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Minimal Asymptotic Distributions for Estimators
of Panel Data Models*

By TIEMEN WOUTERSEN'

December 12, 2002

Abstract

This paper develops the minimal asymptotic distributions for estimators of panel data

models with incidental parameters.
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1 Introduction

THE AVAILABILITY OF PANEL DATA allows the econometrician to control for the heterogene-
ity by allowing for time-invariant, individual specific parameters. This fixed effect approach
introduces many parameters into the model which causes the ‘incidental parameter problem’
of Neyman and Scott (1948): the maximum likelihood estimator is in general inconsistent.
For some models with exogenous regressors, such as the linear, logit and Weibull model, one
can find a sufficient statistic for the fixed effect so that one can use a conditional likelihood
that does not depend on the fixed effect. For these models, one can estimate the parame-
ters of interest consistently using datasets with a large number of individuals and just two

observations per individuals, see Chamberlain (1984, 1985) and Baltagi (1995) for overviews.

*I thank Jinyong Hahn for his encouragement. The ‘Social Science and Humanities Council’ in Canada
provided financial support. All errors are mine.
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However, for dynamic panel data models, no sufficient statistic has been found for the
fixed effect for any model. For the dynamic linear model, several authors have derived es-
timators that are based on taking differences of the dependent variables and instrumental
variables techniques, see the overview of Arellano and Honoré (2001). However, for nonlinear
models, one cannot difference away the fixed effect. Alvarez and Arellano (1998) recognize
that in many applications, the number of observations per individual is larger than two and
develop an asymptotic approximation where both the number of individuals, n, and the num-
ber of observations per individuals, T increases. This asymptotic approximation is used by
Phillips and Moon (1999), Hahn and Kuersteiner (2002), Hahn, Hausman and Kuersteiner
(2002) and Woutersen and Voia (2002) to evaluate estimators for the dynamic linear model
with fixed effects. Hahn and Newey (2002) use the same asymptotic approximation to eval-
uate their bias corrected likelihood estimator and Woutersen (2002) uses the approximation
to evaluate his integrated moment estimator for dynamic panel data models.

This paper derives the efficiency bound for panel data models with fixed effects. In
particular, it shows that the variance of the minimal asymptotic distribution equals the
Cramér-Rao bound. This equality is already established for cross section models. The key
insight, due to LeCam (1953), is that estimators can only improve on ‘regular’ estimators
on a subset of the parameter space that has Lebesgue measure zero, see Van der Vaart
and Wellner (1996) or Van der Vaart (1998) for overviews. The paper also shows that the
efficiency bound of an asymptotic approximation with n and T increasing does not depend
on the relative rate at which T increases. We conclude by considering regressor parameter of
the exponential model and compare the minimal asymptotic distribution of this parameter
to the semiparametric efficiency bound as derived by Hahn (1994).

This paper is organized as follows. Section 2 derives the efficiency bound and provides

examples. Section 3 concludes and all the proofs are in the appendix.



2 Efficiency Bounds

Many estimators can be written as weighted averages of random variables. For example, the
least squares estimator is the weighted average of the error terms of the linear model. More
generally, the influence function of the moment estimators is a weighted average of moment
functions, see Newey and McFadden (1994). Suppose we have a cross-section dataset withn
individuals and assume the data generating process in independent across individuals. Then
such estimators converge at n=1/2 subject to identification and regularity conditions. The
asymptotic variance is a good measure to compare different method of moment estimators.
However, one can always find an estimator that converges at an arbitrarily fast rate for
particular parameter values. In particular, consider the following example, given by Hodges

in 1951.

Example 1 (Hodges’ estimator): Let M,, be the mean of a sample of size n from the N(8,1)
distribution. Define a second estimator S,, through

M, if |M,] > n~1/4

Sn =1 0 if |M,| < n~1/4.

Note that \/n(S, — ) —q N(0,1) for p # 0 and gn (S, — 8) —p 0 for 8 = 0 for every gn.

LeCam (1953) showed that such improvements over an estimator M, can only be made
for a subset of the parameter space that has Lebesgue measure zero. Because a set with
Lebesgue measure zero is small, LeCam introduces the idea of estimating a sequence of
parameter values in order to rule out such small sets. In particular, consider estimating
the sequence 8 + h/r, where h is fixed and norming operator ry, is increasing with n. For
the method of moment estimators discussed above, we have r, = i/n. Requiring that the
asymptotic distribution of @ + h/r,, does not depend on h/r, rules out estimators such as
the Hodges estimator. In particular, let H denote a Banach space and let an estimator M,

be regular if, for every h € H and every 6,

(1) ro{Mp — (0 + h/rp)} —a £(0)



for some limiting distribution £(8). A crucial feature is that £ does not depend! on %. Loosely
speaking, the definition says that an estimator is regular if, for every 8, the rate of convergence
at @ is the same as the rate of convergence in a small neighborhood of 8.

