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Abstract

This paper studies volatility in individual stocks of the Toronto Stock Exchange
(TSE), using a recently developed nonlinear approach, a stochastic threshold model.
Trading information is embedded into the determination process of volatility in the
stochastic threshold model with a generalized autoregressive conditional heteroskedas-
ticitic variance (STGARCH). We use the number of price changes (quote changes)
to approximate the trading information. This trading variable has significantly pos-
itive impact on stock volatility following a declining market and ambiguous impact
on the stock volatility following a rising market; there is a higher probability to fall
into a highly volatile state after a declining market than after a rising market. The
GARCH-type persistence in volatility is reduced significantly in our nonlinear model
for individual stocks with high persistence. The STGARCH model also gives satisfa-
tory fitting in terms of alternative model selection criteria.
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1. Introduction

A great deal of literature exists on stock return volatility and the study about
return volatility is at the heart of empirical finance. Generally speaking, time-
varying stock volatility is usually described as a mixed distribution process, which
is the so-called Mixed Distribution Hypothesis (MDH). For example, GARCH
models assume mixed distributions to capture the volatility clustering and fat
tails of the stock return distributions. From the information flow perspectives,
return volatility process is heteroskedastic conditioned on the information arrival
process. There might be three sources that cause the volatility to fluctuate over
time, public information' including news release which is generally known to all
the traders, private information which is only known to a subset of traders, and
mispricing. When new information is assimilated in the market, prices adjust
and volatility fluctuates. Consequently, it is important to consider the impact
of information flow on the return volatility. However, information flow (mixed
of public information, private information and mispricing) is not practically ob-
servable, and some proxies have to be used. It has been known that trading

activities contain valuable information on the movement of stock returns. Com-

1To consider the influence of public information, Engle and Ng (1993) examine the impact of
news on volatility; Ederington and Lee (1993) consider how stock markets process information
from news release.



monly used informational proxies include trading volume, average trading volume,
transactions, quotes, quote changes (number of price changes), and executed or-
der imbalance. Pervasive studies consider the role of trading variables in study-
ing stock volatility. Karpoff (1987) provides a detailed survey on the theoretical
and empirical studies on the relationship between price changes and trading vol-
ume. More recent studies include those by Anderson (1996), Lamoureux and
Lastrapes (1994), Gallant. Rossi, and Tauchen (1992), and Lamoureux and Las-
trapes (1990a). Anderson (1996) and Lamoureux and Lastrapes (1994) consider
the co-movement between trading volume and stock volatility where both vari-
ables depend parametrically on an underlying information process in their papers.
Gallant, Rossi, and Tauchen (1992) find positive correlation between conditional
volatility and volume in the composite index of New York Stock Exchange using a
semi-nonparametic approach. While most of the studies are on the index and ag-
gregate volume, Lamoureux and Lastrapes (1990a) and Anderson (1996) conduct
the study on actively traded individual stocks. They find that contemporaneous
trading volume contributes greatly to the persistence in volatility.

Most of the previous models are based on the rational that trading is generated
due to asymmetric information and assume that the size of the trades (or volume)

should reflect the degree of the information asymmetry on the security’s value.
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Jones, Kaul and Lipson (1994), however, shows that the frequency of trading con-
tains more information than the size and that it is the occurrence of transactions
generates volatility. The number of price changes (quote changes), which is a
similar measure as transaction times, has not often been used as an informational
proxy in the studjr of stock return volatility, possibly due to its unavailability. We
fortunately have this variable available in our data. We find that the correlation
between the lagged value of number of price changes and squared stock return is
higher than the correlation between lagged transactions and squared stock return
for most of the firms in our data. Therefore, we will use the number of price
changes as our informational proxy.

The main purpose of this paper is to investigate the role of the past num-
ber of price changes in determining the future volatility. This is different from
many studies. including Lamoureux and Lastrapes (1990a), Lamoureux and Las-
trapes (1994) and Anderson (1996), in which they consider the contemporaneous
relationship between some trading variable (trading volume) and stock volatility.
As Blume, Easley and O’Hara (1994, p.160) argued, the actual market settings
are not consistent with contemporaneous conditioning requirements, since traders
who submit market orders do not know the price at which their order will execute

until after the trade occurs. Since practitioners cannot care about the contempo-



raneous value at the every moment of decision making, in practice, it is always
the observed information that is used to make new investment, though the co-
movement of trading variable and stock volatility reserves a great deal of interest
from the theoretic point of view. Nevertheless, the contemporaneous approach
may introduce extra specification error through the specification of the pfocess
for a trading variable. Only when the specification for the evolvement of the trad-
ing variable is correct, shall it provide more efficient estimation for the parameters
describing the stock volatility process. Under the proceeding consideration, we
would rather focus on modeling the impact of the observed trading information
on the stock volatility.

