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Abstract

This paper considers the estimation of dynamic structural models where
the decision variables are censored. We present and discuss several economet-
ric issues and estimation methods under alternative stochastic structures of the
unobservables, different potential sources of censoring, and different character-
istics of the dataset (e.g., temporal dimension, frequency of corner solutions, or
distribution of duration spells between two consecutive interior solutions). We
use a labor demand model with kinked and lump-sum hiring and firing costs
to illustrate the econometric problems and estimation methods.
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1 Introduction

Longitudinal datasets with information about firms’ investment, employment or price
decisions, among others, show how frequently firms do not respond to observed
changes in costs or in the demand, and they prefer "doing nothing”. Retail firms
may not change their prices for several months even if wholesale prices are changing.
Firms wait to renovate their capital stock even when technological change is rapidly
depreciating this stock, or when significant reductions in real interest rates occur.
Employment in a plant may not be reduced even if the plant is suffering significant
and persistent reductions in its demand. This lack of response to sizable changes in
relevant variables can be also observed in individuals’ purchasing decisions of durable
goods. From a theoretical point of view there are several potential characteristics
of the decision problem that can explain the existence of this censoring in observed
decision variables: non-negativity constraints, partial irreversibility of the decision,
kinked adjustment costs, indivisibilities, or lump-sum adjustment costs, among oth-
ers. Each of these sources of censoring can have different economic interpretations
for each particular decision problem, e.g., regulatory or technological restrictions, or
market conditions in which the agents operate.

In this paper we analyze the identification and estimation of the sources of censor-
ing in dynamic structural models. The paper discusses different econometric issues
associated to the estimation of these models and presents several approaches to over-
come some of these problems. Special emphasis is placed on the identification and
estimation of the parameters of interest under different assumptions on the stochastic
structure of the unobservables and under different characteristics of the longitudinal
dataset, like its temporal dimension. the frequency of corner solutions, or the distri-
bution of duration spells between two consecutive interior solutions.

There are several reasons that motivate the use of a dynamic structural approach
to analyze the economic implications of infrequent adjustments in individuals’ deci-
sions. First, in the presence of any of the different potential sources of censoring, an

individual’s decision problem becomes dynamic, even if in the absence of these factors



the problem is static. Second. in the context of an axiomatic approach to individual
behavior, both identification assumptions and parameters of interest have clear eco-
nomic or behavioral interpretations. This makes it easier to dis 1ss the plausibility ot
the assumptions or of the parameter . stimates. Finally, but -t less important, tho
estimation of a structural model allows one to implement coun: :rfactual experiments
to evaluate the effects of changes in institutional or behavioral parameters entering
in the model. Section 2 characterizes the type of models that will be considered in
this paper and presents the notation. In that section we also present a model of labor
demand that will be used to illustrate methods and results.

There are at least two types of empirical questions that can be answered from the
estimation of the sources of censoring in a dynamic decision model. First, different
sources of censoring in a decision variable are associated to different institutional
characteristics of the market under study. To illustrate this, consider an individu-
al’s purchasing decision of an automobile (see Bar-Ilan and Blinder, 1988, or Eberly,
1994, for examples of these models). A simple potential explanation for individuals’
purchasing infrequency is the existence of indivisibilities. If that is the unique source
of censoring, there are not borrowing constraints, and there are perfect competitive
markets for purchasing and renting cars, an individual would be indifferent between
purchasing a new car or renting it during its operative life. In such a case, purchasing
infrequency would not have any implication on individuals’ consumption behavior.
Alternatively, consider that there exist significant informational asymmetries in the
market of second-hand cars. These asymmetries imply that the price of a car in the
second-hand market is lower than the price of exactly the same car in the market of
new cars. This introduces an additional source of infrequency in individuals’ purchas-
ing behavior (i.e., partial irreversibility). Another possible source of censoring would
be the existence of search costs or administrative costs that could persist even in the
absence of informational asymmetries or indivisibilities. It is clear that the identi-
fication of the quantitative importance of these different factors affecting infrequent
purchasing behavior is of significant interest both for firms operating in the market

and for regulators.
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A second aspect that motivates the interest in the identification of the sources of
censoring is that these sources have different implications on individual behavior and
on aggregate cross-sectional dynamics of the dependent variable. For example, kinked
adjustment costs reduce the time variability of the dependent variable, but lump-sum
adjustment costs contribute to increase this volatility. Therefore, the implications of
these two factors on the propagation of the business cycle can be very different (see
Caballero and Engel, 1991, and Bertola and Caballero, 1990, for the implications of
kinked adjustment costs on aggregate dynamics).

Since the seminal paper by Hansen and Singleton (1982), the most common ap-
proach to estimate dynamic decision models has been to construct sample counter-
parts of the orthogonality conditions provided by the stochastic Euler equations. and
use them to estimate the parameters of interest by the Generalized Method of Mo-
ments (GMM). The main advantage of this estimation strategy is that it permits
to identify and estimate parameters of interest without having to solve the model.
However, the econometric approach in Hansen and Singleton has at least three limita-
tions in the context of censored dynamic decision models. First, marginal conditions
of optimality hold only at interior solutions, and using the subsample of interior so-
lutions introduces a selection bias. Second, not all the structural parameters can be
identified exploiting only the structure in the marginal conditions of optimality (i.e.,
lump-sum adjustment costs). Finally, if corner solutions are relatively frequent in the
sample, the discrete choice ”corner solution versus interior solution” can contain more
information than the marginal conditions of optimality about most of the structural
parameters.

An alternative approach to estimate dynamic structural models is to employ a
solution estimation method. This method uses an outer algorithm to maximize a
criterion function (e.g., likelihood) and an inner algorithm to solve the dynamic pro-
gramming model at each iteration in the search for the parameter estimates. This
econometric approach was first used by Miller (1984), Pakes (1986) and Rust (1987)
in the context of discrete choice dynamic structural models, and it has been em-

ployed since then in several discrete choice applications (see Eckstein and Wolpin,



1989, and Rust, 1992 and 1994, for excellent surveys). This solution estimation ap-
proach has also been used in applications with relatively simple continuous decision
models (Deaton and Laroque, 1996). The main advantage of this approach is that
it incorporates simultaneously all the restrictions or the structure of the model in
the estimation process. Its main disadvantage is the large computational cost when
the number of state variables is relatively large (i.e., larger than 2 or 3). In spite of
the notorious advances during the last years in the techniques for the solution and
estimation of these models (as well as the improvements in computer equipment),
there are still many interesting dynamic decision models in economics that can not
be estimated using this solution estimation method.

In this paper we concentrate on those econometric techniques that do not require
one to obtain an explicit solution of the model, and on their application to censored
dynamic structural models. In Section 3 we obtain the form of the Euler equations
in censored dynamic decision models, and discuss how to obtain moment conditions
from these Euler equations in order to estimate some of the parameters of interest.
There are two main econometric problems that should be taken into account to obtain
these moment conditions. The first one is to control for the sample selection bias
that results from the fact that marginal conditions of optimality only hold for those
observations at interior solutions. The second problem is that, when unobservables are
autocorrelated, current and previous values of predetermined explanatory variables
will be correlated with the unobservables. In that case the problem is how to obtain
a transformation of the Euler equations that guarantees orthogonality between some
observable explanatory variables and the transformed unobservables. Although this
Is a standard problem in time-series and panel data econometric models, both the
existence of censoring and the particular way in which unobservables enter in these
Euler equations introduce some additional considerations.

Section 3 builds on Pakes (1994) and extends his results in two directions. First,
we consider a general censored dynamic programming model. And second, we present
relatively simple ways to control for selection bias and autocorrelated unobservable

state variables in these models that do not integration over the space of unobservables.
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We finish Section 3 with a discussion of several limitations associated to the estimation
of censored dynamic decision models using only Euler equations. Some of these
limitations motivate the importance of exploiting the discrete choice corner solution
versus interior solution to estimate the parameters of these models.

