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Dynamic Consistency and Reference Points*

Uzi Segalt
November 22, 1995

Abstract

This note aims to answer the following question. Is it possible to
define a set of preference relations, one for each node of a decision
tree, such that these preferences satisfy the reduction of compound
lotteries axiom, they are dynamically consistent in the sense that if
the decision maker plans to use a certain strategy at a future node
N, then once he reaches this node, his current preferences will be to
use the planned strategy, and such that they do not converge to ex-
pected utility. The key idea is that as uncertainty unfolds, preferences
evolve so that the indifference curve through the planned choice at
each choice node agrees with the induced preferences from the past.
In particular, It follows that this indifference curve is affine. It is ar-
gued that the updated preferences are relevant whenever the decision
maker has to depart from his original plan. The quadratic model is
consistent with one affine indifference curve, thus admitting a natural
concept of reference points. It implies randomization aversion for lot-
teries that are worse than the planned holding X* but randomization
seeking for lotteries that are better than X*.

*I am grateful to Kim Border for many helpful discussions and comments. I also
benefitted from discussing these issues with Eddie Dekel, Larry Epstein, Faruk Gul. Mark
Machina, Joe Ostroy, Ariel Rubinstein, Zvi Safra, and Joel Sobel.

tDepartment of Economics, University of Western Ontario, London N6A 5C2, Canada



1 Introduction

One normative appeal of expected utility theory is based on the notion that if
decision makers have preferences that violate the independence axiom, then
they can be manipulated into accepting a sequence of trades that leave them
in a position which is stochastically dominated by their initial position. Such
a manipulation is called a Dutch book.

Suppose that a decision maker prefers X to Y but pY + (1 — p)Z to
pX +(1—p)Z. He begins holding the compound lottery (X, p; Z,1—p).! For
a small ¢ > 0 he is willing to exchange it for the lottery (Y,p; Z — ¢,1 — p).
At the second stage of the compound lottery, in case the Z event occurs, he
has lost ¢. If the ¥ event occurs, the decision maker (who prefers X to Y)
is willing to trade Y for X — ¢. Thus ex post the decision maker ends up
trading (X, p; Z,1 —p) for (X —¢,p; Z — ¢,1 — p), something he should wish
to avoid (see Green [10] and Machina [17]).

This manipulation does not force one to obey the expected utility hypoth-
esis, unless one makes the additional assumption that at the second stage of
the lottery the decision maker still prefers X to Y. It seems that the essence
of avoiding this Dutch book lies in dynamic consistency, implying that pref-
erences change in a fashion consistent with the original plan. This position is
advocated by Machina [17] and McClennen [18, 19}, suggesting that updated
preferences agree with the induced order from past preferences.

Border and Segal [2] show that as uncertainty unfolds, this updating
procedure implies that preferences must converge to expected utility. The
question the present paper aims to answer is therefore this. Is it possible
to define a set of preference relations, one for each node of the decision
tree, satisfying the following requirements. (1) Each of them is continuous,
monotonic, and transitive, and satisfies the reduction of compound lotteries
axiom; (2) The preferences are dynamically consistent in the sense that if
the decision maker plans to use a certain strategy at a future node N, then
once he reaches this node, his current preferences will be to use the planned
strategy; and (3) The preference relations do not converge to expected utility.

This paper offers conditions for such preferences. The key idea is that as

1 Assume that preferences satisfy the reduction of compound lotteries axiom. By this
axiom, the decision maker is interested only in the probability of reaching a certain outcome
and not in the probabilities of the sequence of stages leading to it.



uncertainty unfolds, preferences evolve so that the indifference curve through
the planned choice at each choice node, and only this indifference curve,
agrees with the induced preferences from the past. In particular, for reasons
that are explained in Section 3, It follows that this indifference curve is affine,
that is, if X and Y are in this indifference curve then so is X +(1—)Y for all
a € [0,1]. Several non-expected utility theories are consistent with one affine
indifference curve, but they may take different shapes from those discussed
in the literature. Some may imply a natural concepts of reference points.
For example, the quadratic model (5, 6] implies randomization aversion for
lotteries that are worse than the planned holding X* but randomization
seeking for lotteries that are better than X™.