The next step is to compare properties of £ for different estimators. In particular, £
has a minimal asymptotic distribution if £ is centered at zero has the smallest possible
variance. The minimal asymptotic distribution can be derived from properties of the densities
P(Y1,---,Ynl0) and p(y1, ..., yn|0 + h/rn) where y;,7 = 1, ...,n, denotes the dependent variable
and the 0,0 + h/r, denote the parameters of the data generating process. The following

example shows how this can be done for the exponential model.

Example 2 Suppose y;,% = 1, ...,n, is distributed exponentially with mean % This implies

the following densities for individual ¢,

p(ul6) = 6e™¥ and

Pwild+h) = (8+h)e @tk

Consider

) —(0+h)y
L PGOHR) | (0+ K)emCHu

p(yi]0) fe~v
h
= ln(1+5)—hyi
_ h_1hy 2y _ p
= el 121 2
= h{z —u} - gk +o(h?)

The expression In % can also be written as a function of the score of the log likelihood?

and the Jacobian,

i PO+R) _ o

i 1 i
p(y,le) (] + §h2L99 + O(hz).

Similarly,
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1t follows from Van der Vaart (1998, Theorem 8.9) that the ‘minimal’ asymptotic distribution

of an estimator for  is N(0, [Eke2]-1).

We now derive the minimal asymptotic distributions for panel data model with inciden-
tal parameters. Suppose we observe n individuals for T' periods and we want to control for
heterogeneity by allowing for individual (or incidental) parameters. Let the data generating
process be conditional independent and suppose that we want to use an asymptotic approxi-
mations in which both n and T increase. In this case, the individual parameters of individual
i only appear in the likelihood contribution of individual 7. As a consequence, we can only
estimate the individual parameters at rate T-1/2 while we potentially estimate the common
parameters at rate (nT)~1/2. For estimation, the rate at which T increases relative to n may
be important (see Hahn and Kuersteiner (2002) and Woutersen (2002)) but we show that the
minimal asymptotic distribution does not depend at the rate at which T increases relative to
n. An intuition for this result is that the Cramér-Rao bound does not depend on the relative

rates of T and n and the following example illustrates this.

Example 3 Suppose that we observe n individuals for T periods and that want to estimate
an exponential hazard model. Since we have more than one observation for each individual,
we can allow for a fixed effect. Let z;; denote the vector of characteristics of individual ¢
for spell s. If the spells are independent across individuals as well as across spells, then the

hazards of individual 7 can be written as
Ois(yis) = fie®P s=1,... Tandi=1,..,n.

This hazard implies the following log likelihood,

Lftseos S B) =D T fit D03 JmisB= D03 fie™Pyis.

Differentiating L(f1, ..., fa, ) gives
R > ) e
i s i S
1 i
Lfi = — — Ze’“ﬁyis.
fi 4
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Projecting Lg on Ly,, ..., Ly, gives the efficient score Sg,

ELgs,
Sp = Lg- Z f,ELf;

where Zi; = ;5 — L, %ie z" . The Cramér-Rao bound equals [ESpSI’j}‘ and we will show that
the variance of the minimal asymptotic distribution is also equal to [ESsSp]~".

Van der Vaart and Wellner (1996, theorem 3.11.2) give the minimal asymptotic distri-
bution of regular estimators. We use a version of this theorem that is given in Hahn and

Kuersteiner (2002, Theorem 6).

Let P, ) denote a probability measure on a measurable space (X,,2,) and assume the

following.

Assumption 1

P, 1 : h € H is asymptotically normal.

A good discussion of local asymptotic normality is given in Van der Vaart (1998, section 7.6).
A data generating process is asymptotically normal if the log likelihood can be approximated
by a quadratic function around the true value of the parameters. The data generating process

of example 3 satisfies local asymptotic normality. Also assume that

Assumption 2

Let T o« n® where a > 0.

This assumption formalizes the notion that we use an asymptotic approximation in whichn

increases or both n and T increase.

Assumption 3



Let the data generating process be independent across individuals conditional on the regres-

sors x;; and individual effect f;.

Assumption 4
Let 7, = V/nT = n(1+a)/2

Moment estimators that are based on taking averages have a norming operator proportional
to vnT and we are interested in the set of estimators with this norming operator. However,
some of the nonstationary cases considered by Phillips and Moon (1999) do not have this

norming operator.

Assumption 5
Let assumption (i)-(v) of theorem 6, Hahn and Kuersteiner (2002), hold.