Section 4 discusses the econometric problems associated to the estimation of the
optimal discrete choice corner solution versus interior solution using methods that do
not require the explicit solution of the model. This section is based on Aguirregabiria
(1996), and shows how a method in the spirit of Hotz and Miller (1993) can be applied
to the estimation of this discrete choice in a censored dynamic programming model.
This approach consists of using individuals’ decisions to obtain nonparametric or
semiparametric estimates of the unknown functions that are needed to have a solution
of the model, i.e., value function or conditional choice value functions. Given these
initial estimates, the structural parameters can be estimated in a second stage without
having an explicit solution of the decision model. This approach has been used by
Hotz and Miller (1993), Manski (1991 and 1993), Hotz et al. (1994), and Ahn (1995)
in the context of structural dynamic discrete choice models, by Aguirregabiria (1996)
in censored dynamic decision models, and by Park (1996) in dynamic games.

We conclude in Section 5 summarizing the paper and with a brief discussion of

several unsolved problems in this literature.

2 Continuous Markov decision process with cen-
sored decision variables

This section presents the notation that will be used for the rest of the paper, and de-
scribes some general characteristics of censored continuous Markov decision processes
(hereinafter, censored CMDP). We start with a brief description of a general CMDP,

and then we discuss several sources of censoring in these models.



2.1 Continuous Markov decision processes

There are two types of variables in a MDP: the vector of state variables, s, and
a control variable, d.! In a CMDP the control variable has a continuous range of
variation. Let D be the set of feasible choices, where D C R and D contains a compact
set in R, e.g., D =R or D = {0} U [1, +00). The vector of state variables belongs to
the state space S that, for notational sim: .icity, we assume is a compact subset of the
RIS, where |S] is the dimension of s (i.e., we assume that the state variables are also
continuous).? Time is discrete and indexed by ¢. At each period ¢ a decision-maker or
agent observes s; and decides d, in order to maximize the expected value of current and
future returns. Future values of some state variables are uncertain for the decision-
maker. but she has subjective beliefs about uncertain future states. These beliefs can
be represented by a Markov transition density function P(S¢t4+1]8¢,d;). Preferences are
time separable and u(s;, d;) represents the one-period return or utility function. The
time horizon of the decision problem is infinite. The parameter 3 represents the rate
at which the agent discounts utility at future periods, and it belongs to the interval
(0,1).

In this context, an agent can be represented by the set of primitives {u,p, D, 3}.
We assume that these primitives are known functions of a vector of parameters 6.

The decision problem of an individual at period ¢ is:

o j
Mazepy ulsy, di;60) + > & / W(Stts, deri 0) [] p(dsesrlsirn—1, dive-1:8), (1)
j=1 k=1

given that all future decisions, {d;1,ds2, ...}, will be optimally taken, and where the
integral is over all future state variables. Let 6;(s;;6) be the optimal decision rule

at period t (i.e., the argmax of the expression in [1]), and define the value function

In this paper we consider a model with only one decision variable. However, all the results below
can be extended to the case of multiple decision variables. For instance, Pakes (1994) considers the
case of one binary choice variable and one continuous variable, i.e., indicator of firms’ liquidation
and investment, respectively. Aguirregabiria (1996) presents a model with two censored decision
variables, i.e., prices and orders.

2We might consider both continuous and discrete state variables. However, we have preferred to
consider only continuous state variables to avoid having to define both transition density functions
and transition probability functions, as well as to avoid the combination of integrals and sums.

6
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at period ¢, Vi(s;; 6). as the discounted expected value of current and future utilities
when dyy; = 6145(8t45;0) for every j > 0 (i.e., the value of expression [1]). The
Markov structure of the transition probabilities, the time-separability of preferences,
and the infinite horizon of the problem imply that both value functions and optimal
decision rules are time-invariant (i.e., Blackwell’s theorem). Using the definition of
value function we can write the following recursive functional equation for V(s,; 6)

(i.e., Bellman’s equation):

V(st;0) = Maz(g,ep) {u(st,dt;e) +6/V(st+1; 6) p(dstH[st,dt;ﬁ)} . (2)

And the optimal decision rule is:

6(s¢;0) = argmax (g, py {u(s,,d,;e) +B/V(3¢+1:0) p(ds,+1|st,dt;9)} . (3)

Define the conditional value function as the expected value of next period value

function conditional to current decision and current state variables:
EV(s,d;0) = [ V(s';6) p(ds'|s, d: ). (4)

And define G(s,d; 0) = u(s,d; 8) + BEV (s, d; ). Then, we can also define V(s;6) and
6(s; 0) as the maximum value and the argmax, respectively, of G(s, d; 0) with respect
tod € D.

We can distinguish two types of state variables in a CMDP: endogenous and
exogenous state variables. Endogenous state variables are those with transition rules
that depend on the decision variable. On the contrary, the transition rules of the
exogenous state variables do not depend on previous decisions. Let s, be equal to
(K¢, 2:), where k; is an endogenous state variable, and z, is a vector of exogenous state
variables. By definition p(z;4|s¢,d;) does not depend on k, and d,, and we denote
this function by g,(dz¢41|2;). For simplicity we will consider the following transition

rule for the endogenous state variable:
ICH.]_ = A kt + dg + h(zt+1): (5)

where [A| < 1. Notice that, conditional to the information at period t, this transition

is stochastic because it depends on z,,,.



2.2 Sources of censored decision variables in CMDP

DEFINITION 1: Given a pair (s,0), the optimal decision associated to this pair,

6(s;8), is a corner solution if:
Gai—i(s,8[5;6];0) # 0 and Gay(s, 6[s;6];6) # 0, (6)

where Gyi—j(.) and Gy.(.) are the partial derivatives of G(.) with respect to d from

the left and from the right, respectively.®
DEFINITION 2: Given a CMDP with vector of structural parameters 8, we say

that this process has corner solutions if:
/ I (Gagm(5.6[5:61:6) # 0 and Gai(s,6[5:6);6) # 0) P(ds:0) >0,  (7)

where I(.) is the indicator function, and P(ds;6) is the unconditional or steady-
state distribution of s induced by the optimal decision rule 8[s; 8] and the conditional
transition probabilities of the state variables.

In this paper we concentrate on corner solutions that imply a decision of inaction,
that is we concentrate on censored decision models. Without loss of generality it is
possible to define inaction as d = 0. Therefore, I consider a class of CMDP where
the decision variable is censored at zero.

DEFINITION 3: A CMDP with a vector of structural parameters 6 has censored

decision variable at zero if:
/ I(8(s:6)=0; Gary(s,8[5:6):8) # 0 5 Gy (5, 8[s:6]; 6) # 0) P(ds:6) > 0. (8)

The rest of this subsection analyzes four sources of censoring which appear in
several CMDP in economics: (1) non-negativity constraints; (2) partial irreversibility

and kinked adjustment costs; (3) lump-sum adjustment costs; and (4) indivisibilities.

3Notice that this definition accounts for both standard corner solutions and solutions at values
d where G(.) is not differentiable.



2.2.1 Non-negativity constraints

Non-negativity restrictions, i.e., D = [0, oc), are the result of institutional or phys-
ical constraints. However, non-negativity restrictions do not always imply corner
solutions. If, for any value of the vector of state variables, the marginal utility with
respect to d is equal to infinity at d = 0, there will not be a positive probability of cor-
ner solution. That is the case in lifetime consumption models (or in models of firms’
capital or employment decisions) where consumption (capital or employment) cannot
be negative, but marginal utility (profit) is infinite at zero consumption (capital or
employment). However, if the marginal utility with respect to d is not always equal
to infinity at d = 0, the non-negativity restriction will imply corner solutions. That
is the case in models of capital investment with total irreversibility, like in Pindyck
(1988). The following Lemma characterizes the form of the optimal decision rule in
this type of models.

LEMMA 1: If:

(i) D = [0, 00)

(1) u(.) and p(.) are continuous and twice differentiable in all their arguments.

(i43) uq(s,0;0) < oo, for any value of s.

() u(.) is strictly concave in d and in the endogenous state variables.

the optimal decision rule of the CMDP has the following form:

| 6%(s;6) if 6*(s;60)>0
8(s:6) = { 0 otherwise, ©)

where 6*(s;0) is the optimal interior solution that is implicitly defined by:
Ga(s,6%(s:6];6) =0, (10)

and G4 = 0G/dd.

Proof:

It is simple to verify that if G(s,d) is continuous and strictly concave with respect
to d, Lemma 1 holds. Under conditions (i) to (iv) and 8 € (0,1), Theorem 9.10 in

Stokey and Lucas (1989) applies, and the value function is continuously differentiable.