One important stylized fact on the behavior of stock volatility documented in
previous research is the high persistence in volatility or volatility clustering. This
is found by many researchers and is commonly captured by the ARCH model
proposed by Engle (1982) and the GARCH model by Bollerslev (1986). How-
ever, over-high persistence is usually implied by alternative GARCH models (see
Glosten, Jagannathan, and Runkle, 1993), as empirical studies suggest that the
forecasting performance of GARCH models is not as good as what one might ex-
pect with the high level of persistence implied by these models. GARCH models

are indeed linear in variance, which makes them unable to deal with the commonly
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observed important nonlinear features in the volatility series. Diebold (1986),
Lamoureux and Lastrapes (1990b), Hamilton and Susmel (1994) and many oth-
ers suggested the notion that misspecification of the GARCH models — that is,
not accounting for discrete shifts in the variance — can lead to misinterpretation of
estimates of persistence in variance. To capture discrete shifts in time series, two
classes of piece-wise linear models, switching-regime models (Hamilton, 1989) and
threshold models (Tong, 1983), have been widely employed in the literature. There
are two major differences between these two types of models from our concern.
First, the switching-regime models are invented to pick up long-run structural
changes (see Cai, 1994 for example). In the context of modelling the short-run
fluctuations, threshold models are found to be more useful than the switching-
regime models since the threshold models identify alternative structures of the
market according to the recently realized threshold values/regimes rather than
according to a Markov Chain process involving with state-dependence. Second,
the threshold models deal with the asymmetry explicitly and market asymmetry is
a common observation of many previous studies, for example, Christie (1982), and
Schwert (1989). It is found that threshold models are able to capture the asym-
metric patterns in stock volatility and to reduce the high persistence in volatility

by considering the volatility process separately in a few regimes (Li and Li, 1996).



It is also found by Cao and Tsay (1992) that the threshold models yield better
forecasts, compared to ARIMA and GARCH models.

As noticed by Li and Yang (1999), some limitations in Tong'’s threshold models
reduce their usefulness in studying financial series. Li and Yang (1999) proposed
a more flexible framework, namely the stochastic threshold model, which provides
better fitting than the existing threshold models and the regime-switching models.
Using this approach, we are able to investigate the impact of the number of price
changes on stock volatility in a rising or declining market. Our empirical results
at the end favor the stochastic threshold approach among many alternatives.

The rest of the paper is organized as the following. Section 2 specifies the
adopted stochastic threshold model. Section 3 describes the data. We report the
empirical results with comparison to alternative volatility models and discuss the

economic implications in Section 4. Section 5 concludes.

2. Model Specification

Models of stock volatility have been successful in capturing some of the well-known
empirical attributes, including volatility clustering typically captured by GARCH
models, asymmetric patterns by threshold models, sudden discrete changes by
nonlinear models (mainly threshold models and regime-switching models), and
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state-varying variance by the switching ARCH models of Hamiiton and Susmel
(1994).

A GARCH model of volatility is widely employed to allow conditional het-
eroskedasticity, in which current conditional variance is a linear function of the
squared value of last innovation and the conditional variance of last period. A

simple GARCH(1,1) model takes the form of

Ry = ¢g+ Ry +uy, (2.1)

2e\fhe, 2 ~ 4N (0, 1),

&
[

= o +au? + aghey, (2.2)

where {R,} is the return series of one security, following a simple autoregressive
process; a; > 0, ap > 0, and a3 + a9 < 1. One possible way to consider the impact
of a trading variable on volatility is to add it directly into the specification for the
conditional variance, as by Lamoureux and Lastrapes (1990a). Here we consider
using the lagged value instead of the contemporaneous value of a trading variable

as we argued about earlier. The conditional variance now is as follows,

he = 013 + 6¥1'U-:-12 + aghy—y + 03Ny, (2.3)



where NV;_, is the number of price changes at time ¢t — 1 and a3 > 0. Clearly, these
models fail to capture discrete shifts and asymmetries in the volatility process.
They also require a pre-test assumption of nonnegativity on as to ensure nonneg-
ative variances.

A threshold model is used to capture discrete changes and asymmetries. As
proposed by Gourieroux and Monfort (1992), we then have a threshold model

with GARCH effects in the following form:

R, P+ O Ry +un ifR1 20

¢o + O Ry + upo if Ry <0

un = zfh(on),un = z\/l(a), 2 ~ i.i.d.N(0, 1),

of) + ey ® + aghe + Ny if Ry >0
he = (2.4)

0By + a1y + anhey +a3eN;y i Ry <0,
wherea; > 0,00 > 0,31 > 0,032 > 0,03 = (ady, a1, a0,031), 0 = (0152,0!1,0!2,0132)
and a; + a3 < 1.
The above specified threshold model assumes that the current state of stock
volatility deterministically depends on the observed information, particularly, the
sign of the lagged return. It retains the pre-test assumption of nonnegativity on

the coefficient of the number of price changes. To overcome these limitations and

17

L



to capture all the above desired features of volatility, we employ the stochastic

threshold GARCH (STGARCH) model proposed by Li and Yang (1999), which

allows stochastic dependence of the current state of stock volatility on the observed

information and puts no restriction on the estimated impact of the number of price

changes on volatility. The specific STGARCH model in this study is:

if Ry

Ry

he

if R,y

v

0

4

$o + Py Ry + un with probability p,
<

| o+ &Ry +uz  with probability 1 —p,

¢

a%l + C!1U¢_12 + azhg_l with probability Pt
<

ad, + ayus® + agh,_;  with probability 1 — p,
0

,

@o+ ¢y Re-1 +un  with probability g,
.