Let Ay = % and that Ay = % Let AI be the residual in the projection of A; on
Ng. That is

A - Ls _ E(LgLY) E(LfL'f)]_1 Ly

! V/nT nT nT VnT
_ Ls _ ELBf[ELff]—l Ly
vaT ~nT ° nT vnT

Note that E—:ﬁi[%—#]‘l% is O(1). The minimal asymptotic distribution is determined by

A,. We conclude that

Theorem
Let assumption 1-5 hold. Then the minimal asymptotic distribution is given by N(0, { E(A, /:&'1)}'1).
Moreover, the variance of the minimal asymptotic distribution, {E(AIA'I)}‘I, equals the

Cramér-Rao bound.

Note that the variance of the minimal asymptotic distribution does not depend on the
relative rate at which increase T increases. We now compare the variance of the mini-
mal asymptotic distribution to the semiparametric efficiency bound of a particular model.

Semiparametric efficiency bounds are not available for all models but Hahn (1994) and Hahn



(1997) derived the semiparametric efficiency bounds for a set of models for which there exists

a sufficient statistics for the fixed effects.

Example 3 (Continued) Hahn (1994) derives the semiparametric efficiency bound for the
exponential hazard model under the assumption that f; is a random effect. This bound has

the following expression,

(ESpSp)™" where

_ Z Zs zwez“ﬁyzs
Z exuﬁyw .

Note that [ES3S5]~! > [ESpSy]~! for every finite T where [ESS] ™! denotes the Cramér-
Rao bound of example 3. Suppose the ‘true model’ is a random effects model so that no
estimator can have a variance smaller than [ES"ﬁS’;,]‘l. In that case, no fixed effects estimator
estimator can have a variance smaller than [ESpS5)~! > [ESpSj)~! for every finite T. Thus,
no estimator reaches the Cramér-Rao bound [ESpSp]~! for any finite T. Therefore, the
Cramér-Rao bound is especially relevant in an asymptotic with T increasing since some
estimators may reach the Cramér-Rao bound in this asymptotic. For this reason, we used

an asymptotic with T increasing in this paper.
3 Conclusion

This paper develops the minimal asymptotic distributions for estimators of models with
incidental parameters. We emphasize an asymptotic approximation with both 7' and n
increasing. The reason for this is that recent papers use this asymptotic approximation to
evaluate estimators, see Hahn and Newey (2002) and Woutersen (2002). This paper gives
the minimal asymptotic distribution for estimators under the assumptions of these papers.
We also compared the minimal asymptotic distribution of a mixed exponential model to its
semiparametric efficiency bound and showed that the minimal asymptotic distribution has
a smaller variance for finite T than the variance implied by the semiparametric efficiency
bound. This implies that the variance of the minimal asymptotic distribution only gives a

‘sharp bound’ for the variance of regular estimators in an asymptotic with T increasing.
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4 Appendices

Short review of the Cramér-Rao bound:

Stuart et al. (1991, section 17.13-17.17, 17.24-17.28, and 18.15-18.16) give a clear exposition
of the Cramér-Rao bound. Let L(6) denote the log-likelihood and let the derivative of the
log-likelihood with respect to § be denoted by Lg(6). Let Lg = Lg(8p). Then the Cramér-Rao
bound is given by {E(LeLp)}!. Let Ly = {Lj, L} where Ly is a vector with length N.

Then the information bound for the incidental parameter models is given by

(ELﬁﬁ ELﬂf) ({ELﬁﬁ ELpf(ELyss)~ 1ELfﬂ} 1 —(ELgg)"Y(ELgy)F )_1
ELjp ELys —F(ELyp)(ELgp)™ F ’

where F = {ELss — ELyg(ELpg) '*ELgys} . Using the fact that ELy; is a diagonal matrix
we can also write the upper left element of this matrix as follows,

EkaELfﬁ

{ELpp — ELpy(ELss)'ELyg} ™" = [E ) {Ljg ~ e, .

Following LeCam (1953), Van der Vaart (1998, chapter 8) discusses how the Cramér-Rao

bound gives a lower bound on the variance for regular estimators of cross section models.

Proof of Theorem 1

Theorem 6 of Hahn and Kuersteiner (2002) was originally derived to deal with weak
instruments where the number of instruments increases. However, the theorem is general
enough to cover an asymptotic approximation for panel data models with N and T in-
creasing. Hahn and Kuersteiner (2002, page 1653) note that “Theorem 6 implies that the
‘minimal’ asymptotic distribution is N (0, {E(A; A})}~1).”. Thus, we only need to prove that
{E(AIAII)}‘1 equals the Cramér-Rao bound. Note that the Cramér-Rao bound can be writ-
ten as the inverse of the variance of the efficient score Sg. In particular, the efficient score Sg
is the projection of the score Lg on {Ly,,...,Lsy}, Sp=Lg—Y ;L fl—"fi- Note that A has
the same form. Thus, the Cramér-Rao bound equals the variance of the minimal asymptotic

distribution.
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Notes

1See Van der Vaart and Wellner (1996 page 413) for a more general definition of a regular
estimator.

ZNote that L(9) = 3, L}(6) = NIn8 — 3, 0y;.
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