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INDEX*
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Abstract

Constant risk aversion means that adding the same constant
to all outcomes of two distributions, or multiplying all their out-
comes by the same positive constant, will not change the prefer-
ence relation between them. In this paper we prove several rep-
resentation theorems, where constant risk aversion is combined
with some other known axioms to imply specific functional forms.
Among other things, we obtain a form of disappointment aver-
sion theory without using the concept of reference point in the
axioms. and a form of the rank dependent model without making
any reference to the ranking of the outcomes. This axiomatiza-
tion leads to a natural generalization of the Gini inequality index.
Our analysis also establishes a connection between constant risk
aversion. Fréchet differentiability, and orders of risk aversion.
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1 Introduction

Constant risk aversion means that adding the same constant to all outcomes
of two distributions, or multiplying all their outcomes by the same positive
constant, will not change the preference relation between them. Within the
expected utility framework, this assumption implies expected value maxi-
mization. But there are many (non expected utility) functionals that satisfy
this requirement, for example, Yaari’s [48] dual theory, or functions offered
by Roberts (37] and by Smorodinsky [44] (see Section 2 below).

In this paper we prove several representation theorems, where constant
risk aversion is combined with some other known axioms to imply specific
functional forms. We first show that non-trivial (that is, non expected value)
functionals that satisfy constant risk aversion cannot be Fréchet differen-
tiable. This differentiability is the key assumption in Machina’s [34] analysis,
and is widely used in the decision theoretic literature. As we show in Ap-
pendix A, this assumption is not without economic significance, as it implies
second order attitude towards risk (see Segal and Spivak [41]). Since they
are not Fréchet differentiable, constant risk aversion functionals cannot be
approximated (in the L, norm) by expected utility preferences. These results
are presented in Section 3.

A possible relaxation of Fréchet differentiability is the requirement that
representation functionals are only Gateaux differentiable. This requires the
derivative with respect to a of V((1 — a)F + aG) to exist, and to be con-
tinuous and linear in G — F". Many constant risk aversion functionals satisfy
this assumption. but as we show in Section 4. adding betweenness to the list
of axioms (F ~ G implies of + (1 — a)G ~ F for all a € [0,1]) permits
only one functional form, which is Gul’s [24] disappointment aversion the-
ory with a linear utility function u. According to this theory, the decision
maker evaluates outcomes that are better than the certainty equivalent of
a lottery by using an expected utility functional with a utility function .
He similarly evaluates outcomes that are worse than the certainty equivalent
(with the same function u). Finally, the value of a lottery is a weighted sum
of these two evaluations. In this theory, the certainty equivalent serves as
a natural reference point. to which Gul’s axioms make an explicit reference.
Our axioms do not make any such explicit dependency, and the reference
point is obtained as part of the results of the model, rather than as part of
its assumptions.



One of the most popular alternatives to expected utility is the rank de-
pendent model, given by V(F) = [u(z)dg(F(z)). (This model has several
different versions, see Weymark [47], Quiggin [35], and other citations in Sec-
tion 5 below). This functional form is consistent with constant risk aversion
whenever v is a linear function, which is Yaari’s [48] dual theory. Although
many axiomatizations of the rank dependent model exist,! they all depend on
one crucial assumption, namely, that the value of an outcome depends on its
relative position. This is of course a key feature of the rank dependent model,
from which its name is derived. But it would be nice to be able to obtain this
property as a result, rather than as an assumption of the model. In Section 5
we offer an axiomatization of a non-trivial special case of Yaari's functional,
where none of the axioms makes an explicit appeal to the relative position of
any of the outcomes. The key added axiom is mixture symmetry, which states
that if F' ~ G, then for all @ € [0,1], aF + (1 — a)G ~ (1 — @)F + oG (see
Chew, Epstein, and Segal [12]). The functional form we obtain is a weighted
average of the expected value functional, and the Gini inequality index. We
discuss the relevance of our results to the theory of income distribution in
Section 6.