{ ¢0 + Ol Rg_l + Upo with probability 1-— qt,
4

af, + aque 2 +aghe_;  with probability g,

| ody + ayue—y® + aghy_;  with probability 1 — g,

(2.5)

(2.6)

where uy = z\/h(au), 2 ~ i.1.d.N(0,1), he(:) = hy = 0, + ayus—1? + aohe—y,

fori=1,2; and ag > 0,02 > 0,03 > 0,2 > 0,7 + a» < 1 and ag; > ag2. The

definition for A}, h;_; and u;_; will be explained later. In the above model, there
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are two threshold regimes, determined by the sign of lagged return R,_,. Within
each threshold regime, there are two states for the market, state 1 is highly volatile
and state 2 is low volatile. The states are characterized by two sets of parameters
61 = (@, $1, @01, @1, 2) and O, = (g, ¢, 02, @1, @2). The probabilities of falling
into different states are different among the threshold regimes. At time period ¢,
state 1 occurs with probability p, when following a positive stock return ( or in
regime R;_; > 0, a rising market) and it occurs with probability g, when following
a negative stock return ( or in regime R;_; < 0, a declining market); state 2 occurs
with probabilities 1 —p, and 1 — g,, respectively, under different threshold regimes.
It is worthwhile noting that, in the above setting, we only consider one single
AR(1) process for the mean of stock return series, or equivalently, we assume
the mean processes of return are the same under different states. We do so with
the following consideration. Although it is often found that the trading variables
contain useful information for the study on the stock volatility, it is not clear how
they could be helpful in describing the stock return process itself. Consequently,
many studies on market volatility focus only on the volatility process.

Since the conditional variance is with GARCH specification and has probabil-
ity to be in different dynamics, we face the similar path-dependence problem as

the regime-switching model with GARCH variance in our STGARCH model. To
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overcome the path-dependence problem we follow the approach proposed by Gray
(1996). Thus in our model, h} denotes the true but unobserved (path-dependent)
variance, h;_; is the expected variance conditional on the information set at time
t —1, and u;_; is the expected error term conditional on the information set at
time ¢ — 1. In particular, under conditional normality within each state, for the

conditional variance h,_;, we have

if Ry—2

v

0
bty = pea (ﬂ?—m + ht-l,l) + (1 - pt-l)(“?—lg + ht-1,2)
—(Pt—1#:-1,1 + (1 - Pt-l)#t-l,z)z

= p—rheo1g + (1 = pey) ez

if R_, < 0
heer = quoa(pd ) + heora) +(1— Ge-1)(_1 2 + he12)

~(@e-1#-1,1 + (1 — Gem1)pty_1 2)°

= q-1ht—11+ (1 = @-1)hemr2

where p,_; , = p,_; 5 = ¢y + ¢, Re—; in our model.
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"The probabilities are time varying. They take a specification of a standard lo-
gistic function form (see, for example, Diebold, Lee and Weinbach, 1994). p, is the
probability of falling into a highly volatile market when following a positive lagged
return (or a rising market), at time ¢. g is the probability of falling into a highly
volatile market when following a negative lagged return (or a declining market),
at time t. The probabilities are determined by recently observed information, the

number of price changes of last period, N,-;.

exp(Bop + B1pVe-1)

1 + exp(Bop + B1pNe-1)
exp(Boq + BrgNVe-1)

1 + exp(Bog + B1gNe-1)

e = p(Ney) = (2.7

q(Ne—r) =

a:

We can see clearly that there is no restriction on the sign of the parameters,
By and 4, which are the coefficients for the impact of the informational proxy,
N¢-1, on the stock volatility. Previous studies usually restrict the impact to be
nonnegative in the model specification.

Given that the structural parameters characterizing the mean process of the
stock return are the same for the two states, we can intuitively explain our model
as follows. At each period, there is probability p; and 1 —p, to have innovation

and u., respectively, if following the R,_, > 0 regime; and there is probability g,
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and 1 — ¢; to have innovation u, and uys, respectively, if following the R;_; < 0
regime. In other words, for the stock return part, the states of the market are
fully identified by different innovations, u; and wu;. Again as in Gray (1996),

we work out that our uy (i = 1,2) are defined by one single equation
U1, = Re1 — (¢ + ¢ Ri-2),

for 2 = 1,2. Since we do not distinguish the mean process through the coefficients
any more, we can see that the expected error u;—; = Ry—; —(¢y+¢, Re—2) under any
state. We notice that although we can obtain the same realization of u,_; under
different sta.tes,. we have no full information about which of the processes that

us—; is generated.