The paper is organized as follows. Section 2 introduces the framework for
defining consistency conditions. Section 3 presents results on limits of pref-
erences and discusses the notion of unplanned situations. Section 4 describes
the behavior of some special cases of non-expected utility preferences in this
framework. Section 5 concludes with a discussion of reference points.

2 Consistent Optimization

Denote the set of lotteries over the interval [0, M] by L. Let = be a complete
and transitive preference relation on L. A utility representing = is a function
V:L — R such that X > Y iff V(X) > V(Y). If V is differentiable, then the
derivative of V at Z acts as a continuous linear functional on L, which means
that it has a representation in terms of a continuous real function on [0, M].
This real function is called the local utility of V' at Z, and is denoted U(-; Z).
The preferences = can be locally approximated around Z by the expected
utility functional using the vN-M utility function U(+; Z) (see Machina [15]).

Decision trees have three kinds of nodes. Terminal nodes specify a single
outcome. At a chance node, Nature chooses a branch according to a known
probability distribution. At a choice node N, the decision maker is given a
choice set Ly of branches, each leading to another node, which may be any
of the three kinds. The root node of the tree is denoted Np.

The decision maker’s initial preferences over L are represented by a utility
functional Vo. At No he makes a plan 7 of the choices he will make at each
choice node of the tree. In general, the decision maker may use a randomized
plan and 7 for node N may be a probability measure on Ly. For each plan



7 the decision maker computes its reduced form Zy(7) by computing the
probability of reaching each terminal node (this is called the reduction of
compound lotteries axiom). Since the decision maker may randomize, it
follows that the set of reduced form lotteries is a convex subset of L. He then
chooses the plan 7o whose reduced form Zy(wo) maximizes Vp.

Once a decision node is reached the decision maker is free to reevaluate
the plan. At choice node N the decision maker uses the utility Vy to evaluate
the subplans for the subtrees originating at node N. Again he computes the
reduced form Zy of each subplan at N, and chooses a subplan 7y that
maximizes Vy(Zy). Dynamic consistency can now be defined as follows.

Axiom 1 If node N' comes after node N, then the optimal choice at N’
under V: was also optimal for N' under 7.

If we require that for every choice node N, Viy and Vj, represent the same
preference ordering over lotteries, then together with Axiom 1 it implies that
Vb is an expected utility functional (see, for example, Green [10] or Karni and
Schmeidler [13]). Machina [17] has argued that the experience of undergoing
the risk at earlier nodes may well change the decision maker’s utility. The
potential problem that can arise from non-expected utility preferences that
change when moving down a tree is that the decision maker may “make a
book against himself.” To solve this problem, Machina offered the following
axiom (see also McClennen [18, 19]).

Axiom 2 Suppose that the Vy-optimal subplan = leads to node N' with
probability p and to a reduced-form lottery Zn with probability 1 — p. Then,
as a function of X, Vy+(X) and Vn(pX +(1—p)Zn) are ordinally equivalent.

This condition says that at node N’, the preference relation will be the
one induced by the preference relation the decision maker used at node N
leading to N’. This axiom puts no restrictions on V. However, once
is specified, so are all the functions Viv (up to equivalence). Nevertheless,
Border and Segal [2] show that for every differentiable V4, as the decision
maker moves down the tree, his preference will converge to expected utility.

Although Axiom 1 is sufficient to prevent the Dutch book of the Introduc-
tion, it is not restrictive enough to imply any interesting models. I therefore
suggest a stronger axiom that is still weaker than Axiom 2.



Axiom 3 Let the Vy-optimal subplan =y lead to N' with probability p and
to a reduced-form lottery Zy with probability 1 — p. Moreover, let X* be the
reduced form lottery resulting from the optimal plan 7y for node N . Then
VX € L, Vw(X*) 2 V(X)) iff Vw(pX* +(1=-p)Zn) 2 Vn(pX +(1—p)Zn).