Two recent works on bargaining with non expected utility preferences
make use of homogeneity of preferences with respect to probabilities (see
Rubinstein, Safra, and Thomson ({38] and Grant and Kajii [22]). We offer
a slightly stronger assumption, where F' ~ G iff for every o € [0, 1), aF +
(1 —a)bo ~ aG + (1 — a)bo (& is the distribution of the degenerate lottery
that yields the outcome zero with probability one). Together with constant
risk aversion. this axiom implies Yaari's representation with a probability
transformation function of the form g(p) = 1 — (1 - p)t. We prove this result
in Section 7. The paper ends with a brief discussion of the empirical validity
of some of the axioms we use (see Section 8).

2 Definitions

Let 2 = (S5, %, P) be a measure space and let X be the set of real bounded
random variables with non-negative outcomes on it. For X € X, let Fx be
the distribution function of X. Denote by F the set of distribution functions
obtained from elements of X. With a slight abuse of notations, we denote

1We have counted more than ten axiomatizations of this model.
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by a the constant random variable with the value a, and its distribution
function by é,. For X € X, let X be the lowest possible value of X (that is,
X is the supremum of the values of z for which Fx(z) = 0). Observe that
for X € Xand a > -X, X +a € X, and the distribution F X+a 1S given
by Fx.(z) = Fx(z — a). Throughout the paper, when we use the notation
X+aor F+a we assume that a > —X. Also, for X € Xand A > 0, AX € X,
and we define the distribution A x Fx := Fyx by (A x Fx)(z) = Fx(z/)).

On X we assume the existence of a complete and transitive preference
relation . We assume throughout the paper that if Fx = Fy, then X ~ Y.
Therefore, > induces an order on F, which we also denote >. Assume further
that = is continuous (with respect to the weak topology), and monotonic
(with respect to first order stochastic dominance). It then follows that every
F € F has a unique certainty equivalent z € [0, c0), satisfying F' ~ 6, (recall
that for every F' € F there exists z such that F(z) = 1). We restrict attention
to preference relations satisfying the following assumption.

Constant Risk Aversion X > Y iff for every @ > max{—X, Y} and for
every A > 0, A(X +a) = A(Y +a). Or equivalently, F = G iff for every
sucha and \, A X (F +4a) = A x (G +a).

Note that > satisfies constant risk aversion iff it satisfies both constant
absolute risk aversion and constant relative risk aversion. Also, its represen-
tation functional V' : ¥ — R which is defined implicitly by F' ~ vy (that is,
V(F) is the certainty equivalent of F), satisfies V(A x (F+a)) = \[V(F)+a].
In such a case we say that V satisfies constant risk aversion. The following
are examples for such functionals.

o V(F) = [xdg(F(z)) (Yaari's [48] dual theory).

o V(F)=pur+ OFW(# X [F — pr]) for some functional W, where ur is
the expected value of F and o is its standard deviation (Roberts [37]).

¢ V(F) = argmin, [ |z — t|**'dF(z) for some ¢ > 0 (Smorodinsky [44]).

The next lemma shows that the set of functionals satisfying constant
risk aversion is much larger than the above list. Moreover, from two such
functionals more functionals can be created.



Lemma 1 Let V be the set of all functionals that satisfy constant risk aver-
sion. Then for every V' C V), the functionals V; and V, are in V, where
VYF)=inf{V(F):V € V'} and V¥(F) = sup{V(F): V € V'}.

Proof For a given F', there is a sequence V; in V such that V!(F) = lim Vi(F).
Hence V(Ax(F+a)) < lim Vi(Ax(F+a)) = im A(Vi(F)+a) = A(V(F)+a).
On the other hand, there is a sequence V! in V such that for G = \ x (F +
a), VI(G) = limV/(G), hence V}(F) < imV/(F) = limV/(A\~! x (G -
Aa)) = UmA~Y(V/(G) — Aa) = A"}(VY(G) — Aa). These two inequalities
imply V}(F) < A=Y(VY(A x (F+a))— Aa) < V}(F), hence V(A x (F+ a)) =
AVYF) + a).

The proof of the sup case is similar. |

3 Smooth Preferences

Machina [34] introduced the concept of smooth representations, that is, rep-
resentations that are Fréchet differentiable.