3. Data Description

The data used in this study is the daily data of the individual stocks listed in
the Toronto Stock Exchange 35 Index (TSE35). The Toronto Stock Exchange
(TSE) is Canada’s largest stock exchange. In 1995, the TSE accounted for more
than 81% of the value of the equity traded on Canadian exchange. The TSE35

was developed by the TSE in 1987. The 35 stocks listed in the Index are some
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of Canada’s largest publicly traded corporations and among the more heavily
traded issued on the TSE. It was designed to track the performance of the TSE300
composite index and has direct representation from all of the TSE300 industry
groups, excluding Real Estate. The TSE35 daily trading data used in this study
was extracted from the Canadian Financial Market Research Center (CFMRC),
produced by Western Business School, the University of Western Ontario.

The stock returns used in this study are the daily stock returns from TSE35 for
the period from January 1988 to December 1995 inclusive. The period is chosen
to avoid the impact of 1987 stock crash. A return in the CFMRC database is
the fully adjusted daily return calculated as if the security was purchased at the
close yesterday and sold at the close today. Let P, be today’s closing price, D; be
the cash or cash equivalent dividend paid today (that is, today is the ex-dividend
date) and S; be the stock split factor for a stock dividend or split today. The

return is

Ry ={(P.+ D:)* S, — P_1}/P._;.

If there is no cash dividend, D; = 0 and if there is no stock dividend or split, S; =
1. In that case, R, = {P, — P,_;}/P,_,,which is the definition for the returns used

in our study. We know that this definition for stock return is an approximation

14
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to the equally commonly used definition of the log difference of stock prices.

We choose the stocks which are listed in TSE35 every year from the starting
sample year 1988 to the ending sample 1995. We exclude those listed since 1988
but with stock splits/dividends, since the effect of stock split/dividend on stock
return and volatility can be very different. Therefore, we have observations on 17
qualified stocks, with variables including returns, closing prices, open prices, high,
low, trading volume, transactions. quotes and the number of price changes (quote
changes), on a daily base. The sample consists of 2015 observations for each firm.

Table 1 presents summary statistics for the return series for the 17 firms. The
returns used are in percentage in all the calculations. The sample mean of stock
return is small and around zero for all the firms. The skewness is positive for 12
firms, with values close to zero, and it is negative for the rest of 5 firms. The
kurtosis is substantially larger than 3 for all the 17 firms, which is consistent
with the observation of fat-tailed distribution of returns. The excess kurtosis also
implies that it is not appropriate to assume normal distribution for the stock
returns and the GARCH type heteroskedasticity is not enough to capture the
extreme kurtosis found in our data. In our specification, we have a mixed normal
distribution for the stock return, which will be able to accommodate the exhibited

excess kurtosis in the data.
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We calculated the correlations between the squared return and lagged trading
variables®. Firstly, the correlations are not positive for some firms, which implies
that it might be inappropriate to pre-assume the effect of trading variable to be
positive as in the GARCH specification by Lamoureux and Lastrapes (1990a). In
our specification, there is no such restriction on the sign of the impact of trading
variables, which has important implications for our following empirical findings.
Secondly, we find that the number of price changes (quote changes) is the one with
the highest correlation in most firms and trading volume, the most commonly
used trading variable in the literature, actually shows the weakest correlation to
squared stock return among these four trading variables. In our empirical study,

we use the number of price changes® (quote changes) as the informational proxy.

4. Empirical Results

This section presents the empirical results on the study of individual stocks of
TSE. We compare the alternative models using various model selection criteria.

Then we report our findings on the role of the number of price changes on stock

2Not presented in the paper. Available upon request.

3Though it is generally claimed in the literature that time trend commonly appears in trading
volume, very weak time trending is found in only three (BCE, CM and TRP) of the 17 firms in
the series of the number of price changes in our data. We thus do not apply any detrending to
the series of the number of price changes that we use.
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volatility and attempt to give some explanations about our results.

4.1. Model Selection

To illustrate our results, we study various specifications for the stock volatil-
ity process and compare our STGARCH model with a constant-variance model,
a simple GARCH model, a GARCH model with the number of price changes
(GARCHy) and a threshold GARCH model with the number of price changes
(TGARCHy).

In Table 3 we report the various model selection statistics, including the max-
imal value of the log-likelihood function, the Akaike Information Criterion (AIC)
and the Schwarz’s criterion. Our model has the biggest maximal value of the
log-likelihood function for all the 17 firms. It is clear that our model gives best
fitting results for all the firms even when both sample size and number of para-
meters are taken into account. Table 3 also reports the performance of in-sample
forecasting, which are measured by mean squared error (MSE) and mean absolute
error (MAE). Our STGARCH model provides better in-sample forecast in most
cases. In general, we conclude that our model fits the data best in terms of various

model selection criterions and in-sample forecasting performance.
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4.2. Findings

We reinforce the empirical finding on the important role of trading variable in
determining the volatility process. The estimation results for various volatility
models are presented in Table 2. In particular, we find that the coefficients of the
number of price changes, 3,, and f,,, are significantly different from zero in most
cases. We find, however, that in the GARCHy model and TGARCHy model, the
impact of the trading variable is very close to zero and insignificant for most of the
firms. Nevertheless, whenever the trading variable is not found to be significant
in our model, it is not found to be significant in any of the alternatives.