Therefore, the proof of Lemma 1 reduces to prove that Gaa(s,d) < 0 for any pair (s, d).
Now:

Gaa(s,d) = ugq(s,d) + IB/ka()\k +d + hl], 2) q.(d7'|2), (11)

where Vix = 6°V//0k?. Under conditions (i) to (iv) Theorem 9.8 in Stokey and Lucas
applies, and the value function of this problem is strictly concave. Therefore, given
equation (11), G(.) is also strictly concave with respect to d. QED.

The optimal decision rule in Lemma 1 contains the main characteristics of the
decision rules in censored CMDP. There is a first order condition of optimality for the
interior solution (equation [10]), and there is a discrete choice between corner solution
and interior solution. For most dynamic decision models there are not closed from
expressions for equations (9) and (10) in terms of variables and structural parameters.
The estimation methods that we will discuss in this paper are characterized by the
fact that, without solving explicitly the model, they exploit its structure to obtain
closed form expressions, in terms of variables and structural parameters, which are
alternative representations of the marginal conditions of optimality and of the optimal
discrete choice, and use these expressions to construct moment conditions to estimate

the parameters of the model.

2.2.2 Partial irreversibility and kinked adjustment costs

We have partial irreversibility of a decision when there is a cost associated to negative
values of the decision variable but to positive values. This cost creates a kink in the
utility function at d = 0. This kink implies the optimality of inaction, i.e., d = 0, for
a subset of values of s that has a positive mass of probability. Partial irreversibility
or kinked adjustment costs can arise in many economic problems. For example, in
models of capital investment or consumption of durable goods, the existence of infor-
mational asymmetries in the second-hand market and the fact that capital equipment
and durable goods are, in a certain degree, specific to the firm and the consumer,
respectively, make the selling price of the good lower than the purchasing price. The
implicit cost of a negative value of d is the difference between the purchasing price

and the selling price. Examples of this partial irreversibility models are Eberly (1994)
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for consumption of durable goods, and Abel and Eberly (1996) for capital investment.
Another type of models are those with an explicit cost for negative values of d. That
is the case in labor demand models with firing costs (Hamermesh, 1989 and 1993,
Bentolila and Bertola, 1990, or Hopenhayn and Rogerson, 1993).

Here I consider a simple representation of this type of kinked adjustment costs.
u(s, d; 0) = u*(s,d; 0) + c& I(d < 0)d — ¢ I(d > 0)d, (12)

where u*(.) is continuous and twice differentiable in all its arguments; I (.) is the
indicator function; and ¢’ and ¢ are positive parameters representing the cost of
negative and positive adjustments, respectively. Lemma 2 characterizes the form of
the optimal decision rule in this model.

LEMMA 2: If:

(1) u(s,d;0) = u*(s,d;0) + ¢t I(d < 0)d — ¢ I(d > 0)d

(i) w*(.) and p(.) are continuous and twice differentiable in all their arguments.

(1) u*(.) is strictly concave in d and in the endogenous state variables.

the optimal decision rule of the CMDP has the following form:

65(s;0)  if 6H(s;0)>0
5(s;6) = { 64(s;0)  if 6%(s;8) <0 (13)
0 otherwise,

where §%(s; ) is the optimal interior solution when d > 0 and 6%(s; ) is the optimal

interior solution when d < 0. and they are implicitly defined by:
uj(s, 6%[s; 6];0) + BEVq(s,6%([s;6);8) = ¢, (14)
and:
uj(s, 6%[s: 6); 6) + BEVy(s,6%[s;6):0) = —c*, (15)
with uy = 0u*/0d, and EV; = OEV/4d.
The proof of this Lemma is very similar to the previous proof of Lemma 1. In
particular, under conditions (ii) and (i), the non differentiability of u(.) at d = 0

does not affect the continuity and strict concavity of G (i.e., Theorems 9.8 and 9.10
in Stokey and Lucas still hold).
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2.2.3 Lump-sum adjustment costs

Lump-sum adjustment costs are costs which do not depend on the amount of the
adjustment. They introduce a discontinuity in the one-period utility function that
can generate censoring in the decision variable. These costs may arise in different
economic problems. When a retailer places an order to a manufacturer, she faces some
costs that are not proportional to the amount of the order; e.g., transportation costs
and costs of organizing the new deliveries into the store (see Blinder, 1980). Other
examples are models of price adjustment with menu costs (Sheshinski and Weiss,
1983), and models of capital replacement (Rust, 1987, or Cooper, Haltinwanger and
Power, 1995). Here we consider the following specification with symmetric lump-sum

adjustment costs (the extension to asymmetric adjustment costs is straightforward):
u(s,d;0) = u*(s,d; 0) — F I(d # 0), (16)

where F is a positive parameter representing the lump-sum cost. Lemma 3 charac-
terizes the form of the optimal decision rule in this model.
LEMMA 3: If:
(i) u(s,d;0) = u*(s,d;0) — F I(d # 0)
() u*(.) and p(.) are continuous and twice differentiable in all their arguments.
(i13) u*(.) is strictly concave in d and in the endogenous state variables.

the optimal decision rule of the CMDP has the following form:

[ 8(s:8)  if v(s:6)>0
5(s;0) = { 0 otherwise, (17)

where 6*(s; 0) is the optimal interior solution implicitly defined by:
ug(s,6%[s:0];0) + BEVy(s,6%[s:6];6) = 0. (18)

and y(s;0) is a threshold function that indicates when it is optimal to choose the

nterior solution:

v(s;0) = {u'(s,6[s;6];0)—u(s,0,0)} + B{EV (s,6"(s;6);0)— EV (s,0;0)} — F. (19)

12



The proof of this Lemma is a little more complicated than the proofs of Lemmas 1
and 2. In particular, the discontinuity of the one-period utility function implies that
the value function is not concave. The proof of this Lemma exploits some properties

of K — concave functions. See Scarf (1959) or Bertsekas (1976) for proofs of this

Lemma.

2.2.4 Indivisibilities

Consider a firm who has to decide each year how much to spend in computer equip-
ment, and let d be the minimum price of a computer in the market. Assume that, in
the absence of a minimum price, the optimal decision is to spend an amount lower
than d. If that is the case, once the restriction of the minimum price d is taken
into account, the optimal decision of the firm might be not to spend any positive
amount in computers during that year. That is, the discontinuity in the choice set
can generate optimal decision rules where inaction is optimal for some values of the

state variables. The choice set of the decision maker is:
D= {0} U [d,+00), (20)

where d > 0 is the minimum feasible value of a positive adjustment. Lemma 4
characterizes the optimal decision rule in this decision problem.

LEMMA 4: If:

(i) D= {0} U [d,+2c) withd > 0.

(i) u(.) and p(.) are continuous and twice differentiable in all their arguments.

(i) u(.) is strictly concave in d and in the endogenous state variables.

the optimal decision rule of the CMDP has the following form:

{ 6*(s;8)  if 6*(s;0)>d
6(s;0) =

d if 0<6*(s;60)<d and (s;8) >0 (21)
0 otherwise,

where 6*(s; 0) is the optimal interior solution wmplicitly defined by:

ug(s, 6%[s:6];0) + BEVy(s, 6%[s;6];68) =0, (22)

13



and (s;0) is a threshold function that indicates when it is optimal to choose the

minimum value d, and it is defined by:
v(s;8) = {u*(s.d;0) — u(5,0;6)} - B{EV(s,d;6) — EV(s,0; 6)}. (23)
The proof of Lemma 4 is very similar to the proofs of Lemmas 1 and 2.

2.3 An example: A model of labor demand

Consider a risk neutral firm that at each period ¢ decides the amount of employment
in order to maximize the expected discounted stream of current and future profits.

Current profits are equal to cash-flow net of adjustment costs:
’U.(St, dt; 0) = f(lt, dt, €ty 0f) - (lt + dt)w, b AC(dt, eAC), (24)

where f(.) is the production function; AC(.) is the adjustment costs function; , is the
number of employees at the beginning of period ¢; d, is the amount of hired workers
(if positive) or fired workers (if negative) during period ¢; ¢, is a productivity shock
observable to the firm at the beginning of period t; w, is the real wage; and 0y and
fac are vectors of parameters in the production function and in the cost function,
respectively.