Definition 1 The function V : F — R is Fréchet differentiable if for every
F € JF there enists a “local utility” function u(-; F): R — R such that for
every GE€ T,

V(G) -~ V(F) = [ule FGE) - F@) +ol G- F ) (1
where || « || is the L,-norm.

In other words. 1" is Fréchet differentiable if for every F. the functional
V behaves like an expected utility representation with the von Neumann &
Morgenstern utility function u(+: F). Obviously, if V(F) always equals E[F],
the expected value of F, then V is smooth and satisfies constant risk aver-
sion. But we have seen above that many other functionals satisfy constant
risk aversion. It is therefore natural to ask whether any of them is Fréchet
differentiable.

Theorem 1 The following two conditions are equivalent.

1. 'V is an ezpected value functional. that is, V(F) = E[F] = [ zdF(z).



2. V satisfies constant risk aversion and is Fréchet differentiable.

Proof Obviously, (1) = (2). To see why (2) = (1), consider first the
family of local utilities u(+; é;). Since local utility functions are unique up to
scalar addition.? we assume that for every z, u(z; ;) = z.

Consider now the lottery (y,p; 1,1 — p) for arbitrary y and p. Using the
local utility u(-:6;) we obtain (recall that u(1;6;,) = 1)

V(y,p1.1 = p) = V(1) = [pu(y; 1) + 1 — p] = 1 + o(p(y — 1)) (2)
Similarly, for (y + a,p;1 + a,1 — p) we obtain

Viy+a.pl+al—p)—V(b) = (3)
[pu(y + a:b140) + (L = p)(1 + @)] — (1 + @) + o(p(y — 1))

By constant risk aversion, the left hand sides of egs. (2) and (3) are the same.
Subtract eq. (2) from eq. (3) to obtain

+dﬂy—U)
P

0=p|u(y +a;bi4a) —uy;6) —

Divide by p, and then take the limit as p — 0 to obtain
u(y + a:b14a) = u(y; 61) + a
Set z =y +c and k = | + . and obtain for z > k — 1.
Wz b)) =ulz—k+1:86)+ k-1 (4)
Similarly to eq. (2) we obtain for \ > 0
V(Ay,pi A1 = p) = V(8\) = [pu(Ay; 6:) + M1 = p)] = A +o(pA(y — 1)) (3)

By constant risk aversion. the left hand side of eq. (3) equals A times the left
hand side of eq. (2). Hence

pu(Ay; 6x) — Ap + o(pA(y — 1)) = Apu(y; &) — p + o(p(y — 1))]

*For this and other statements concerning local utilities. see Machina [34].

(1]



Divide both sides of the last equation by p, and then take the limit as p — 0
to obtain

u(Ay; 6x) = Au(y; é1)

Set z = Ay and k = ) to obtain for z > k — 1,

u(z; 8) = ku (3361) (6)
Let A(+) = u(+; 61) and obtain from egs. (4) and (6)
h(x—k+1)+k—1=kh(%) (7)

Since A is increasing, it is almost everywhere differentiable. Pick a point
£* > 1 at which A’ exists. Differentiate both sides of eq. (7) and obtain that
for z = kz~,

R'(k(z* —1) + 1) = h'(z")

Since == > 1, it follows that 4’(z) is constant for z > 1.

By similar arguments. there is z* < 1 at which A is differentiable. We
now obtain that h is differentiable on (0,1), and that its derivative there is
constant. In other words, there are two numbers, s and # such that

3u(:r:5,)_ s <1
dzx 1t o>l

From eq. (6) it now follows that

au(:zrzék)_ s r<k
dz Tt >k

But since V" is Fréchet differentiable, it follows from Theorem 5 in the ap-
pendix that for almost all k. u(+;6;) is differentiable with respect to the
first argument at k. Hence s = ¢. and since V(&) = k. it follows that
u(z; 0k) = sz + (1 — s)k.3

3Up to this point. we only used Gateaux. rather than Fréchet. differentiability (see
Section 4 bellow).