In other words, if X* is the my-planned optimal choice for decision node
N’, then the preference relation between X* and any other lottery X at N’
is the one induced from the preference relation the decision maker had at
node N leading to N’. This should hold for all X € L, and not just for
{X : pX + (1 — p)Z, € Ln}, as is required by Axiom 1. According to
Axiom 3. the utility function Vi determines one indifference curve of Vv,
the one going through X*. Note that this is also an indifference curve of
Vi according to Axiom 2. Like Axiom 2, the preference relation at node V'
depends on the tree. Indeed, changing the outcomes at the terminal nodes
may change X*, and hence it may change Vy:. To that extent, Axiom 3
agrees with Machina’s Axiom 2, that the preferences at each node depend
on the tree itself, and the notion of dynamic consistency is with respect to
a given choice set. I consider this to be an advantage of the model, as it
permits a natural notion of reference points, which must of course be with
respect to a given choice set (see below).

3 Zero Probability Events

The analysis of the last section, based upon Vy(pX + (1 —p)Z), is not espe-
cially useful when p = 0. If the probability of reaching node N’ is zero, then
under Axioms 2 and 3, Vi is indifferent among all possible lotteries, because
ex ante, V (and (Vi)) are indifferent between them. But zero probability
events are relevant, because if the original lottery at node N is continuous,
then all branches of the tree occur with probability zero.

Problems arise even if all outcomes are to be received with positive prob-
abilities as it is somewhat arbitrary to define the risk to which the deci-
sion maker has been exposed. Suppose that at N, the decision maker had
faced the (optimal) lottery (X,p;X,q;Z,1 —p — gq). At the next stage he
holds a ticket for lottery X. What risk did he bear? Is it (+; Z,1 —p — q),
(s X, q; Z,1—-p—q), (X, p; *; Z, 1—p—q), or maybe something else? Border and
Segal [2] therefore suggest considering all lotteries as being continuous, so



whatever lottery the decision maker holds, he behaves as though he reached
it with probability zero. To solve the problem of updating preferences with
respect to zero-probability events, they suggest to take the limit of the in-
duced preferences of Axiom 2, as the probability goes to zero. I adopt a
similar solution here to extend Axiom 3 to the case p = 0.

Axiom 4 (Zero-Probability Consistency) Let the Vy-optimal subplan
nn lead to node N' with probability p = 0. Also, let X* be the Vy-mazimal
choice at N' and let Zy be the reduced form of the optimal plan xn for node
N. Then Vni(X™) 2 Vawn(X) if and only if there exists p* > 0 such that for
every p € (0,p7), Vn(pX™ + (1 — p)Zn) 2 Vn(pX + (1 — p)2ZnN).

Note that since .V’ is reached with probability zero, Zy does not depend
on X*, and is the same regardless of what the decision maker receives at N'.

Axioms 4 and 3 only restrict the preference relation between X* and other
lotteries, but they differ in what they assume to be known to the decision
maker about past uncertainty. Although Axiom 3 may seem to be more
natural, the above discussion shows that the probability p in its definition
may not be well defined. Axiom 4 therefore seems to be the best way to
capture the intuitive appeal of Axiom 3. Similarly of [2, Theorem 4], we get:

Theorem 1 Let Zy be the reduced form of the Vy-optimal plan mg for the tree.
Assume that Vg is differentiable at Zo and that Uy(+; Zy), the local utility of
Vo at Zy, is strictly increasing. Let node N lead to N', and let X™* be the
Vv -best choice for N'. If the decision maker updates preferences according
to Aziom {, then the indifference curve of Vy: through X* is affine and is
derived from the expected utility preferences with the utility function Up(+; Zo).

Proof: Suppose node N leads to N’ with probability p.and to reduced form Z
with probability 1—p. Let W{, be the utility function defined by Axiom 2 with
indifference curve I},(X*) through X*. Let W{, satisfy Axiom 3. Obviously,
I%,(X*) is an indifference curve of WJ. as well. By [2, Theorem 4], the
preferences represented by W%, converge (as p — 0) to an expected utility
relation with the vN-M utility Uo(+; Zo). In particular, I},(X*) converge to
an affine set which is derived from these expected utility preferences. 1B

Figure 1 explains the affinity of the indifference curve through X*. By
construction of the limiting preferences, Vau(X*) > Vm(Y) if there exists
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p* > 0 such that for every p € (0,p%), Vn(X",p; Z,1 —p) > W(Y,p; Z,1-p).
For this, the slope of the chord connecting pX* + (1 —p)Z and pY +(1 - 2)Z
must be steeper than the slope at Z of the indifference curve of Vy. But in
that case it follows by the same reasoning that for every o € (0,1), Va:/(X*) >
Var(aX*+(1—a)Y). By taking ¥ to a limit we get that if Vy:(X*) = Vn(Y),
then Va € [0,1], Vwr(X*) = Vw(aX* + (1 — a)Y).