One striking finding is that By, is found to be positive for all the firms, while 3,,
ié positive in some cases and negative in some other cases. Consequently, we can
conclude that, when R;_, < 0 which indicates a falling market, the number of price
changes has positive and more significant impact on return volatility; when R,_; >
0 which indicates a rising market, the number of price changes has ambiguous
impact on the volatility of the stock market. Although this finding seems to be
surprising, it appears to be consistent with the previous finding that bad news
has greater impact on the market than good news (Campbell and Hentschel, 1992
and Braun, Nelson and Sunier, 1996). We can interpret this well-known finding

in at least two ways: (1) the impact of good news on current market is less
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significant than bad news; (2) the impact of good news on future market is less
persistent than bad news. Either of the above two situations will suggest that the
number of price changes can have much greater impact on stock volatility when
following a declining market than following a rising market. Based on the market
microstructure theory, the trading variable, the number of price changes (N;_;),
can be decomposed into an informed component (IN;-,) and a noise component
(NNy), ie.,

Nioy =IN;_; + NN.,.

Noise trading randomly arrives to the market and is usually assumed to be gov-
erned by a stochastic process with a constant arrival intensity per day. The
systematic variation in the number of price changes is due solely to fluctuations
in the informed part. The informed component, IN,_;, measures the informa-
tiveness of the informational proxy, the number of price changes in our case. Bad
news tends to drive negative returns and it has greater impact on the market than
good news. Following a declining market, the informativeness of the informational
proxy is higher than following a rising market, when there is proportionally more
noisy component in the informational proxy. It implies that the number of price

changes, N,_,, is a better informational proxy in a declining market than in a rising
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market. That is, in a declining market, the number of price changes has signifi-
cant and positive impact on the stock volatility, while in a rising market, it has
overall ambiguous impact, since there is a higher proportion of noisy component
in the number of price changes. In other words, we find that the information-
sensitive proportion in the number of price changes is higher when following a
falling market than when following a rising market.* Even if the information-
sensitive proportions are the same in a falling market and in a rising market, the
impact of the number of price changes on future volatility could be ambiguous
in a rising market simply since good news has less persistent impact on the fu-
ture market. This result together with the results from model selection analysis
suggests that the STGARCH model is a more appropriate approach to model the
impact of the number of price changes on volatility than the alternatives.

Recall that p is the probability of falling into a highly volatile market when
following a rising market and q is the probability of falling into a highly volatile
market when following a declining market. In most of the cases, we find that
|B1ql > 1B1,| - This implies that the number of price changes affects the volatility

in a higher magnitude when following a declining market than when following a

4 Anderson (1996) shows that there is 30 to 60 percent of trading volume is information-
insensitive on average.
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rising market.

Additionally, we can see that in Table 4 the persistence in the conditional
variance is reduced dramatically after accounting for both the impact of informa-
tion contained in trading activities and the nonlinear features in volatility. This
implies that there are various sources for the high persistence in the volatility
implied by the GARCH models: (1) one might be the misspecification of GARCH
model which ignores the effect of discrete shifts in the economy; (2) the other
source could be the persistence in the trading variable itself, which is observed
through persistence in the volatility, when the impact of trading variable is not
properly captured. We can conclude that our consideration on discrete changes
and on the impact of the number of price changes explains most of the reduction

in the persistence in volatility.

5. Conclusion

This paper studies the volatility of returns in individual stocks within a new non-
linear framework, incorporating the impact of information arrivals as suggested
by the theory of market microstructure. We find that the number of price changes
has greater impact on the volatility in a falling market than in a rising market.
Asymmetric patterns appear in the volatility of stock returns in a way particularly

21



suggested by our model that on average there is a higher probability of falling into
a highly volatile market when following a declining than when following a rising
market. Trading information and discrete shifts in volatility series both attribute

greatly to the documented high persistence in the conditional variance implied by

GARCH models.
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Table 1. Summary statistics of return series (in percentage)

mean stdev. skewness kurtosis
"BCE 0039 0757 0.050 6.003
BNS 0071 1322 0.123 4219
CM 0061 1.109 0.098 3.934
CP 0030 1403 0.208 4.642
ECO 0.001 2657 0.249 5.697
IMO 0017 1002 0.127 4.940
LDM 0014 1998 -0.200 12.17
MB 0008 1346 0.210 4.685
MCL 0024 1300 -0.576 8.913
NA 0038 1568 -0.041 4.550
NOR 0032 1411 0.183 5.092
NTL 0.067 1.682 -1.224 19.77
NVA 0035 1767 0237 4.585
PDG 0053 2061 0.108 4.291
POW 0.041 1.188 0.126 4.964
RGO 0.048 2.141 0327 5.059
TRP 0.034 1.165 -1.216 17.30

Table 2. Estimation results for selected parameters (n = 2014)
" (*: singnificant at 5% level) .