Fix the probabilities py,....pn, and consider the space of lotteries (z1,p1;
.++}Zn,Pn). These lotteries can be represented as vectors of the form (z1,...,
zn) € R™ Fory > 0, let dy = (y,....y) be the point on the main diagonal
corresponding to the lottery 6,. Pick a point z~ not on the main diagonal
of R" and y such that z* ~ §,, and let H* be the two dimensional plane
containing z* and the main diagonal. It follows from Roberts [37, p. 430] that
indifference curves on H* below the main diagonal are linear and parallel to
each other, and so are indifference curves above the main diagonal. In other
words, z* ~ d, iff for all @ € [0,1], az" + (1 — a)d, ~ d,. Note that this
mixture is with respect to outcomes, not with respect to distributions.

The local utility function at é, is given by u(z;6,) = sz + (1 — s)y, hence

0 = V(z7) = V(dy) = V(az" + (1 - a)d,) — V(d,) =

Xn:pf[S(aw? +(1—a)y)+ (1 =s)y] = Ilsy + (1 — s)y] + o(a) =

i=1

as{i pi; = y] + o(a)

Divide by as, and then let « — 0 to obtain "%, piz; = y, which is the
expected value functional. By continuity, V(F) is the expected value func-
tional for all F. [

Following this result. Chambers and Quiggin i3] proved that. assuming
differentiability. decreasing absolute risk aversion implies increasing relative
risk aversion.

Fréchet differentiability is not without economic meaning. .\s is shown
in Appendix A. it implies that the preference relation generically represents
second order attitude towards risk. That is, for almost all 2= and for every
random variable ¢ with expected value zero. the risk premium #(¢: z°. #) the
decision maker with wealth level 2~ is willing to pay to avoid receiving t - &
goes to zero faster than ¢ (so it is of order o(t); see Segal and Spivak [41)). The
next lemma further explores the connection between constant risk aversion
and orders of risk aversion.

Proposition 1 Assume constant risk aversion. Then the following three
conditions are equivalent.

-1



1. V is an ezpected value functional.

2. There is a positive wealth level z* at which the decision maker’s attitude
towards risk is of order 2.

3. At all positive wealth levels, the decision maker’s attitude towards risk
is of order 2.

Proof Obviously, (1) = (3) = (2). By constant risk aversion, it is
easy to verify that (2) == (3). To see why (3) = (1), fix, as in the
proof of Theorem 1, the probabilities p;,...,p,. Suppose ¥ piz; = z*, but
T =(ZT1,...,2n) % dge. If z is sufficiently close to z*, then there is v # 0 such
that z4+v = (z1+7,...,2,+7) ~ dge. Define & = (z1—=2",p15...:Tn—2", pp)
and obtain by constant risk aversion that the risk premium the decision maker
is willing to pay to avoid ¢ - £ is ty. This contradicts the assumption that the
preference relation satisfies second order risk aversion. |

4 Betweenness and Gateaux Differentiability

The last section suggests that at the presence of constant risk aversion, the
assumption of Fréchet differentiability is too strong. Weaker notions of dif-
ferentiability exist, and at least one of them got special attention in the
literature.

Definition 2 A functional V is Giteauz differentiable at F (Zeidler [50. p.
191]) if for every G,
V(F.G—-F):= —,(lV((l - F +tG)
dt t=0
exists and if SV(F,G — F) is a continuous linear function of G — F. V is
Gateauz differentiable if it is Gateauz differentiable at F for every F.

If V is Fréchet differentiable. then it is also Giteaux differentiable, but
the opposite is not true. For example, the rank dependent model is Gateaux.
but not Fréchet differentiable (see Chew, Karni, and Safra [13]).* In this

4The minimum of two Gateaux differentiable functionals is not necessarily differen-
tiable. Suppose that for & € (0,a"). V(aF + (1 — a)G) > V2(aF + (1 — a)G), but for
a€(a". 1], Vi{(aF + (1 - a)G) < V{(aF +(1 —a)G). Let H =a"F+(1 - a")G and let
V* = min{V', "2} to obtain that §V*(H,F — H) # —-6V*(H,G - H).