Theorem 1 implies that if all branches have zero probability, then every
Vy-indifference curve through the contingent plan coincides with an indiffer-
ence curve of the expected utility preferences with the utility function Up,
which is the local utility of the functional V; evaluated at the optimal plan
with reduced form Z, for the whole tree. Therefore the choices are exactly
the same as those an expected utility maximizer would make. This seems to
argue that all the above refinements of dynamic consistency are a waste of
time, since decision makers must behave as if they maximize expected utility.

But note that a similar problem exists in all models of multi-stage decision
making. Since the original choice set Lo is convex, choosing any undominated
lottery out of it can be supported by maximizing an expected utility func-
tional V. As long as the decision maker commits to this plan in subsequent
nodes, it is impossible to tell that he does not actually maximize, at each
node, the same expected utility functional V. So the inability to distinguish
between expected utility and non-expected utility maximizers has nothing to
do with Axiom 4 and Theorem 1. But there is a difference between expected
and non-expected utility maximizers, as is explained below.

A decision maker may use many different ways to model decision prob-
lems he faces. These models depend on his beliefs and on what he finds to
be important and salient. For example, he may decide to ignore some of
the possible nodes of the decision tree to make his choice problem simpler to
handle. This may be due to computation cost that in many cases exceed the
expected potential benefit from a better planning. (See Gul and Lantto [12]
for a related discussion). Or, the decision maker may make a mistake in fig-
uring out the exact form of the tree. Suppose he reaches node N and realizes
that the choice set he faces differs from the one he planned for. Instead of
Ly, he has to choose from Ljy. Machina [17] calls such nodes hidden nodes,
and argues, correctly, that as long as the decision maker chooses an undom-
inated lottery, whatever he does at such nodes is dynamically consistent.
The question nevertheless remains, what should the decision maker do now?
I claim that this is where the utility functional Vy matters. The decision
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maker should now simply choose the option from L) that maximizes V.
It is therefore precisely in the case of hidden nodes that we may be able to
distinguish an expected utility maximizer from others.

Suppose, for example, that for node N, the decision maker planned for
the choice set {(5,p;1,1 —p—¢;0,9) : p < 10g — 8.9}. His planned choice
for this set according to Vp was (5,0.1;0,0.9). In particular, he preferred this
lottery to the lottery (1,0.11;0,0.89). Reaching node N, he realizes that the
actual choice set is {(5,p;1,1 —p — ¢;0,q) : p € max{10q,0.1}}. Being an
expected utility maximizer, he will now have to choose (5,0.1;1,0,89;0,0.01).
However, if Vv is not an expected utility functional, he may now well choose
the sure gain of 1, as is predicted by the Allais paradox.

Does non-expected utility offer any interesting models that retain enough
structure to be useful, and yet differentiate itself from expected utility? The
next section discusses this question.

4 Some Functional Forms

According to Axioms 2-4, the utility functional Viy over lotteries depends on
the specific node of the tree. One can, nevertheless, impose some restrictions
on all these preferences. For example, we may wish to require that at each
node, the function Vi satisfies some normative assumptions like the inde-
pendence axiom or betweenness (X ~ Y = Va € [0,1], X ~ aX 4+ (1 - )Y,
see [4], [9], [7]). Since Theorem 1 implies one affine indifference curve, it is
obvious that betweenness-satisfying models are consistent with Axiom 4.

Alternatively, suppose that at all nodes the decision maker’s utility is
quadratic, that is, Vy(F) = f [ on(z,y)dF(z)dF(y) for some symmetric and
monotonic function ¢y, although ¢n may vary from one node to another.
The quadratic representation is implied by several sets of axioms (Chew,
Epstein, and Segal [5, 6]), which have some normative appeal. Moreover,
these axioms are meaningful for each node independently of the relations
at other nodes. It turns out that under Axiom 4, the quadratic model has
strong behavioral implications.