The real wage is determined in a competitive labor market, and it is exogenous for
the firm. Both w; and ¢, follow strictly exogenous first order Markov processes with
transition densities py,(wis1|we;6,) and pe(err1ler; 6e), respectively. The transition

rule for the number of employees is:
bwr = A lg +dp + &, (25)

where (1 — )) represents the average rate of voluntary quits of workers from the firm,
and &, is a shock in the number of retirements, that is observable to the firm at
the beginning of period ¢ + 1 but not at period t (i.e., stochastic transition rule). We
assume that {&} is strictly exogenous and follows a first order Markov process. In

this context, the vector of state variables at period t is s, = (e, wy, €, &)
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The production function is continuous, twice differentiable and increasing in all
the arguments, and strictly concave with respect to [ and d. Adjustment costs have

the following structure:
AC(ds;0.ac) = I{d; < O}(F* — ctdy) + I{d, > O}(FH + cHd)), (26)

where F'Z and F¥ represent lump-sum firing and hiring costs, respectively, and c% and
¢! represent linear firing and hiring costs, respectively. In this model, the optimal
decision rule has the following form:
65(s;0)  if 6%(s;0) <0 and ~E(s;8) >0
6(s;0) = 6%(5;0) if 6%(s;0)>0 and +H(s;6) >0 (27)
0 othwerwise,
where 6 is the vector of structural parameters (3,0, 8., 8., FL, FH L cH ). We will

use this model to illustrate several results and estimation methods.

3 Estimating Euler equations in censored CMDP

Consider a censored CMDP and a longitudinal dataset containing the following in-
formation: {dy,z: : i = 1,...,N;t = 1,...,T;}, where z is the subvector of s that
is observable to the econometrician. That is, s = (x,€), where z are state variables
observable to the econometrician and e are unobservable from the point of view of the
econometrician. We are interested in using this information to estimate the vector
of structural parameters 6.

Since the seminal paper by Hansen and Singleton (1982) the most common ap-
proach to estimate dynamic decision models with continuous decision variables has

been to construct sample counterparts of the orthogonality conditions provided by

*The consideration of unobservable state variables seems a natural and realistic way of intro-
ducing unobservables in these models. However. there are at least another two potential sources of
unobservables or “error terms” in most econometric models: measurement errors in variables and
approximation errors. The rest of this paper assumes that the postulated model is the * true model”
and there are not specification or approximation errors. However, I will discuss below some econo-
metric issues related to the existence of measurement errors in some of the observed state variables
(see Rust, 1994, p. 3100-01, for a discussion of alternative models of the "error term” in dynamic
decision models).
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the stochastic Euler equations and use them to estimate the parameters of interest
by the Generalized Method of Moments (GMM). Although standard Euler equations
do not hold when there is a positive probability of corner solution, we follow Pakes
(1994) and show that it is still possible to obtain a type of Euler equations that
account for the existence of censoring in the decision variable. We describe how to
exploit these Euler equations to obtain estimates of some parameters of the model.
Finally, we discuss several limitations of this approach. These limitations motivate
the use of the method described in Section 4 that exploits the information in the

discrete choice corner solution versus interior solution.

3.1 Euler equations in censored CMDP

Standard Euler equations are the result of combining marginal conditions of opti-
mality at two consecutive periods. They are obtained under the assumption that,
conditional to the information at period ¢, marginal conditions of optimality (i.e.,
interior solutions) will hold with probability one at period ¢ + 1. Nevertheless, for
the class of models that we consider in this paper, interior solutions do not occur at
each period with probability one, and when an agent makes her decision at period ¢
she assigns a non-zero probability to the event ”existence of corner solution at period
t +17. Therefore, standard Euler equations do not hold in censored CMDP.
However, it is still possible to obtain Euler equations in censored CMDP. We
follow the approach in Pakes (1994) who obtains the Euler equation in a model with
both a continuous and a discrete control variable. Here we obtain the expression of
the Euler equation for the case of non-negativity constraints. Euler equations for
the other three cases can be obtained using the same procedure, and we present an
example using the labor demand model that we have described in Subsection 2.3.
Consider that the optimal decision at period ¢ is an interior solution, i.e., d; =
6*(st), and define 7, as the number of periods until the next interior solution. The

variable 7; is unknown to the decision-maker at period ¢. Now, consider the following
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decision rule, where « is a real value:

A (sp4s, if A*(sgyj,a) >0
T R A i 29
where:
6" (st45) — for =0
A*(si4j,0) = 0" (kews + A e, Z4j) + Al for j=m (29)
0" (8t+5) otherwise,

where A is the parameter in the transition rule of the endogenous state variable
(equation {5]).

Notice that, for j € {1,..,7 = 1}, A*(s45,@) = 6*(ker; — ¥'a, z.;). Since
|Al <1 and &*(.) is a continuous function. for a close to zero we have that 8* (keyj —
N7la, z45) < 0 (because §*(kyrj, 2e+;) < 0) and thus A(seyj,a) = 0 for j =
l,...;7t — 1. For the same reasons we have that A(setj, @) = A*(sqj,@) at j = 7.
It is also simple to verify that, for j > 7;, the endogenous state variable {k;;,} and
the decision variable are the same under the optimal decision rule and under the
alternative policy A(.,a). Therefore, the decisions under the optimal rule §(.) and
under A(.) are only different at periods ¢ and ¢ + 7. The difference between the
discounted expected stream of utilities under §(.) and under A(.) is equal to:

D(a,s) = E, {u(s:,6;) — u(s:, 6 — a)

Tg—l

+ Z BN ulkers, 2645, 0) — u(ky; — ¥ la, Zt45,0)]
Jj=1
+ ,Brt)\'f't_l[u(st-f-ny 6t‘+n) - u(kc+r, - /\T'_la, 2tt1ey ‘5*[kt+n + /\T'_las 3t+n] + ’\n-la)]

(30)
where §;,; = 6*[s¢4;]. This function is continuous and differentiable in a and it has

its minimum at o = 0. Therefore, the following marginal condition of optimality
should hold:

Tg—l

Et {Ud(St’ 6:) + Z 'Bj)\j_luk(st‘*'j’ 0) + '3":/\"':—1 (uk[st+7‘n 6:+n] - ud[st-i-rn 6:+T:])} -°
j=1
(31)

Notice that, if ; = 1 with probability one (i.e., no censored decision variable) equation

[31] becomes the standard Euler equation.
B {ua(50,67) + B (walserr, 871] = waloer, 6]) } = 0. (32)
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The expression of the Euler equations for the other three sources of censoring can
be derived in the same way: (1) postulate an alternative decision rule that implies
the same decisions that the optimal rule except at periods ¢ and ¢ + 7, and that is
identical to the decision rule when o = 0; and (2) obtain the marginal conditions of
optimality at o = 0. Here we present an example for the labor demand model with
kinked and lump-sum adjustment costs.

EXAMPLE 1:

Consider the labor demand model presented in Subsection 2.3. The Euler equation

for this model is:
E, (falle, v, &) — wy — cHI(dy > 0) + 21 (dy < 0)

1'1—1

+ D BN fy(le;,0,€) — Weq.5] (33)

i=1
+ BN [H I (deyr, > 0) = L (dpr, < 0)]) =0,
where d; and dy.r, can be either §(.) or 6%(.), i.e., this Euler equation holds for the
two possible interior solutions, hiring or firing.
3.2 Inference using the Euler equations

We are interested in using the longitudinal dataset {dityzyp:i=1,...,N;t =1, o Ti}

to estimate the vector of structural parameters 8. First of all, we define:

t.t+7; tt+Tie . —
\IJ(X-; i 1 €5 ) ’ dita di,t'f'T"g s 9) =

Ti‘-l

uq(Si, die) + Z BN —luk(si,t+j’ 0) + Brie A1 (wk[Sittries Bitrree] — UalSi taries dityr,]),
=1
(34)
where X" = (Ty, ... Zi4ry ), and € = (e, ces €igery ). Let Zi be a vector of

functions of observable state variables dated at periods ¢ and before. Based on the

Euler equation in expression (31), we can construct the following vector of orthogo-

nality conditions:
E(Zy I(dy # 0) W(XP™, 8™ iy dy o, ;6)) =0, (35)
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where the indicator of interior solution, i.e., I(d;; # 0), appears in these conditions
because equation (31) holds only for interior solutions.

