Western University

Scholarship@Western

Department of Economics Research Reports Economics Working Papers Archive

1995

First-Order Risk Aversion and Non-
Differentiability

Uzi Segal

Avia Spivak

Follow this and additional works at: https://ir.lib.uwo.ca/economicsresrpt

b Part of the Economics Commons

Citation of this paper:

Segal, Uzi, Avia Spivak. "First-Order Risk Aversion and Non-Differentiability." Department of Economics Research Reports, 9519.
London, ON: Department of Economics, University of Western Ontario (1995).


https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/econwpa?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages

435889

ISSN:0318-725X

ISBN:0-7714-1836-1

RESEARCH REPORT 9519

First-Order Risk Aversion and
Non-Differentiability

by

Uzi Segal and Avia Spivak

November 1995 ey

Department of Economics
Social Science Centre
University of Western Ontario
London, Ontario, Canada
N6A 5C2
econref@sscl.uwo.ca

R T

e
T
[ AL R



First-Order Risk Aversion and
Non-Differentiability*

Uzi Segal' and Avia Spivak?
November 22, 1995

'Department of Economics, University of Western Ontario, London, Canada
N6A 5C2.

2Department of Economics, Ben Gurion University, Beer Sheva 84105, Israel.

Summary First-order risk aversion happens when the risk premium 7 a deci-
sion maker is willing to pay to avoid the lottery ¢-&, E[¢] = 0, is proportional,
for small ¢, to t. Equivalently, 07 /0t|;=0+ > 0. We show that first-order risk
aversion is equivalent to a certain non-differentiability of some of the local
utility functions (Machina [7}).
JEL classification number: D8

1 Introduction

Laboratory experiments have repeatedly shown that decision makers do not
satisfy the expected utility hypothesis. The evidence did not discourage the
use of expected utility, partly because it was a useful paradigm and partly
due to the lack of convenient alternatives. Furthermore, it was not clear that
the results obtained by expected utility theory do not hold for more general
models. Indeed, Machina [7] argues that given a Fréchet differentiability
condition, nonexpected utility functionals can be locally approximated by

*We are grateful to the Social Sciences and Humanities Research Council of Canada
for financial support and to Kim Border, Larry Epstein, Mark Machina and Joe Ostroy
for helpful discussions and suggestions.



expected utility. Hence, many results of expected utility may be extended
to nonexpected utility, especially comparative statics analysis, where local
changes are examined (see Machina (8] and Chew and Nishimura [1}).

Expected utility analysis of decision making under risk strongly depends
on the differentiability of the utility function. For example, consider a dis-
turbance £ whose expected value is zero. Multiply its outcomes by a positive
number ¢ and let ¢ tend to zero. The risk premium 7(t) that a risk averse
decision maker is willing to pay out of his present wealth level z* to avoid the
risk't - € also declines to zero. For smooth expected utility, Pratt [10] showed
that 7(t) = [—u"(z*)/u'(z*)]oct? + o(t?) which tends to zero at the rate ¢2.
However, if the utility function is not differentiable at z*, then the risk pre-
mium is of the order of t. Of course, if the utility function is increasing,
then it must be almost everywhere differentiable, and one may therefore con-
vincingly argue that non-differentiability is of no importance in the expected
utility model.

Suppose, however, that for every possible wealth level z*, the expected
utility approximation suggested by Machina [7] at the degenerate lottery
(z*,1) (i-e., z* with probability 1) is non-differentiable at z*. In that case,
what is considered an exception within the expected utility model becomes
the rule. Our work suggests that for a certain family of nonexpected utility
theories, this may be the case. We prove this connection in Theorem 1 below
by exploiting the concept of orders of risk aversion. In an earlier paper [11] we
discussed situations where 7 tends to zero at rate t. We called the behavior of
differentiable expected utility second-order risk aversion and the alternative
first-order risk aversion (see also Montesano [9]). Second-order risk aversion
implies that the derivative of the risk premium 7 with respect to ¢ at t = 0%
is zero, while under first-order risk aversion it is positive.

The concept of first-order risk aversion is not without economic mean-
ing. Epstein [2] argues that first-order risk aversion permits more flexibility
in functional forms. He shows that constant relative risk aversion under
second-order attitude implies either enormous risk premiums for large gam-
bles or almost zero premiums for moderate risks. By contrast, first-order
risk aversion permits more realistic premiums. Epstein and Zin [4] show that
models of first-order risk aversion explain stock and bond returns data much
better than do models of second-order risk aversion. For other applications
of this concept, see Epstein and Zin [3] and Segal and Spivak [11].

In the next section we discuss the concepts of orders of risk aversion
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and prove the equivalence between first-order risk aversion and the non-
differentiability of the local utility functions.