BCE

Constant GARCH GARCHy TGARCHy SIGARCH
ag, 0.7541° 04100° 03717  0.4255° 1.3381°
ady 03x10~%  0.3429"
a 0.1885* 0.1518*  0.1416" 0.1153*
ap 0.5232° 0.3349°  0.4366" 0.3886*
an 0.0444* 00142
a3z 0.0725
Bop -2.9955*
Bog -3.5121"
Bip 0.1984°
Big 0.3262"
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Lo

Constant GARCH GARCHy TGARCHy SIGARCH v
oy 1.3163*  0.1607° 0.1607  0.0580 2.0349~
ads 0.2127* 0.6(10%)
o 0.0325* 0.0325*  0.0262" 0.0650*
g 0.9523* 09523  0.9625* 0.8435*
on 0.0000 0.0000
Q32 0.0000
Bop -2.3631*
Boq -3.7136*
Bip -0.5269*
Bra 0.2623"
cM . _ -

Constant  GARCH GARCHy TGARCHy STGARCH
ofy 1.0982°  0.2703* 0.2703 - 0.2148 1.3476
oy 0.3282" 0.3(10-5)
o 0.0553* 0.0553*  0.0511* 0.0814* .
a2 0.8839* 0.8839*  0.8896" 0.7354*
a3y 0.0000 0.0000
g 0.0000 «
Bop -1.7165*
Boq -2.0207*
Bip -0.3296*
Biq 0.1621
CP___ —

Constant GARCH GARCHy TGARCHy STGARCH
of  1.3964%  0.3348% 0.2957°  0.5292° 1.8952°
o, 0.0001 0.7200*
o 0.0349*  0.0296*  0.0371* 0.0450*
az 0.9069* 0.9056*  0.8476" 0.3344
as 0.0142 0.0000
o3g 0.0538
Bop -1.3923*
Boq -2.8246*
B, 0.1420
Biq 0.4255*
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ECO

Constant GARCH GARCHy TGARCHy STGARCH
ag, 2.6557 0.1658° 0.1658*  0.2266 4.6669"
o, 0.0006 0.0012
a 0.0235* 0.0235*  0.0232* 0.0578*
as 0.9725* 0.9725*  0.9727* 0.7686"
a3y 0.0000 0.0000
Q32 0.0000
Bop -3.0972°
Bog -3.6443"
Byp 0.2637
B1q 0.4937
MO —

Constant. GARCH GARCHy TGARCHy STGARCH
af, 09900~ 04758* 04813  0.5258" 1.1584*
o, 0.4515° 0.2765
a 0.1127*  0.1148* 0.1207* 0.1145*
as 0.6564* 0.6187*  0.5922* 0.3024*
[ X378 0.0277 0.0057
a32 0.0730
Bop -0.8216"
Bog -1.1321*
Brp 0.3556
Byq 0.5818

Constant GARCH GARCHy TGARCHy STGARCH
ag, 1.9955 0.4040° 0.8269*  0.0006 4.3796"
ady 0.5829* 0.4413
oy 0.0709*  0.1179* 0.0476" 0.0903*
o 0.8906° 0.5399*  0.9010* 0.5760"
a1 0.3180*  0.0389
Q32 0.0287
Bop -3.3393"
Bog -3.4465"
Bip 0.2199*
Brg 0.3036*
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B

MB
Constant GARCH GARCHy TGARCHy STGARCH ‘
of, 13424 044495 0.4667°  04781° 1.72307
ads 0.6137* 0.1(10-%)
o 0.0681* 0.0664*  0.0609" 0.0678*
a 0.8222* 0.7683*  0.7290* 0.5871*
asy 0.0837 0.0537
a3 0.1618
Bop -1.7484*
Boq -1.3871°
B1p 0.1741
la 0.3848
MCL — __
Constant GARCH _GARCHy__TGARCHy__ STGARCH
of; 12928 009892° 009892°  0.9982° 2.0279*
0.8825" 0.5210"
™ 0.1673* 0.1673*  0.1745° 0.0301* -
oz 0.2562* 0.2562°  0.2334° 0.3272° )
ag 0.0000 0.0979
asp 0.1014 .
Bop -1.4044°
Bog -1.7229°
Bip -0.0343
B1o 0.1051
NA - I -
Constant_ GARCH _GARCHy__TGARCHy__ STGARCH
of, 15607 0.4975° 0.4975°  0.6784" 2.0802*
oy 0.3769* 0.7x10~4
o 0.0778* 0.0778*  0.0952* 0.0804"
az 0.8210° 0.8210*  0.7233* 0.6515°
as 0.0000 0.0000
a3z 0.2902
Bop -1.5699*
Bog -2.4055*
By 0.1977
1a 0.6323°
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Constant GARCH GARCHy TGARCHy STGARCH
of, 14032 0.5857° 0.5799*  0.5958° 1.6393"
od, 0.5339* 0.0003
o 0.1168* 0.1169*  0.1173° 0.1078*
s 0.7082* 0.7044*  0.7079" 0.6011*
a3 0.0102 0.0005
32 0.0282
Bop -1.5356*
Bog -1.3277*
ﬂlp 0.1202
By, 0.0277
NTL