However, without further assumptions, the conditions in expression (35| cannot
be used to estimate 6 because they are not moment conditions in terms only of
observables and structural parameters. That is, there are unobservables in ¥(.), and
these unobservables can be correlated with the conditioning variables Z;; and with the
conditioning event ”d;; # 0”. Therefore, one of the econometric issues related to the
estimation of 6 using equation [35] is to obtain moment conditions in terms only of
observables and parameters of interest. Some of the problems to obtain these moment
conditions are common to the estimation of any type of CMDP. However, we will see
below that the existence of censoring introduces some additional considerations.

We start with a simple assumption that permits to overcome the problem of
unobservables in Euler equations. This assumption has been considered in several
applications that estimate Euler equations, e.g., Bond and Meghir (1994) in the
context of investment models, or Pfann and Palm (1993) and Alonso-Borrego (1994)
in labor demand models. Let y;; be an observable variable that is a function of state
and decision variables. This variable is neither a decision nor a state variable of the
problem, and we can define it as an outcome variable. That could be the case of the
variable output in some models of firms’ inputs demand, sales in a model of price
decisions, or market value of the firm in an investment model. We assume that the

marginal utilities u4(.) and u.(.) depend on € only through y:
ui(z, €, d;0) = Uj(z,d. y; 0), (36)

for j = k,d.
It is clear that under this assumption we can write equation [35] in terms only of

observables and parameters of interest. That is:

E (Zie I(di # 0) $(XF*™, Y™ diy, digir, 16)) = 0. (37)

where ¥(.) results from substituting u;(z,¢€,d;0) by Uj(z,d,y;6); and Y™ =

(Yt --s Yig+r)- The moment conditions in equation [37] can be used to estimate
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the structural parameters that enter in ¥(.). Notice that this assumption ”solves”
the problem of correlation between unobservables and instrumental varisbles Zy, as
well as the selection bias that results from the correlation between the unobserv-
ables and the event "d;; # 0”. The observable Yat is implicitly "controlling” for these
problems.

Although this assumption may be plausible in some circumstances, it is important
to be aware of the strong predictions associated to it. This assumption implies that
€ is unobservable to the econometrician only because the function that relates Yit
with (z;,€:,d;) is unknown, or it depends on some unknown parameters. If this
function is monotonic in €;, by the implicit function theorem there is a function
€t = e(Zit, dit, i), and solving this function in the optimal decision rule we obtain
a deterministic function that relates the observable decision variable d;; with the
observables z;; and y;;. It is clear that this prediction will be easily rejected in most
datasets because we can find different values d associated with the same value of the
pair (z,y).

Since there are many applications in which the predictions of the previous as-
sumption are not plausible, or in which there is not an observable outcome variable,
the rest of this paper considers the estimation of censored CMDP where some unob-
servables do not enter in the way postulated by the previous assumption. Instead,

we consider the following assumption.

ASSUMPTION 1: There are two unobservables in the model: €, that affects mar-
ginal utilities, and w, that affects the level of utility but not marginal utilities. The
utility function is additive separable in (z,d.€) and w; and marginal utilities are ad-

ditive separable in (x,d) and e.
uz, 6w d;0) =U(z,d;0) + de + 0.z ¢ + (F+w) I(d#0), (38)

where 0, is a subvector of parameters in 6.

Additive separability between observables and unobservables in the utility func-
tion was first considered, in the context of structural discrete choice models, by Mec-

Fadden (1973). Although this additive separability could be relaxed, it requires one
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to postulate a probability distribution of € conditional to z, and to integrate U(.)
over € to obtain moment conditions in terms only of observables and structural para-
meters. In order to concentrate the discussion in what we think are more important
econometric issues, we consider Assumption 1. This assumption is relatively general
and it can be plausible in many economic applications. Furthermore, we may combine
Assumption 1 with the existence of an additional unobservable that enters in U ()
only through an observable outcome variable y. All the results below can be extended
to that case, and we will present an example using our labor demand model. But

first we discuss the previous assumptions in the context of that model.

EXAMPLE 2:

Consider the labor demand model in Subsection 2.3. If the technological shock
is the only unobservable. we observe output. and the production function is Cobb-
Douglass, we will be in the case of equation [36]). In that case the unobservable
shock enters in the marginal profits only through the observable ratio yit/lit, where
Yt is output of firm 7 at period t. However, there may be additional unobservables
associated to labor costs and adjustment costs. Real wage can be measured with error,
and adjustment costs may change over time or/and over individuals. For instance,

linear adjustment costs can have the following structure:
cf =c? +efl and cf=ct+ek (39)
And we can consider a similar specification for lump-sum adjustment costs:
Fl =F" L8 and Fy = Fl 40k (40)
It is simple to verify that this specification is consistent with Assumption 1.

We are interested in using equation [35] to obtain moment conditions in terms
only of observable variables and parameters of interest. Under Assumption 1, we can

decompose ¥ in two additive terms:

‘I’(Xit't-'-m: GE’HT“: dit, di p4r,, 10) = ‘I’O(Xit'twu_- ity dipyry, 3 0) + Vie(T20), (41)
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where:

Tu—l

‘I'O(Xz't’t+rit,dit,di,t+m 10) = Us(zis, dir; ) + Z BN Ui(zi 045, 0;0)
j=1
+ ﬂTit AT“_I (Uk[x‘i,t+1'iu di,t+1"u; 9] - Ud[si,t-i-fu y d‘i,t+1’5g; 0]) 3
(42)
and:
1-,"_1 . .
vit(Tit) = €; + 0;- ( Z ﬂjl\"—l 5i,t+j) _*_67,“/\7'“—1[9& - 1] fi,t+‘ri¢' (43)
Jj=1

We use the notation v;(7;;) to emphasize that this random variable depends on 7.

Taking into account expression [41], the moment conditions in [35] become:
E (Zit I(dy #0) ‘I’O(X:'Hm, dit, i t4ors, ;9)) + E(Zy I(di # 0) vit(T:)) = 0. (44)

Expression [44] shows that we will be able to construct moment conditions that
depend only on observables and parameters of interest if the second term in the
left hand side of this equation is zero, or if there is a transformation of equation
[44] where this second term disappears. The solution to this econometric problem

depends crucially on whether ¢;, is autocorrelated or not. Therefore, we distinguish

between these two cases.

3.2.1 Non autocorrelated unobservables

ASSUMPTION 2: The unobservable ¢; is a strictly exogenous state variable, it is

independently distributed over t with zero mean. and {€it, zie} are independently dis-
tributed.

First of all, notice that. given the definition of vit(7ie) in equation [43], Assump-
tion 2 implies that E (Z;; I(di # 0) vie(7ic)) = E(Zy I(dis # 0) €2).5 Second, under
Assumptions 1 and 2, the construction of moment conditions in CMDP without cen-
soring is straightforward. In these models the event "d;, # 0” holds with probability
one, and Assumption 2 implies that F (Zj €;) = 0. However, in the context of cen-
sored CMDP, Assumption 2 guarantees orthogonality between ¢;, and any function

of zy, but it is not true that ¢; is orthogonal to I (dit # 0) because d;; depends on

SAll the unobservables €; 44, ..., €it+r;, that appear in v;(7;;) are independent of Z;; and d;;.
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the unobservable ;. In other words, the second term in equation 144] is not zero due
to the existence of selection bias. For instance, in the context of our labor demand
model, if €; represents an unobservable component of linear firing costs, the sample
selection based on d;; # 0 implies that we will tend to oversample observations from
those firms with relatively small firing costs (e.g., new firms with young workers). If
we do not control for this selection bias, it will probably introduce a downward bias
in our estimates of firing costs.