2 Orders of Risk Aversion

Let (2, X, P) be a probability space. Let x(d) be the space of real random
variables on § with values in the real interval d = [a,}]. Elements of x
are also called lotteries. The distribution function F; of a random variable
Z is defined by F3(z) = P{w € Q : Z(w) < z}. Assume that (Q,Z, P) is
rich enough to generate all possible distribution functions on d. For # € x,
z* € (a,b), and t > 0, let z* + ¢ - & be the lottery with the cumulative
distribution function Fyei.z(z* + tz) = Fz(z). In other words, the lottery
z* +t - T is obtained from Z# by multiplying its outcomes by ¢ and adding
z*. Discrete random variables are denoted (1, p1;. . .;Zn,Pn). Such a lottery
yields z; with probability p;, ¢ = 1,...,n. The degenerate lottery (z,1) is
denoted simply = and its cumulative distribution function F,. Also, define
| F =G = Jy | F(z) - G(z)| da.

Let > be a complete and transitive preference relation over x and define
as usual > and ~ to be the strict preference and indifference relations ob-
tained from >, respectively. We assume that two random variables with the
same distribution function are equally attractive. Consequently, the random
variable Z stands for all random variables with the distribution function Fj.
We assume throughout that the preference relation > is continuous in the
topology of weak convergence. Also, assume that it is strictly monotonic with
respect to first-order stochastic dominance. That is, [Vz, Fz(z) < Fj(z) and
for some z € (a,b), Fz(z) < Fy(z)] implies & > . The functional V : x - R
represents the preference relation > if for every #,§ € x, V() > V(3) if
and only if Z > §. The certainty equivalent of a lottery % is defined as that
number y such that y ~ Z. The risk premium of the lottery % is defined as
the difference between the expected value of # and its certainty equivalent.

Define a function 7(t; z*, £) implicitly by z* —n(t; 2", &) ~ z*+¢-%. Since
z* is fixed for most of our discussion, we usually omit it from the expression 7.
Of course, 7(0; £) = 0. If E[Z] = 0, then = is the risk premium of z*+t-%, and
for a risk averse decision maker 7 is non-negative, it is increasing in ¢ for t > 0
and decreasing in ¢ for ¢ < 0. (Risk aversion is defined with respect to mean
preserving spreads). We assume that « is twice differentiable with respect



to all its variables (with respect to ¢, for ¢ # 0 only), and that at ¢ = 0 both
one sided derivatives with respect to ¢ exist. The right-hand side derivative
with respect to t at 0% is denoted by D (z*,%) = O (t;z*,%)/0t|i=o+. Here
too we often use the notation Dr ().

In [11] we defined a decision maker’s attitude towards risk at z* to be of
order one if Dx(z*,Z) > 0 for all £ such that E[Z] = 0. It was defined to be
of order two if for all such #, Dr(z*,%) = 0 but 9%r(¢;2*,3)/8t%|;=0+ > 0.
If E[Z] = 0, then E[(—1) - ] = 0. It is therefore clear that first-order risk
aversion requires non-differentiability of 7 (t) at ¢ = 0. Note that first- and
second-orders of risk aversion do not imply risk aversion (see [11] for an
example). This is the case because orders of risk aversion are local properties,
while risk aversion is a global one.!

Suppose that the preference relation > with the representation functional
V has the (set of) local utility functions U(+; F') (see Machina [7]). That is,
for every & and ¥,

V(@) - V(§) = [Ule; Fy)dlFs(a) - Fy@) +o(l = Fl) (1)

Local utilities exist under the assumption that the functional V' is Fréchet
differentiable. Next we show that if such local utilities exist, then first-order
risk aversion is equivalent to non-differentiability of the local utility U(+; Fz+)
at z*.

Theorem 1 Suppose that the risk averse preference relation > with the rep-
resentation functional V has local utilities as in Eq. (1). Then the following
two conditions are equivalent.

1. The preference relation > satisfies first-order risk aversion at z*.
2. The local utility U(+; Fy+) is not differentiable at z*.
Proof (1) = (2): Let £ =(—1,3;1,3). Use Eq. (1) twice to obtain
V(iz*—-7(t;2)=V("+t-3)=>
Ula" —m(t; 3); For) = %U(:c"—t; F)+ %U(m'+t; Fa)+olt) (2

1This is the place to mention that Lemma 1 in [11] is incorrect. Its correct version
(which is also the one actually used in that paper) is that if E[Z] = 0 and the decision
maker satisfies first-order risk aversion at z*, then for a sufficiently small s > 0 and ¢,
z° -z +1-[F+ ).