A quadratic functional has the following properties. If it is not ordinally
equivalent to expected utility, and has one affine indifference curve, then all
indifference curves above it are quasiconcave (X ~ Y = aX+(1-a)Y > X,
Ya € (0,1)) and all indifference curves below it are quasiconvex (X ~ Y =



X = aX + (1 —a)Y,Va € (0,1)) [5, 6]. According to the above analysis,
the indifference curve through X3, the decision maker’s current holding,
is affine. Therefore, the utility is quasiconcave above X} and quasiconvex
below. This is depicted in the left panel of Figure 2. Note that although one
non-affine indifference curve of a quadratic functional determines the whole
indifference map, many different quadratic functionals can share the same
affine indifference curve.

Thus, the quadratic functional implies preferences for randomization in
case the choice set turns out to be better than planned. However, if the
choice set turns out to include only lotteries that are inferior to his planned
holding, the decision maker will exhibit randomization aversion. Consider
the following example. Let X = (1000.0.9;0,0.1), Y = (7500, 0.3;0.0.7), and
let Z =2X + 1y = (7500,0.1;1000.0.6;0,0.3). Suppose that the decision
maker’s plan was to choose the degenerate lottery W = (500, 1), when he
realizes that X and Y (and all lotteries of the form aX + (1 — «)Y) are also
available. He is indifferent between X and Y, but prefers both to W. The
quadratic model now predicts that Z is even better. One possible explanation
is that Z combines the best of the two lotteries X and Y. It has a substantial
probability of winning $1000, and a positive (though small) probability of
winning the high prize of $7500. The probability of winning nothing is still
substantially less than the probability of winning something.

Suppose, however, that the decision maker planned for the degenerate
lottery W' = (1500, 1), when he learns that this option is no longer available.
Instead, he has to choose out of the set {aX + (1 — a)Y : a € [0,1]}.
According to the quadratic model. if he is indifferent between .\’ and Y.
then he is not going to choose Z. Unlike X, it has a significant probability
of winning zero, and unlike Y, the probability of winning the high prize of
$7500 is very small. Certainly, a decision maker may adopt the optimistic
approach when things turn up better than planned for, but the pessimistic
viewpoint in case he is doing worse than planned.

An immediate generalization of the simple quadratic model is obtained
by dividing the domain of V' into three regions. The function V' is quadratic
on the lower and upper regions (but not necessarily with respect to the same
function ¢), and satisfies betweenness on the intermediate region (see [5]).
This is depicted in the right panel of Figure 2. If in that case the current
holding X} is in the interior of the middle region, then around this point
the decision maker behaves as though his preferences satisfy betweenness.
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However, for sufficiently big changes, his preferences become quadratic.
Some models are inconsistent with the analysis of Theorem 1. The
rank dependent model, first suggested by Quiggin [20], is given by V(F) =
[ u(z)df(F(z)), where f:[0,1] — [0,1] is strictly increasing and onto and u
is unique up to positive affine transformations. Suppose f is differentiable
and that its derivative is positive. This functional is consistent with one
non-trivial affine indifference curve if and only if it is reduced to expected
utility, hence its strict form is inconsistent with our analysis. Formally:

Lemma 1 Suppose that V is a rank dependent functional and that there
ezists X ¢€ {(0,1),(M,1)} such that I(X), the indifference curve through X,
is affine. Then f(p) = p for every p € [0,1].

Proof: Let = be the certainty equivalent of X. For a € (0,00), let a, < b,
such that V(aq,1/(a + 1); bay /(e + 1)) = V(z,1). By the affinity of the
indifference curve through (z,1) it follows that for every p € [0,1/(a + 1)],
V(z,1) = V(@a,p; 2,1 — (a + 1)p; ba, ap). Transform the function u such
that u(z) = 0 and u(a,) = —1, denote u(ds) = B, and obtain by the last
equation that —f(p) + B[l — f(1 — ap)] = 0. Substitute p = 1/(a + 1)
to obtain By = f(1/(a + 1))/[1 — f(1/(e + 1))]. Therefore, f(p) = [1 —
F(1 = ap)lf(1/(a + 1))/[1 = f(1/(a + 1))]. Differentiate with respect to p
and set p = 1/(a+1) to obtain 1 = af(1/(a+1))/[1 - f(1/(a+1))]. Hence
fAf(e+1)) =1/(a+1). u

This result is parallel to that of Epstein and LeBreton (8], where it is
shown that the rank dependent model is inconsistent with Machina’s [17]
notion of dynamic consistency. (In their analysis, preferences are not updated
with respect to zero probability events, hence their proof cannot use the fact
that the rank dependent model is inconsistent with affine indifference curves).