Therefore, under Assumptions 1 and 2 the only problem to obtain moment con-
ditions in censored CMDP is the selection bias. In the context of non autocorrelated
unobservables, controlling for selection bias in this model is relatively standard. We

can write the second term in equation [44] as follows:
E(Zy I(du # 0) €x) = E(Z Pr(di # 0| Zu] Elex| dix # 0, Zy]). (45)

Thus, controlling for selection bias implies to obtain the expression of the function
Pr(di; # 0| Zy) Elex| dix # 0, Zy). Assumptions 1 and 2 guarantee the monotonicity
of the decision rule with respect to e. Therefore, the optimal discrete choice can be
represented in terms of threshold functions for e. For the case of partial irreversibility
or kinked adjustment costs, individual i chooses an interior solution at period t if
€ < el (zq;0) or if €, > e (z4,; ), where e(.) and e#(.) are two threshold functions
that result from inverting 6%(.) and 67(.) in the optimal decision rule at equation [13].
Therefore, the conditional choice probabilities for the events "d;, < 07 and "diy > 07
are:

PL(JJ,';) = Pr(d,-t < leit) = PI‘(Eit < eL[l’u; 0] IIit); (46)

PH(Iig) = Pl'(dig > leit) = Pr(eit > eH{x,-t;H] IIL'-,'t). (47)

Furthermore, the independence between ¢;, and z;, and the monotonicity of the

discrete choice with respect to ¢;, imply that the conditional expectation E (€i] die #

0. Z) is a function of the choice probabilities PX(z;,) and P#(z;) (see Stoker, 1991).
Therefore, we can write:

Pl'[dit # Ol Zu] E[é,’tl d,'t 79 0, Zu] = H(PL[.'L'it], PH[J',','t]), (48)
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where the form of the function H(.) depends on the probability distribution of e;,.

For example, if €;; is normally distributed:
H(P[za], PP (zy]) = oc ¢ (071 (1 = PH[zs}) — ¢ (@7 (PHaal)),  (49)

where ¢(.) and ®~!(.) are the pdf and the inverse-cdf of the standard normal, respec-
tively.
Taking into account the previous results we can write the following moment con-

ditions:
E (Zie I(die # 0) [YO(XF™, dity dipsr, 56) + H(PE, PE)]) =0, (50)

Given these moment conditions. it is possible to estimate 6 (or the subvector of 8
that enters in ¥°[.]) using a two-stage procedure. In a first stage the conditional
choice probabilities P%(z;] and P#[z;] are estimated, for each value z; in the data.
In a second stage, the estimated probabilities are solved in equation (50] and the
resulting moment conditions are used to obtain GMM estimates of 8. Notice that,
since the threshold functions that appear in the discrete choice probabilities, i.e.,
ef!(.) and e(.), are unknown (unless the dynamic programming model is solved), we
should approximate these functions using a polynomial in the vector of observable
state variable x;;.

This two-stage method can be semiparametric or parametric, depending on whether
a parametric assumption about the probability distribution of ¢;; is made or not. If
we assume that €; is normally distributed, we estimate the probabilities P£(z;) and
PH(z;) using two probit models (or an ordered probit model), we substitute these
estimates in equation (49}, and obtain GMM estimates of 6 and o, using the moment
conditions in [50]. If there is not a parametric assumption about the distribution of
€, the probabilities P*[z;] and P¥(z,] can be estimated using a kernel method. In
the second stage the function H(.) can be approximated by a polynomial in the esti-
mated discrete choice probabilities. and the parameters of this polynomial are jointly
estimated with @ using a GMM (see Stoker, 1991, and Ahn and Powell, 1993, for

a description of similar semiparametric methods to control for selection bias). This
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two-stage semiparametric method provides root-n-consistent and asymptotically nor-
mal estimates of §, and its asymptotic covariance matrix can be estimated using the
procedure proposed by Newey (1994).

The previous approach (either parametric or semiparametric) can be slightly mod-
ified to account for time-heteroscedasticity in €;. This is an important consideration
because the well-known result that when ¢ is heteroscedastic, and it is not taken into
account, the estimates of the choice probabilities will be inconsistent. In that case
the conditional choice probabilities should be estimated separately for each period
t, and in the second stage the parameters associated to H(.) should be different for

each period ¢.

EXAMPLE 3:

Consider our labor demand model where the production function is Cobb-Douglass
and the specification of the unobservables is the one presented in Example 2. Under
Assumption 2, and considering that the maximum value of 7 in the sample is 3, we
can represent the moment conditions in [50] using the following linear (in variables)
model:

Uit = Ywo Wi+ Yo I(die < 0)+ Yo I(di > 0)
+ Y1 L(Tit 2 2) Gigsr+ Y1 I(7e 2 Dwig+ i1 I(digy1 <0)+ v I(di¢41 > 0)

+ Yo LT 2 3) Gigrot w2 I(Ta 2 3Wisgat+ vio I{digr2 < 0)+ a2 I(digrs > 0)
+ VL3 I(dig3 < 0)+  vas I(dirss > 0)
+  H(PMzu], PHlzy)) + Git ;

(51)
and the orthogonality conditions, E(Z; I.di; # 0](i;) = 0. Where Yigsj = '{—::JJ- and

the v parameters are the following functions of the structural parameters:

1 - —cL ; __
Ywo = 3 /Lo—TL : ‘YHo—:H
; -3
T==8  Ym=2 v =& v = = 5
2y . 3 . Bk _$acH (52)
Y3 = —0A 1 we == L2 = D YH2 = =
R B2l —52H
L3 = —% v YH3 = —(o

where o is the parameter associated to the labor input in the Cobb-Douglas produc-
tion function.
If we assume normality of ¢;, we can estimate the choice probabilities P [z:] and

PH[z,] using two probit models where the explanatory variables are the terms in
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a second order polynomial in z;; = (li;, w). Alternatively, if we do not make any
parametric assumption about ¢; we can estimate the discrete choice probabilities
using, for instance, Nadaraya-Watson kernel estimators where the regressors are lj
and w;; and the dependent variables are the indicators I (dit < 0) and I(d; > 0).

Given the estimates of the choice probabilities, the 7 parameters and the parame-
ters in the H(.) function can be jointly estimated using a linear GMM, like the one
in Arellano and Bond (1991). Finally, given the estimates of v and the estimated co-
variance matrix, we can obtain estimates of the structural parameters (o, B, A, ¢, cb)
using a Minimum Distance method.

The GMM estimation of v could include not only the moment conditions from
the Euler equations but also moment conditions for the production function and for
the transition rule of employment. In principle, this simultaneous equations GMM
estimator will be provide more precise estimates than a GMM estimator than only

exploits moment conditions from the Euler equation.

3.2.2 Autocorrelated unobservables

The assumption of no autocorrelation in the unobservables is not realistic in most ap-
plications using micro datasets, where individual heterogeneity and persistent idiosyn-
cratic shocks are usually important. In the context of a solution estimation method,
dealing with autocorrelated unobservables is a particularly difficult issue that requires
one to use simulation based estimation techniques (see Keane and Wolpin, 1996, for
an example in a dynamic discrete choice model). Autocorrelated unobservables in-
troduce also some additional complications in the estimation of Euler equations. In
particular, if € is autocorrelated all previous values of the endogenous state variables
are correlated with current and future values of . Therefore, in the context of auto-
correlated unobservables, endogenous state variables can not be used as instrumental
variables in the moment conditions of equation [44]. If there is enough variability
in the observable exogenous state variables, and we can assume that these variables
are orthogonal to unobservables, it would be possible to estimate the model using

the moment conditions in {44], where now Z;, includes only functions of these exoge-
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nous state variables. However. in most micro applications, it is commonly the case
that either these exogenous state variables are not available or their variability is not
enough to guarantee the identification of the parameters of interest (e.g., exogenous
state variables with variability at the level of industry or region but not at the level
of individuals).

However, given an assumption about the structure of the stochastic process {€i}
it is possible to obtain a transformation of the Euler equation that permits one to
construct moment conditions where previous values of endogenous state variables are
valid instruments. In this context, the econometric problem is to obtain the appro-
priate transformation of the Euler equations (e.g., time-differences) that guarantees
the orthogonality between observable state variables and transformed unobservables.

First. we relax Assumption 2 to allow for autocorrelation in the unobservables.

ASSUMPTION 3: The stochastic structure of the unobservables is:
€=1 +e, where: €, =pe,_+ay ; ay isiid overt (53)

where p € (0,1); and a; is iid with zero mean and it is independently distributed of

current and previous values of x;,.

In order to distinguish the specific problems associated to censored CMDP. we
consider first the estimation of a CMDP without censoring under Assumptions 1 and
3. Notice that in the model without censoring 7;, = 1 with probability one. and thus
the unobservable v;(7y) is equal to €+ 3(6; — 1) €441 (see equation [43]). Therefore.