To see this, subtract V(z*) from both sides of the upper equation and U(z*;
F,.) from both sides of the lower equation. Observe that by first-order
stochastic dominance, 7(t; %) < t, therefore || Fie_r(sz) — Foe ||< t. Also,
|| Fze4t-z — Fzs ||= t. Denote the left and right derivatives of U(+; Fy») by Uy
and Uy, respectively. Differentiate both sides of Eq. (2) with respect to t to
obtain

OhE) Ly (e —t; Fur) %Uf’(w'ﬂ; Fp)+d(t)=

_Ul—(x'—w;F:c‘) ot 2

Uy (z*; Fre) — Ul-‘h(x*;Fz‘)
2UT (z*; Fye)

Risk aversion implies concave local utility functions and monotomicity of
preferences implies that the local utility functions are increasing (see Machina [7]).
Hence Uy (z*, Fe) # 0. It thus follows that if the above expression is posi-
tive, then U(-; F;.) is not differentiable at z*.

(2) = (1): Let & # 0 such that E[Z] = 0. Let w; = [, dFz(z) and
wy = [,50dF3(z). Let y1 and y, be the conditional averages of the negative
and non-negative parts of Z, respectively. That is, y1 = [;.o TdFz(z)/w:
and y; = [;502dFz(z)/w;. Then Z is a mean preserving spread of the lot-
tery § = (y1,w1;y2,w2). Since E[E] = E[§] = 0, it follows that wyy; =
—wyys. Also, for every ¢ > 0, t - & is a mean preserving spread of ¢ -
§. Therefore, by risk aversion, Dx(%) > D= (§). Similarly to Eq. (2),
U(z* — n(t;9)) = wiU(z* + tyr; For) + wU(z* + tya; Fre) + o(t). Hence
Dr(§) = way[Ur (2% Foe) = Ui (2% Foe)| /UT (275 Fie) > 0. L

D= (%) =

Theorem 1 states that, assuming Fréchet differentiability, first-order risk
aversion depends on the non-differentiability of the local utility functions.
Since expected utility theory is Fréchet differentiable and consistent with non-
differentiable utility functions, economic results of first-order risk aversion
must be consistent with non-differentiable expected utility. However, since
the set of points where an increasing utility function can be non-differentiable
is of measure zero, non-differentiable utility functions are of little consequence
within the expected utility framework. On the other hand, for nonexpected
utility functionals, the local utility function at the (degenerate) distribution
F,. may be non-differentiable at the point z = z*, for every z*. (Formally,
for every z*, Ui(z*; F;+) does not exist). In such cases non-differentiability
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becomes the norm, rather than the exception. Machina’s 7] claim that non-
expected utility behavior can be locally approximated by expected utility is
formally correct, only that the approximating expected utility functional may
be different from the standard one used in the literature, where the utility
function is usually assumed to be differentiable. Therefore, first-order be-
havior may yield economic results that are qualitatively different from those
of (smooth) expected utility.2

References

[1] Chew, S.H. and N. Nishimura, 1992, “Differentiability, Comparative
Statics, and Non-expected Utility Preferences,” J. of Econ. Theory,
56, 294-312.

[2] Epstein, L.G., 1993, “Behavior Under Risk: Recent Developments in
Theory and Applications,” in J.J. Laffont ed.: Advances in Econ. The-
ory. Cambridge: University Press.

[3] Epstein, L.G. and S.E. Zin, 1990 ¢ ‘First-Order’ Risk Aversion and the
Equity Premium Puzzle,” J. of Monetary Econ., 26, 387-407.

[4] Epstein, L.G. and S.E. Zin, 1991, “The Independence Axiom and Asset
Returns,” NBER Technical Working Paper No. 109.

[5] Gul, F., 1991, “A Theory of Disappointment Aversion,” Econometrica,
59, 667-686.

[6] Loomes, G. and U. Segal, 1994, “Observing orders of risk aversion,”
Journal of Risk and Uncertainty, 9, 239-256.

[7] Machina, M.J., 1982, “ ‘Expected Utility’ Analysis Without the Inde-
pendence Axiom,” Econometrica, 50, 277-323.

[8] Machina, M.J., 1989, “Comparative Statics and Non-expected Utility
Preferences,” J. of Econ. Theory, 47 , 393—405.

2First-order risk aversion is not an empty concept. Gul’s [5] disappointment aversion
model is Fréchet differentiable, and has non-differentiable local utility functions as above.
For a direct proof that Gul’s model satisfies first-order risk aversion, see Loomes and
Segal [6].



[9] Montesano, A., 1988, “The Risk Aversion Measure without the Inde-
pendence Axiom,” Theory and Decision, 24, 269-288.

[10] Pratt, J., 1964, “Risk Aversion in the Small and in the Large,” Econo-
metrica, 32, 122-136.

[11] Segal, U. and A. Spivak, 1990, “First-Order versus Second-Order Risk
Aversion,” J. of Econ. Theory, 51, 111-125.



	Western University
	Scholarship@Western
	1995

	First-Order Risk Aversion and Non-Differentiability
	Uzi Segal
	Avia Spivak
	Citation of this paper:


	tmp.1456497975.pdf.vMyKO