8



section we assume that preferences are Gateaux differentiable, and that they
satisfy the following betweenness assumption.

Betweenness F > G implies that for every a € [0,1], F = oF +(1—a)G =
G (see Chew [9, 10] and Dekel [16]).

In this section we characterize preferences that satisfy constant risk aver-
sion, Gateaux differentiability, and betweenness. It turns out that the only
functional to satisfy these three axioms is a special case of Gul [24] disap-
pointment aversion theory.

Definition 3 V' is a Disappointment Aversion functional (see Gul [24]) if it
can be represented by a functional V, given by

_ 2a) 1 -7(a)
vip) =T [ oy HENF (@) + T / o MRV (®)
where a is the probability that F yields an outcome above its certainty equiv-
alent C(F), and v(a) = af[1 + (1 — «)B] for some number 3.

According to this theory, the decision maker evaluates outcomes that are
better than the certainty equivalent of a lottery by using an expected utility
functional with a utility function u. He similarly evaluates outcomes that
are worse than the certainty equivalent. Finally, the value of a lottery is a
weighted sum of these two evaluations.

Theorem 2 The following two conditions on V' are equivalent.

1. It is Gdteauz differentiable, and satisfies constant risk aversion and
betweenness.

2. It can be represented by Gul's disappointment aversion functional with
the linear utility u(z) = z.

Proof If > satisfies betweenness, then each indifference curve can be obtained
from an expected utility functional. Assuming as before that for every k.

V(6x) = k, it follows that there are utility functions uy : [0,00) — R such
that F ~ & iff

/ uk(z)dF(z) = up(k) = k (9)

9



Choose k > m > 0, and let (z,p;0,1 — p) ~ (k,1). Then (mz/k,p;0,1
—p) ~ (m,1). By eq. (9), pur(z) = k and pum(mz/k) = m, hence

k mz
k(@) = ~tm (T) (10)

Let Fym = {F ~ & : F(k—m) = 0}. That is, Fim consists of those
distributions whose certainty equivalent is k, and whose lowest outcome is not
less than £ —m. On Fy m, the preference relation > satisfies Jur(z)dF =k
and [um(z — k+m)dF = m, or equivalently, [ Un(z—k+m)dF+k-m =
k. The reason is that F ~ 6, if F—k +m ~ 6m. Consider the two
expected utility preferences on {F : F(k — m) = 0} that are represented by
Jur(z)dF(z) and [ v(z)dF(z), where v(z) = um(z — k+m) + k — m. Since
they share an indifference curve (the one that goes through 6), they are the
same, hence v is a linear transformation of u;. Also, since ur(k) = v(k) =k,
there exists § > 0 such that

v(x)=um(m—k+m)+k—m=0uk(a:)+(1—0)k

Together with eq. (10), this implies

0k mz
m\(Z — KR k— = —Um | = -
um(z = km)+ b —m = 2y (k)+(1 9)k
Let y =z — & + m and obtain
Ak k — m?
um(y)=—um(m”+’"'“ '")+m—ok (11)
m k

We want to show that 0 = 1.

Since V' is Gateaux differentiable. it follows from the proof of Theorem 1
(see fn. 2) that

aum(x)={s r<m

Oz t t>m

For y # m we obtain

10



But m + (m/k)(y — m) € (y,m) (or € (m,y)), hence 8 = 1. This is the case
of disappointment aversion theory, where u(z) = z and 8 = (s/t) - 1.

In Appendix B we show that disappointment aversion (eq. (8)) with linear
utility function u is Giteaux differentiable. |

Remark Theorem 2 strongly depends on the assumption that the functional
is Gateaux differentiable. For a functional that satisfies betweenness, is not
disappointment aversion, (and therefore, by Theorem 2, is not Gateaux dif-
ferentiable), see Smorodinsky [44].

In disappointment aversion theory, the certainty equivalent of a lottery
serves as a natural reference point, which Gul’s axioms explicitly use. Our
axioms do not refer to any special point. and the reference point is obtained
as part of the resuits of the model, rather than as part of its assumptions.
even if only for a special case of this theory.