Avig—p Avgey = {Dey — p A€oy} + 3(0z — 1){A€is41 — p Aeir}
(54)
= Aap + B(0; — 1) Aagjgy1,
where A is the first-differences operator. Under Assumption 2, E (Zi—1[Dai+3(0, —

1) Aaizy1]) = 0. and thus the following moment conditions hold:
E(Zig-1 [AUS(9) - pAYS_,(0)]) =0, (55)
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where Z;;_; is a vector of functions of observable state variables (both endogenous
and exogenous) dated at t —1 or before; and ¥3(8) = VO (X **! d,;, d;111;0). These
moment conditions depend only on observable variables and structural parameters,
and then they can be used to estimate by GMM the subvector of § that enters in TOo().
Notice that equation [55] simplifies if the stochastic structure of the unobservables
is such that there is not time-invariant individual heterogeneity, or if there is not an
AR(1) process. In the first case the appropriate transformation would not require to
take first differences, and in the second case the term —pA¥Z,_,(9) would not enter
in these moment conditions.

The transformation in the case of a censored CMDP is a bit more complicated.
The first problem is that Euler equations do not hold at each period and. therefore,
it is not always possible to obtain first-differences between Euler equations. The
second problem is that the stochastic structure of the unobservable vie(Te) (e.g.,
autocorrelation structure, expression of the time invariant individual component)
depends ;.

For the sake of simplicity assume that p = 0, that is, €; = 7; +a;. First, consider
that we transform equation [44] taking time differences between the Euler equation
at period ¢ and the Euler equation at the next interior solution, i.e., at ¢t + 7;;. The
unobservable component in the transformed equation is V7 Vit = Vjt4r, — Vit- Lhis
unobservable is not orthogonal to z;, unless 7., is equal to 7. To see this consider

that 7;; =1 and 7,44, = 2. In that case:
V™ vy = v3,449(2) — vie(1) = & + B(1 + BA[B; — 1}) m, (56)

where &;; represents the sum of values of a between periods ¢ and ¢ + 3. and it is

orthogonal to z;. However, 3(1 + BA6; — 1]) m; is not orthogonal to z.
Nevertheless, there exists a transformation of the Euler equation that guarantees

the orthogonality between observable state variables and transformed unobservables.

Define, for each interior solution, say (4, ), the following variable:

pie =min{p >0 6(sie4p) #0 and Ty = 70} (57)
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That is, u; is the number of periods between period t and the next interior solu-
tion with the same duration spell 7. Under Assumption 3 and p = 0 the following

orthogonality condition holds:
By (Vitp (Tie) — vae(Tae)) = 0. (58)
Therefore, it is possible to construct the following moment conditions.
E (Zic I(di #0) [20,4.,.,(6) = ¥(6) + H(uis, 7, PE (), PH[z])]) =0, (59)
where:

H(pie, Tie, PE [z, PH[24)) = Pr(di # 0| Zit] E (Vi tape (Tit) — vie(Tt) |Tie, die # 0) .
(60)
Notice that now the selection function H(.) depends on p; and 7;; because the
variance of {v;¢yu;, (i) — vie(7i:)} and the covariance of this variable with e (ie.,
the unobservable in the discrete choice) depend on u; and 7;. The approach to
control for sample selection is very similar to the one described for the case with non
autocorrelated unobservables. The only difference is that in the GMM estimation of
equation [59] the parameters associated to the H(.) function should be different for
different values of u;; and 7.
For p # 0 and no time-invariant individual heterogeneity the appropriate trans-

formation is (v g4p,, (Tit) — P7¢ vie(Ti))-

EXAMPLE 4:

Consider our labor demand model where now there is time-invariant individ-
ual heterogeneity in the unobservable components associated to adjustment costs:
€t =1; + ai. Assuming that the maximum value of 7; in the sample is 3. we can
represent the moment conditions in equation {39] using the linear model in expression
[51], where now all the variables are transformed using the operator V*i¢, and the v

parameters have the same definition that in {52].
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However, there is an important practical limitation in the construction of the
moment conditions in [59). This limitation is associated to the truncated distribution

of 7 and py in the sample. We discuss this issue in the following subsection.

3.3 The limitations of the Euler equations approach

In the context of censored CMDP there are several potential limitations associated
to the estimation of the model using only Euler equations. These limitations are
model and data specific, and, therefore, they should be evaluated at each specific
application.

The first limitation is that, in some particular models, not all the parameters of
interest enter in the marginal conditions of optimality, and thus not all the parameters
can be identified exploiting moment conditions from the Euler equations. That is the
case of lump-sum adjustment costs parameters, and other parameters of interest that
affect the discrete choice interior solution/corner solution but do not enter explicitly
in the marginal conditions of optimality. To estimate these parameters it will be
necessary to estimate that discrete choice. Of course, this is not a limitation per se
of the estimation of Euler equations, but of the estimation of some censored CMDP
exploiting only the structure in Euler equations.

The second problem is associated to our ability to construct the moment condi-
tions in equations [50] or [59] given a particular sample. In particular. the problem is
that in some datasets there may be many interior solution observations for which the
variables 7;; and p;, are not observed, that is, they are truncated. For the last interior
solution of each individual 7;; is unobservable, i.e., it is truncated because we only
know that 7, > T; — t. Furthermore, for some interior solutions (not necessarily the
last one of each individual) p;, is observable only if p;; < T; —t. This introduces two
practical problems. First, the sample counterparts of the moments in [50] and [59]
are in fact conditional to 7;; < T; —t and to pi < T —¢. That is not a problem if the
temporal dimension of the panel is "relatively large” because, though we eliminate
one interior solution per individual, we still have almost a random sample of interior

solutions for each individual. However, if the temporal dimension of the panel is
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"relatively small”, this selection of interior solutions will be under-representing those
individuals with relatively large adjustment costs (i.e., large 7;) or with relatively large
initial conditions (i.e., large €;0). In that case there will be a sample selection bias in
our estimates. Notice that the concepts "large” and "small” temporal dimension of
the panel depend on the distribution of 7;;. If the duration between two adjustments
tends to be low (e.g., 7;; between 1 and 3) values of T; like 8 could be enough to avoid
the selection bias. But larger average durations between two adjustments will require
a larger temporal dimension of the panel to avoid this selection bias.

Finally, in the context of some censored CMDP, an estimator based only on mo-
ment conditions from Euler equations can be very imprecise. The reason is that, if
there is "lumpiness” in the interior solutions, the variability of the decision variable
in the subsample of interior solutions can be very small. Lumpiness of the decision
variable tends to be a common characteristic in many datasets with censored decision
variables. For instance, a firm's orders to manufacturers, the nominal price change
of a retailer selling price, the number of workers that a firm hires, or the amount of a
durable good that a consumer purchases, when they are positive, tend to have very
small variability over time. In that case, the discrete choice corner solution versus
interior solution represents most of the within-individuals variability of the decision
variable and. therefore, it contains most of the sample information that may allow us
to identify the parameters of interest (see Aguirregabiria. 1997, for an example of this
issue). In those cases. the estimation of the optimal discrete choice will be crucial to

identify the structural parameters.

4 Estimation of the optimal discrete choice

We have seen at the end of previous section that in some empirical applications the
estimation of a censored CMDP based only on Euler equations can provide very impre-
cise estimates of the parameters of interest. In this section we present an econometric
approach to estimate the optimal discrete choice. This method maintains the main

advantage of the Euler equations approach: lower computational cost than solution
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estimation methods. The estimation of the optimal discrete choice can be combined
with the estimation of the Euler equation to obtain more efficient estimates of the
structural parameters. We begin presenting the basic idea behind the estimation of
the optimal discrete choice without solving explicitly the dynamic decision model.

The optimal discrete choice can be represented in terms of inequalities between
conditional choice value functions. Before solving explicitly the model these value
functions are unknown functions of state variables and structural parameters. How-
ever, each conditional value function can be represented as the expected value of a
known function of future paths of state and decision variables and structural para-
meters, where the expectation is conditional to current state variables and to current
hypothetical decisions. Under some assumptions about the joint distribution of ob-
servables and unobservables, this alternative representation of the conditional value
functions can be exploited to estimate the optimal discrete choice without solving
explicitly the model.

