fr .

Therefore we obtain

, T .2
LL' =(v. vy l=y3 ffl) L=
t=1

’

=1t

; f(l)Z] -1/2

?

T 2]1-1/2
as) W =vL=[fD g, i) [t=1 ffl,l)}

L T 2)=172
(16) W.. =L’V.L= [fgl’l), i, ., f{,l’l)] [tz f(l)} ,

and

A..=@l, aI;, ,aI,F) . (Tx1)

We can represent A.. in terms of W. and W.. as follows:
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Lemma 3 For p = 1, we have

T 2
)2 1 1)(1,1
@) [al] = [—rtgx T (DELD

2 ¢ =1
=1t
and
T T 2
® 3 [N)2ep Lk 3D
t= 5 f(1) t=1
=1 ¢
T
Proof We can write as A’.. A.. = [aﬂz + 22 [alf]z i.e., sum of parameter effect and
t=

intrinsic curvatures, and for p = 1, BW's definition of A.. is reduced to
A. =Q'W. =[W.|N]’ W..,, where Q’Q = ET’ (TXT) identity matrix)
AJA. =W. (W "W.+N'N) W..
=W.”(W.'W.+E)W.. (.N'N= Er_1» (T-1)X(T-1) identity matrix)
=W.." (W/W)I)W. +W..” W.,
Substituting (15) and (16), we have (a) and (b). o

Using these relationships, we can write

3
1,2, 31T
=L 1275, [ ],K=0,
To? 162 U1

t=2
T N2
Note that M includes the intrinsic curvature ¥ [a t] , and N and P can not be represented by
t=2
T N
aj and a A

Since asymptotic expansions of distributions of YT isexpressed by I, J, K, ..., N as

shown in egs. (13) and (14), we observe:



[C]
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Remark 1 The asymptotic expansions of distribution of LR test statistic (13) and (14) are
affected by the intrinsic curvature through M in O(T_l) terms such as b2/I‘ in (13) and [52/'1‘,
B 4/T in (14).

Remark 2 (13) and (14) contain terms N and P which are neither parameter effect nor

intrinsic curvature. P involve third order derivative ft(l’l’l) .

4.3  Expansion for MLE
Taniguchi (1986, p. 22, Theorem 3) also derived the third order asymptotic expansion
for MLE 6 for p=1. Itis represented by using L, J, ..., N defined above:

5 _ “1., M 2
P{\/TI(O—G)SX}Z-Q(x)—(b(x)[ﬁ+a(x 1
) o
+%[$§+g.}.] X + [zlwar—g.l] (x3 = 3x] a7)

2
Y _
+ 7%.1. x> —10x> + 15x)] +o(T ),

where
a. =31 +K
175372
_72 4+ 14JK + K2 L+ 4N+ H A
Py = 13 12 T

_ 42K s 12014K004+K) 4L + 12N + 3H
N=Tpr %t 3 ) :
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Remark 3 Eq. (17) does not include M, hence the asymptotic expansion of distribution of
MLE, m(é—e), up to O(T—l) is not affected by intrinsic curvature.
Finally we check the relationship between BW's two curvatures and Effron's (1975)

statistical curvature. The latter can be written by our notation as

L [ Z,® - 18 zl<e)J =Y©)
It is shown (Taniguchi and Taniguchi (1987)) that
¥®) = {M®) 16) - 302} 212
where 1, J, and M are defined in Section 4.1.
Since Effron's statistical curvature involves M which is essentially the sum of parameter effect

and intrinsic curvature, it is not a property of parameterization.

S. Summary and Conclusions
Making use of the curvature measures introduced by Bates and Watts (1980), this paper
has analyzed the effect of nonlinearity on MLE and LR test in a nonlinear regression model

(1). First we developed the formal asymptotic expansion of distribution function of

MLE 6 (px1) up to O [T'"}] » and tried to rewrite the resulting distribution function in terms of
the parameter effect and intrinsic curvature defined by BW. As a result we found that the
distribution of MLE, rr(é-e), is associated only with parameter effect curvature. Although
BW emphasized that "to the extent of Box's bias approximation, bias is strictly a property of
the parameterization”, our finding allows us to generalize BW statement as such that the
discrepancy from normality of distribution of MLE are strictly properties of the
parameterization up to O(T_l/ 2).

Second, we explored the third order asymptotic expansion of distribution of MLE and
LR test statistic for a single parameter case, i.e., 0 (1x1). Observing the resulting expansion
we found that the distribution of LR is affected by both curvatures in a term of O(T_I), while

the distribution of MLE is not affected by the intrinsic curvature up to O(T_l). However, we

i
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noted that since the third order asymptotic expansions inevitably involves third order
derivatives of nonlinear function f( ) in (1), contains other terms than curvatures which are a
concept associated with second order derivative.