5 Reference with Respect to Utility

Standard expected utility, and the standard versions of most of its recent
generalizations, deal with preferences over distributions over final level of
wealth. So the lottery (z1,p1;...;Zn,Pn) represents a p; probability that the
decision maker ends with wealth level z;,2 = 1,...,n. An alternative analysis
suggests that lotteries represent changes from the current wealth level. If his
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wealth is w and he faces the lottery (z1,p15...;%n,pn), then the decision
maker faces the lottery (w + 1,p1;...;w + &5, pn) over final wealth levels.
So two individuals having the same utility function but different wealth levels,
will have different preferences over distributions over gains and losses.

Taking this framework one step further, one can claim that decision mak-
ers react differently to positive and negative changes from their current wealth
level. They may be risk averse with respect to gains and risk loving with re-
spect to losses (Kahneman and Tversky [21, 22]). In that case, the current
wealth level serves as a natural reference point. Even more interesting is the
case where the lottery itself defines the decision maker’s reference point. Such
is Gul’s [11] disappointment aversion theory. Another possibility is that past
lotteries define the reference point (see Bowman, Minehart, and Rabin (3]).
In all these cases, each possible outcome of the lottery is evaluated with
respect to the reference point, which is by itself a monetary payoff.

Alternatively, one may compare the outcomes of a certain lottery to an
alternative lottery that is available to the decision maker. To this group
belong Fishburn’s [9] non-transitive analysis and the different versions of
regret theory (Bell [1] and Loomes and Sugden [14]). Here the reference
point is a lottery, but it depends on the specific decision problem the decision
maker faces. In these models, there is no unique reference lottery. Each
lottery serves as a reference point for the other one.

The analysis of the present paper leads to preferences that depend on
the decision maker’s current holding, where this holding is a lottery. The
reference point is not used to evaluate a single lottery, but to determine the
whole preference relation. This reference point is not fixed (as is the case with
cumulative prospect theory [22]), nor does it depend on the current choice
set (as is the case with regret theory {1, 14] or disappointment aversion [11]).
Rather, it depends on the resolution of past uncertainty. Note that in most
other models of reference point, the same choice set has always the same best
points, while in our analysis the optimal point depends on how the decision
maker reached this choice set. (See Section 4 for a numerical example. See
also [3]). Although the possibility of the reference point analysis does not
depend on the assumption that the reference indifference curve is affine (this
affinity follows from Axiom 4), it becomes nevertheless more elegant as some
functionals take very specific forms given one affine indifference curve.

I end the paper with a brief discussion of the “weak consequentialism”
axiom, suggested by Gul and Lantto [12]. Suppose that at node Np the
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decision maker considers a certain available lottery X to be optimal. This
does not mean that he must choose this lottery, as there may be other optimal
lotteries. But suppose that later on in the tree he faces a subset of his original
choice set and X is part of it. Weak consequentialism requires that at that
point, the lottery X must still be optimal. Gul and Lantto show that this
requirement is equivalent to the betweenness axiom.

To a certain extent, weak consequentialism is similar to Axiom 3, which
requires that if at decision node N the lottery X is chosen over Y, then later
on the decision maker will not choose Y over X. But this ‘small’ difference
between preferences and choice is at the core of the present paper. In order
to prevent a Dutch book, behavior, not preferences, should be consistent. In-
deed, if preferences are initially strictly quasi convex and both X and Y are
optimal, then choosing X implies that in the next period X is strictly pre-
ferred to Y (see Section 4). Even though X and Y were initially indifferent,
holding X makes it more attractive than Y.

11
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Figure 1: Showing why the indifference curve through X~ is affine.

4

Figure 2: Quadratic and betweenness—quadratic representations
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