To be more specific, assume that we can represent the conditional value functions
as known functions of the structural parameters and conditional expectations that
incorporate only observable variables. In such a case we can estimate the optimal
discrete choice using a two-stage method. In a first stage the conditional expectations
entering in the value functions are estimated (nonparametrically). In a second stage
these estimates are solved in the known expressions for the conditional value func-
tions and the discrete choice is estimated. In the context of dynamic discrete choice
models different versions of this approach have been proposed and implemented by
Manski (1991 and 1993), Hotz and Miller (1993), Hotz et al. (1994), and Ahn (1995).
For censored CMDP, a procedure in the spirit of Hotz-Miller method has been imple-
mented by Aguirregabiria (1996) in a model of firms’ price and inventory decisions.
Park (1996) has used a similar method to estimate a dynamic game.

A key aspect of this approach is to know under what assumptions about the Jjoint
distribution of observables and unobservables we can express the unknown value
functions as known functions of structural parameters and conditional expectations

that incorporate only observables. There are several possible sufficient conditions.
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We consider the assumption that has been most commonly used in the literature,
the so called Conditional Independence Assumption (Rust, 1987). Here we will follow
Aguirregabiria (1997) to obtain the optimal discrete choice of the labor demand model
in Subsection 2.3.

Consider the characterization of the optimal decision rule of this model in equa-
tion [27]. We can distinguish three regimes, hiring, firing, and no (gross) change in
employment. Let j € {L, H, 0} be the index for this discrete choice. We can represent

the optimal decision rule in equation [27] using the following compact expression:
5(811;9) = I(j*[s,-t; 9] = L) 6L(3it; 0) + I(j*[Sit; 9] = H) 5”(311; 0) (61)

where j*(sit;0) is the optimal discrete decision. Let V7(sy;6) be the value func-
tion conditional to the hypothetical choice of discrete alternative j. By definition,
V(si;0) = max(;}{V?(s«;6)}, and therefore:

Vi(sit; 0) = u(sit, & [s;6];0) + BE ( max

o VP (sni0)} | sn,j;e) (62)

where 6°(s;t;6) = 0. Using the previous definitions, the optimal discrete choice can

be represented using the following expression:

e O) — S hio .
J'(si0) =7 & 3 argher{rll'z‘aéo}{v (s,t,ﬁ)} (63)

Let Ew/(xi;6) be the expected value of the one-period profit conditional to

and to the hypothetical choice of discrete alternative ;.
Ew(z:4;6) = E (u(su, &[54 0];6) | z4,5;6) (64)
Using this definition we can write:
u(Sit, 8 (315 0);0) = Ew? (2415 0) + 1l (65)

where, by construction, the unobservable 1, is orthogonal to z;. Given our specifi-

cation of the one-period profit function in Subsection 2.3, we have that:
Ev (z4; 0) = IV (zy) v(0) (66)
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where:

Ii(zy) = { Elyi — wie(li + di) | zit, j = L],—Eldy | 24, j = L},0,-1.0 ¥
Mf(zy) = { Elys — wally +dit) | za, j = H],0,-E[d; | o, j = H],0, -1}
I1%(z) = { Elyi — wally + dit) | zi, 7 =10],0,0,0,0 Y
(67)
where y;; is real output. And:

760 = (1,¢5. ¢4, F,H) (68)

The unobservables {u},} represent the uncertainty of the researcher about the
actual expected profit that is observable to the firm. By construction they are mean
independent of z. We consider the following assumption about the joint distribution

of z;; and p; = (Nizi, Mg »/—L?z)l-

ASSUMPTION 4: Conditional Independence Assumption (Rust [1987, 1994)):

The transition probability of the state variables factors as:

P(Zi g4, Bi 1| Tit, fhie, ) = Pt 411 e41) Pz(Zit1|Tie, 7)- (69)

The conditional independence assumption is in fact the combination of two differ-
ent assumptions. The first one says that, conditional on contemporaneous observable
state variables, the unobservables do not depend on any previous decision or state
variable. This condition is weaker than assuming that p; is éid over time. but it
is stronger than Assumption 3 because all the autocorrelation in the unobservables
should be captured by the autocorrelation in the observables. The second assump-
tion imbedded in Assumption 4 is that, conditional on observable decision and state
variables at period ¢, the observable state variables at ¢ + 1 do not depend on p;.

Assumption 4 has some useful implications on the form of the discrete choice model
in equations [62] and [63]. Let EV7(sy;8) be the second component of V7 (si;0) in
expression [62], i.e., the conditional choice expectation of next period value function.

Under Assumption 4, EV(s;; ) does not depend on the vector of unobservables Mit:

EVi(s4;0) = E (,-e‘{’i?ém {Vi(sieni0)} | s,-t,j;e) = EVI(z;0)  (70)
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‘Therefore, we can write the optimal discrete choice as:

™ . . . he o\ h he . .
o) =i & j=arg max {Mza) 1(6)+ul+8 EV*(wi0)} (71)

Another implication of the conditional independence assumption is that, for a certain
firm i, the probability of the history of discrete choices conditional to observable state
variables is equal to the product of the conditional choice probabilities at each period.

Lemma 5 presents the main result that will be used to define an estimator of 8

that exploits the structure of the optimal discrete choice.

LEMMA 5:

Under Assumption 4 and the multiplicative separability between 6 and z in Eu?(z;6),
the optimal discrete choice can be represented using the following ezpression:

YN ) s R\ ht h
Fe6)=3 & j=arg max {(za) 1(0)+Wi'e@)+ui}  (72)

where (8)= (v(8)',1)'. And, given a discretization of the space of observable state

variables, the W, vectors have the following expression:

Wi, = Fi(zy) (Im—ﬂF)-l( Y, PhxI ;Y Ph*eh(P)) (73)

he{L,H,0} he{L,H,0}

where * means element-by-element product; M is the number of cells in the discretized
space; F7(zy) is the Mzl vector of transition probabilities of x conditional to j and
to xy; F is the MzM matriz of unconditional transition probabilities of z; P? is the
Mzl vector of conditional choice probabilities for alternative j; I is the matriz with
the M row vectors IV (z)'; and e’(P) is a known function of the choice probabilities.
The form of €(P) depends on the distribution of u; (e.q., if Wit 1S extreme value type

1, €/(P[z]) = const — In P¥(z), where const is the Euler’s constant).

The proof of this Lemma is in Aguirregabiria (1997).
Based on Lemma 5 we can obtain a root-n-consistent estimator of 8 using a

sequential procedure. In the first stage we obtain nonparametric kernel estimates
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of Pi(z) for each discrete alternative and each value of z in the sample. We also
estimate the transition probabilities of the observable state variables. In the second
stage we use the previous estimates to construct the values W,’t, and estimate # using

a GMM that exploits the following moment conditions:
E(Zu (I = j) - PP (T, Wis6)]) =0 for j= L, H (74)

where Z;; is a vector of instrumental variables (i.e., current and previous values of

Z;); and, given an extreme value distribution for it

exp{IT}/'v(8) + Wi x(0)}
> exp{IThv(8) + Wi'p(6)}

he{L,H,0}

Pi(Hit, vvit; 0) = (75)
Hotz and Miller (1993) prove the consistency and asymptotic normality of a gen-
eral class of estimators that includes this one. They also obtain the expression of

the asymptotic covariance matrix of this estimator, that accounts for its sequential
nature (Hotz and Miller, 1993, Equation 5.11).

5 Conclusion

In this paper we have analyzed the estimation of dynamic structural models with cen-
sored decision variables. We have discussed the advantages and limitations of several
estimation methods under different specifications of the structure of the unobserv-
ables and under different characteristics of the working sample. Given our current
state of knowledge the results are limited. In particular, the incorporation of auto-
correlated unobservables in discrete choice dynamic structural models is a problem
that has not been completely solved. To a certain extent, that is also the case for the
estimation of Euler equations with autocorrelated unobservables.

However, the methods that we have described above can be currently applied to
many problems for which there have been a relative lack of structural applications,
L.e., machine replacement and irreversible investment, labor demand with non convex
adjustment cost, consumption of durable goods, models of price competition with

menu costs, or firms’ entry and exit in a market, among others.
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