Constant GARCH  GARCHy TGARCHy STGARCH
aj, 1.6616° 1.6337° 1.5586" 1.6656" 4.2156"
oy 1.3622° 1.0395*
o 0.0349 0.0225 0.0318 0.0732°
oz 02(107%) 0.2(10~%) 0.1(10~%)  0.1717
sy 0.1226 0.0292
a3z 0.2761*
Bop -2.9611"
Bog -3.0026"
Bip 0.1380
Byq 0.0745
NVA___ _— -~ _

Constant  GARCH GARCHy TGARCHy STGARCH
af; 17613 0.6440° 0.6440°  1.5911" 2.6869"
oy 1.3397° 0.0004
o 0.0636* 0.0636*  0.1047* 0.0723*
a2 0.8037* 0.8037*  0.1358 0.7141*
a3 0.0000 0.0000
agzz 0.1129
Bop -2.3540°
Boq -2.2663*
Bip 0.0217
1q 0.0033
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73

Constant GARCH GARCHy TGARCHy SITGARCH 0
of, 2.0589% 02359 0.2746°  0.2942° 2.4480°
a3, 0.2628 0.0025
o 0.0243*  0.0242*  0.0248* 0.0373*
@ 09624 09505  0.9489° 0.5957*
a3 0.0118 0.0087
32 0.0171
Boy -1.4618*
Boq -1.2931*
31,, 0.1074
By, 0.1246
POW _ _ . _

Constant GARCH GARCHy TGARCHy STGARCH
ofy, 1.1859* 0.1067° 0.0679 0.6(10°%) 21454
o, 0.1461* 0.2(10-%)
o 0.0254* 0.0234*  0.0212* 0.0671* s
ag 09662* 09626  0.9631° 0.8250*
a3y 0.0260*  0.0146
Qago 0.0440 2
Bop -3.7325*
Boq -3.6103*
B1p 0.3627
Brg 0.5555
R - — —

Constant GARCH GARCHy TGARCHy STGARCH
afy 21316 03324 0.3223°  0.4349° 3.1880°
oo 0.0003 1.1894*

o 0.0358*  0.0349°  0.0414" 0.0467
o 0.9394* 0.9339*  0.9194* 0.2394
31 0.0581 0.0425

2 %] 0.1518

Bop -2.1314"
Boq -2.0248*
Bip 1.3139*
Big 0.8957
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Constant GARCH GARCHy TGARCHy STGARCH
of; 11605 05584 0.5584°  04(10- %)  3.7938"
oy 0.1072° 0.0113
o 0.2227* 02227  0.0150° 0.0685*
s 0.5789*  0.5790*  0.9819* 0.6711*
a3 0.0000 0.0000
Q32 0.0000
Bop -3.2090"
Bog -4.4092°
Bip -0.4351*
Biq 0.5552*
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Table 3. Summary statistics of various specifications

“Constant GARCH GARCHy TGARCHy SIGARCH

#parameters 3 5 6 8 10
BCE

Log-likelihood -2289 2227 -2209 2201 2152
AIC -2292 2232 2215 -2209 2162
Schwarz -2294 2235 2219 2214 2169
MSE 1.6522  1.6139  1.5919 1.5908 1.5920
MAE 0.6196  0.6037  0.5954 0.5979 0.5973
BNS

Log-likelihood -3411 -3370 -3370 -3369 -3349
AIC -3414 -3375 -3376 -3377 -3359
Schwarz 3416 -3378 -3380 -3382 -3366
MSE 9.5448  9.2803  9.2803 9.2721 9.2537
MAE 1.8239  1.7860  1.7860 1.7836 1.7700
CM

Log-likelinood -3046 3016 -3016 -3014 -2996
AIC -3049 3021 -3022 -3022 -3006
Schwarz -3051 -3024 -3026 -3027 -3013
MSE 42530 41553  4.1553 4.1499 4.1556
MAE 12637 12477  1.2477 1.2460 1.2390
CP

Log-likelihood -3530 -3516 -3514 -3511 -3480
AIC -3533 -3521 -3520 3519 -3490
Schwarz -3535 3524 -3524 -3524 -3497
MSE 13.637  13.541  13.523 13.489 13.564
MAE 2.0506  2.0261  2.0252 2.0208 2.0334
ECO

Log-likelihood -4825 4730 ~4730 4730 4709
AIC -4828 4735 4736 4738 4719
Schwarz -4830 4738 4740 4743 4726
MSE 231.02 22065  220.65 220.57 224.13
MAE 7.8850 7.5916  7.5916 7.5864 7.4948
MO