Finally we examined a relationship between BW's curvatures and Effron's statistical
curvature and noticed that Effron's curvature is a mixture of parameter effect and intrinsic

curvatures.
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APPENDIX
Proof of Lemma 2. We only prove the third order cumulant. Let Zij be (i,j)th element of L_l.
Since S = L—lﬂ' ©®-0)= L—IU, an element s, in S is

= E‘, é’mu Therefore we have

cum (s ,S: ,sk) = cum ( E flhuh, E‘. me Elll(nun)
n=

m=1

E, flhl"mtk" cum(u, , uaup)

ih jm ha,mb,nc —

(A1) =33 3fhgmkn 5 jhambmey g ) +o[T

hmn ab.c abc bca cab [ ]

where Irs, J rst &TC defined in Theorem 3. Since we have (see BW eq. (2.24))
V'V =R'Q'QR=R’R=R'R=qL")],

and

el 20D - viv,

we obtain I_1 = TO’Z LL’, and I = T02 %‘,Zmﬁ ZBn. Substituting " and Jabc’ we have

> E‘h@mtkn 5 Iha mbIncJ be

h,m,n a,b,c

= 3 fhgmpn 2 CholodCuplpEty DERE)

h,m,n a,b,c a

=3[ = dhgmge TS = gl 34 WAl

'h,m,n

- ih a) £b:C)
-3 h,%*, ¢ e’me‘“‘zzhazz f i nybzzﬁb ¢ ]
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ih
= tZ{h’m nf‘ émfkn ZJha to B B tﬂ’Y}

. o
=§:Ez‘“o>‘:é’ Wiy I3 84 o tﬁy]

m,n B,y

> L}:t’hehiwﬁ PLEE TN wtij

where we use the relation L—IL =Eor

i,j
=1 ifi=j.
Similarly we can calculate other two terms in (A.1) associated with cha and J cab Finally we

obtain cum(s S: ’Sk) Z(wtl tjk + wtjwtik + Wtkwtij) +0 [T_%] . Calculations of cum(si) and

cum(si,sj) are entirely analogous.
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SUPPLEMENT
Proofs and derivations in this paper are largely dependant on the previous works, some
of which are not easily accessible from outside of Japan because they are not published or
written in Japanese. So I decided to write this supplement to give the details to interested

readers and referees.

(1)  Proof of Theorem 1
MLE @ is a solution of the first order condition 8?%@ = 0(px1). If we develop this

equation in Taylor expansion about 8 = § (px1), we have

o .
0 '36‘19=6
= 94(6) amz(r?)(e‘e) + JF...0(6-8)0(6-0)

where F... is a pxpxp array with (i,,j,k)th element

33£(6)
199,00,

and F... 0(§—0)0(6-) is a (px1) column vector with it element

300) & o
. 2298, ()

Therefore we have
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Aoy 2|10 . 19%00) [19%00 1 94(0

W‘“’?[E[Taef&'l] +T3931§*)‘E[Taeaz(rl” [vr—ae—( )
2 - ~ A

—271/_1‘[% ga,‘(;g),J TE-. oyT(6—8)oyT(6-0).

Substituting
1. [02¢(6) -1
TE a-eae-r— = —I(O) + O(T ),
we obtain

Z,(0)
- -10122

+oa eIz, @)
1 . —IF A A

+ ——1(0) " SrtoyT(B—0)oyT(6—0
IO 5o/ TG-0)0/T(0-0)

-1
10) "Z,0
10720

+oa ez, @)

1 —~1.(F. -1 -1
+—1I@®) 'E ~|oI(8) “Z,(8)ol(6) "Z 0).
2T [ I ] 1 1
Therefore we can write

JT(6-0) = 1(9)‘121(9) + Ll(e)‘lzz(e)l(e)‘lzw)

3
+ ZLﬂx(e)'lE [Q_,f;@J oI®) 12, ©)el®) ', (6) + 0 ; (173).
By taking jth element out, we obtain Eq.(4) in Theorem 1.

(2) A _general formula of Edgeworth type asymptotic expansion used in Theorem 2.
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Let YT =(Y l’Y2”"’Yp) were Yj is a random variable, and suppose they have

cumulants such as

B(Y)) = % +o[173,

cum(Yj,Yk) = cjk + o[T_%] ;

cum(Yj,Y Y E) = E% +0 [T_%] .