5 Mixture Symmetry

As mentioned in the introduction, Yaari's [48] dual theory, given by V(F) =
[ zdg(F(z)), satisfies constant risk aversion. This functional is a special case
of the rank dependent model, V(F) = [ u(z)dg(F(z)) where the utility func-
tion u : R — R and the probability transformation function g : [0,1] — [0, 1]
are strictly monotonic. g(0) = 0 and g(1) = 1 (see Weymark [47] and Quig-
gin [35]). This family of functionals received many different axiomatiza-
tions (e.g., Chew and Epstein [11], Segal [40]. Quiggin and Wakker {36]. or
Wakker [45]), but ail these axiomatizations make use of the order of the
outcomes. For example. Quiggin’s (35| axiom 4 implies expected utility if
non-ordered outcomes are allowed.

Since rank dependent functionals evaluate outcomes not only by their
value, but also by their relative rank as compared to other possible outcomes.
axioms that presuppose attitudes that are based on outcomes’ relative rank
are arguably less convincing than axioms that do not make an explicit appeal
to such ranks. The aim of this section is to offer what we believe to be the
first axiomatization of a non-trivial set of rank dependent functionals where
none of the axioms refers to the order of the outcomes, or treats an outcome
differently based on its rank. We will use the following terms.

Mixture symmetry F° ~ G implies for all a € [0,1], aF + (1 — a)G ~

11



(1 — a)F + oG (see Chew, Epstein, and Segal [12]. We discuss the
normative appeal of this axiom in Section 6 below).

Non-Betweenness There exist F ~ G and « € [0,1] such that F = oF +
(1-a)G.

Quasi Concavity / Quasi convexity F > G implies that for every o €
0,1, aF +(1-a)G =G [ F = oF +(1 — a)G.

The next lemma shows that quasi concavity / betweenness / quasi convex-
ity along one indifference curve implies global quasi concavity / betweenness
/ quasi convexity. Formally,

Lemma 2 Suppose that = satisfies constant risk aversion. If there isa* > 0
such that F ~ G ~ §,- implies for all a € (0,1), 1. aF + (1 — a)G & F;
2. F~aF +(1-a)G; 3 F»>aF+(1-a)G, then the preference relation
= 1. is quasi concave; 2. satisfies the betweenness assumption: 3. is quasi
convezr, respectively.

Proof We prove the case of betweenness; the other two cases are similar.

Let F' ~ G ~ 6, for a # 0. Then

= bl

a a a’
—XF~—xG~—x6 =6,
a a a

Hence. by the betweenness assumption.

Va, ﬁxF~a[“—'xF]+(1—a)[“—'xG]=
a

a a

Va, i'x(a—-x["')'vix(a[a—‘xF]-i-(l—a)[ixG]):#
a a a a a

Va, F~aF + (1 —a)G

Since all outcomes are non-negative, 7 ~ & implies F' = §p, hence the
lemma. |

Theorem 3 The following two conditions on > are equivalent.



1. It satisfies constant risk aversion, non-betweenness, and mizture sym-
metry.

2. It can be represented by a rank dependent functional with linear utility
(that is, Yaari’s (48] dual theory functional) and quadratic probability

transformation function of the form g(p) = p+ cp — cp® for some ¢ €
[-1,0)u (0, 1].

Proof Obviously, (2) implies (1), so we show that (1) implies (2). Asis
proved in [12], mixture symmetry implies that the domain of > can be divided
into three regions A, B, and C, A = B > C, such that on B, > satisfies
betweenness, on A and on C, = can be represented by (not necessarily the
same) quadratic functional of the form

n n

V(Z1,015+ . 3 ZnaPn) = D DO Pibioe(zirzj), €= A,C (12)

i=1 j=1

where ¢, is symmetric, { = A,C. Moreover, V is quasi concave on A and
quasi convex on C.