Log-likelinood -2838 -2805 -2805 -2805 2759
AIC -2841 2810 -2811 -2813 -2769
Schwarz -2843 2813 -2815 2818 2776
MSE 3.5794 35139  3.5111 3.5149 3.5848
MAE 1.0712  1.0552  1.0549 1.0556 1.0552
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v (Table 3: Continued)

Constant GARCH GARCHy TGARCHy STGARCH

#parameters 3 5 6 8 10
LDM
Log-likelihood -4249 4165 4157 4153 -4040
AIC 4252 4170 4163 4161 -4050
Schwarz -4254 4173 4167 4166 4057
MSE 17703 17648 174.83 174.78 174.55
MAE 45410 45221  4.4381 4.4527 4.4780
MB
Log-likelihood -3450 -3428 -3424 -3419 -3381
AIC -3453 -3433 -3430 -3427 -3391
Schwarz -3455 -3436 -3434 -3432 -3398
MSE 11.852  11.747 11716 11.654 11.715
MAE 1.9232 19263  1.9283 1.9170 1.9168
MCL
Log-likelihood -3375 -3343 3343 -3340 -3260
] AIC -3378 -3348 -3349 -3348 -3270
* Schwarz -33380 -3351 -3353 -3353 3277
, MSE 22037 21979 21979 22.083 21.906
< MAE 1.8701  1.8689  1.8689 1.8720 1.8538
NA
Log-likelihood -3754 3715 3715 3713 -3684
AIC -3757 -3720 3721 3721 -3694
Schwarz -3759 -3723 3725 3726 -3701
MSE 21.980 21482 21482 21.448 21.569
MAE 25828  2.5280  2.5280 2.5230 2.5085
NOR
Log-likelihood -3540 -3491 -3491 -3491 -3466
AIC -3543 -3496 -3497 -3499 -3476
Schwarz -3545 -3499 -3501 -3504 -3483
MSE 16.063 15486  15.486 15.486 15.484
MAE 21117 20809 20811 2.0821 2.0700
NTL
Log-likelihcod -3880 -3878 -3876 -3871 -3698
AIC -3883 -3883 -3882 -3879 -3708
Schwarz -3885 -3886 -3886 -3884 -3715
MSE 148.06  148.03  148.02 148.13 148.79
MAE 3.1566  3.1505  3.1421 3.1560 3.1703
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(Table 3: Continued)

Constant. GARCH GARCHy 1TGARCHy STGARCH

#parameters 3 5 6 8 10
NVA

Log-likelinood -3998 -3981 -3981 -3985 -3947
AIC -4001 -3986 -3897 -3993 -3957
Schwarz -4003 -3989 -3991 -3998 -3964
MSE 35.125 34936  34.936 34.942 35.079
MAE 3.2314  3.1953  3.1953 3.2005 3.1893
PDG

Log-likelihood -4312 4287 4285 4285 4263
AIC 4315 4292 4291 4293 4273
Schwarz -4317 4295 4295 4298 4280
MSE 58.804 57985  57.912 57.908 58.457
MAE 44569 44048  4.3898 4.3902 4.4137
POW

Log-likelihood -3201 -3140 -3136 3134 3118
AIC -3204 -3145 3142 3142 3128
Schwarz -3206 3148 3146 3147 3135
MSE 8.0277 7.8354  7.8201 7.8047 7.9666
MAE 1.5243 14726  1.4676 1.4654 1.4639
RGO

Log-likelihood -4382 4343 4342 4342 4302
AIC 4385 4348 4348 -4350 4312
Schwarz 4387 4351 4352 4355 4319
MSE 85390 84002  83.918 83.852 85.846
MAE 49214 48043  4.8025 4.8053 4.8723
TRP

Log-likelihcod -3158 -3107 -3107 -3088 -2964
AIC -3161 3112 3113 -3096 2974
Schwarz -3163 3115 -3117 -3101 -2981
MSE 29470 31318  31.318 29.276 29.334
MAE 1.5408  1.6212  1.6212 1.5218 1.5438
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Table 4: Persistence in various specifications (a; + a2)

GARCH GARCHy

TGARCHy STGARCH

BCE
BNS
M
Ccp
ECO
IMO
LDM
MB
MCL
NA
NOR
NTL
NVA
PDG
POW
RGO
TRP

0.7117
0.9848
0.9392
0.9418
0.9960
0.7691
0.9615
0.8903
0.4235
0.8988
0.8250
0.0349
0.8673
0.9867
0.9916
0.9752
0.8016

0.4867
0.9848
0.9392
0.9352
0.9960
0.7335
0.6578
0.8347
0.4235
0.8988
0.8213
0.0225
0.8673
0.9747
0.9860
0.9688
0.8017

0.5782
0.9887
0.9407
0.8747
0.9959
0.7129
0.9486
0.7899
0.4079
0.8185
0.8252
0.0318
0.2405
0.9737
0.9843
0.9608
0.9969

0.5039
0.9085
0.8168
0.3794
0.8264
0.4169
0.6663
0.6549
0.5576
0.7319
0.7089
0.2449
0.7864
0.6330
0.8921
0.2761
0.7396
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