Then the asymptotic expansion of joint distribution of Yj’ up to O[T_%] , is given by

P(Yl _<_ YIy Y2 S yz"”:Yp S yp)

- Jﬁ...ﬁig(z,ﬂ)[l + El iglciﬂi(z)

+Lg:c.

64T i,j, k=1 i k09 14

where H., H.

i Hispe are Hermite polynomials:

H.. .(y= (_lg)zsd P as P £(v,2),
biip-3s2) = 80 X0 35,3y, 5, &Y

| _ 1
gy.Q) = 2n) 2| Q| Z%exp [—%y'ﬂy],

y=0pmyp)

For a more general case, see Taniguchi (1986, Eq. (3.8)).
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(3)  Proof of Theorem 3
Derivatives of #0) wrt Oi up to third order are given by

3.1) 3“9) - ;2 Sty, — fx 0D = ;2 se D

where y,. —f(x ,8) = €,. Similarly
t t t

2
32) ge%% -_1 ngotfk) L1 Zettfk’g’
3
(3.3) M%g%%_ -1 tz{él,t)fgk) . ét’)f(k,x) f(l)f(k D,e f(1 k,0)

As is defined in Section 2, we have

_ 1 94(0)
34 =1 06(8)
G “li JT 99
2 2
110%00) . [a%¢(0)
(3.5) z, ,=-L1 —E .
2kt ,/r{ k9% [a"ka“e”

Substituting (3.1) and (3.2) into (3.4) and (3.5), we have

. .
3.6) E(z;) = > tZE(st)tfl) =0,
2
ICaAC) | f(i')f(k)
G E|S =L > .
[ k ZJ To? t ¢t

By definition

}

fo
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Jik 59) = cov(z1 i 2ok t')
(3.8 = E{ [Zli_E(zli)]ZZkZ]
=Ez1219

Substituting (3.4)~(3.7) into (3.8), and using E[ ] 0'2 E( €., ) =( for s # t, we obtain

zgtgi)k; [fgk)fgo ru g0l fge)ék)”

1
J.. £0) = E
ik @[t \

L 5k 0,
T t

Next we calculate Kik 8(9) and Rik é(e):

Kixd® = cum(zy;, 2y, 21 )
=E(z);2))021 9

a1 e et

=0(.s E(eseteu) 0

3
0
Rixd® = aea?é%%‘
-1 ):[f(‘ Of(k) + £0kD . (D "’]

To™ t

(4)  Representation of A..
For illustrative purpose, the representation of A.. is shown for p=2, and T=3. A..is
defined by
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O~p)" A 1O~y
@.1) QG — )" W00 = 3|40 Ay @09 |.
($-00)" A (B0

where W.. = L’V..L is defined in Section 3.

Set (¢—<|>O) =a= (al,az)’ and Q = {qij}, ij = 1,2,3. Then we can write

'a’Wl.. a
(4.2) Q,(¢‘_¢0),wu(¢_¢0) = Q' a' 2 a
a’W3.. a
(ql 1(a’Wl..a) + qlz(a'WZ..a) + q13(a’W3..a)'

= q21(a’W1..a) + q22(a’W2..a) + q23(a'W3..a)

.q31(a'W1..a) + q32(a'W2..a) + q33(a'W3..a)_

= X2 > Say.

For instance we have

1 T 9 [a%‘"nl Ta iV T a3 Wy t a%‘”lzz]
* qlz[a%“’zn TA1a%a11 + 88 Wy * a‘zz“’zzz]
T3 [‘%‘”311 Ta1ayW3pp T Wayy + agwm]
= 4 [‘111“’111 A%t q13"’311]
ta,2, [‘111“’112 AWt q13‘"312]

TR [‘111“’121 T 2% * q13“’312]

3]

(©

{
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2
8 [‘111“’122 + Q%W * ‘113“’322]
Similarly we can calculate Xy and X3. Substituting those X1 X and X3, We obtain

a’Al.. a
4.2) = a’A2.. a
a A3.. a

where Ai" is the ith face of A.., i.e.,

A2..

A.= A2 .

A3..

Form the definition of Q, the first p columns of Q are wl,...,wp (see eq. (2.13) in BW), so we

have

V11 Y21 49331
Q=|wyy Wyy 433 for p=2 and T=3.

W13 W23 933
Therefore we have

z“’ twtll’ 2V, W12

A..= fori=1,2
>3” Wer >3Vn“’t22



and

A

300

. 3tVi11° ?VBtthZ

?Vstwtzr D322
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