By Lemma 2, only one of the three regions is not empty, and by the non-
betweenness assumption, V is quadratic throughout. In other words, > can
be represented by a strictly quadratic function ¥ 2~ pipip(zi, z;). Define a
function v : Ry x [0,1] — R implicitly by

(z.p;0.1 = p) ~ (v(z.p), 1) (13)

For A > 0. v(Az.p) = Av(z.p). So for a fixed p the function v is homogeneous
of degree 1. hence

v(z.p) = p(p)x (14)

Assume without loss of generality that (0,0) = 0. Let ¢(z) := (z.z)
and r(z) := p(z,0). hence ¢(0) = 0. Then from Egs. (12) and (13) it follows
that

p*q(z) + 2p(1 - p)r(z) = q(zp(p)) (15)

In Lemma 3 below we prove that the two functions ¢ and p are trice
differentiable. Differentiate both sides three times with respect to p to obtain

0 = p"(p)zq'(zp(p)) + 36" (p)A'(P)2q" (zp(p)) + [0'(p)P=%¢" (zp(p)) (16)
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Since this equation holds for every z, it follows that all the coefficients of
on the right-hand side of Eq. (16) are zero. In particular, p”(p)q’ (zp(p)) = 0.
By monotonicity, ¢’ > 0, hence p is quadratic. Since by Eq. (13) p(0) = 0
and p(1) =1, it follows that

p(p) = cp® +(1—c)p (17)

Also, [p']*¢" = 0. Since p is not constant, it follows that q" =0, hence q is
quadratic. In other words, together with the assumption that q(0) = 0, we
obtain

o(z.z) = azx® + bz (18)

From Egs. (13) and (14) it follows that (z,p;0,1 — p) ~ (p(p)z,1). By
constant absolute risk aversion we obtain for every z > ]

(2 —y,p;0,1 = p) ~ (p(p)z — y],1) =
(z,p9,1 = p) ~ (p(p)z + (1 - p(p))y, 1) =
P*e(z.z) + (1 = p)%e(y, ) + 20(1 — p)p(z,y) =
@(p(p)z + (1 — p(p))y, p(p)z + (1 — p(p))y) =>
2p(1 - p)p(z.y) =
alp(p)z + (1 = p(p))y]* + blo(p)z + (1 — p(p))y] —
p*laz® + bz] — (1 — p)*[ay® + by]

Substitute Eq. (17) into this last equality to obtain

(2p = 2p%)y(z.y) =
al[ep® + (1= c)plz +[L = cp® = (1 = c)ply)* +
b([ep” + (1 = c)ple + (1 — cp® — (1 — ¢)ply) — (19)
p*laz® + bz] - (1 — p)*lay” + by]
Comparing the coefficients of powers of p on both sides of this last equa-
tion we get for p!

0 = ac’(z — y)?
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Hence either a = 0 or ¢ = 0. Suppose first that ¢ = 0, then p(p) = p.
Comparing the coefficients of p? in Eq. (19) we obtain

b
o(z,y) = azy + 5(3: +y)

It follows from Eq. (12) that for X = (z1,p1;. . .; Zn, Pn),

V(Fx) =a}_ 3 ppjziz; + ';'Z >_pipi(zi +2;) =
a(E[Fx])? + b E[Fx]

hence V is an expected value functional. but this contradicts the non-betwee-
nness assumption.

On the other hand. if ¢ # 0 and a = 0, then by eq. (18) b # 0. By
comparing the coefficients of p? in Eq. (19) we get for z > y

b
#(2,y) = 3[(1 = cle + (1 + c)y]
Similarly, for y > z,

o(z,y) = g[(l =)y +(1+c)z]

By the monotonicity of v we may assume, without loss of generality, that
b= 1. We thus obtain that

o —

#(z.y) = z{L = ¢)(z + y) + cmin{z, y}

Following Chew. Epstein. and Segal {12. Section 3. especially footnote 3]. we
obtain

V(Fx) = (1 - )E[Fx] + ¢ [ 2dg"(Fx(x) (20)

where g°(p) = 1 — (1 — p)®. Alternatively, V(Fy) = [zdg(Fx(z)), where
9(p) =p+cp—cp’. =

Lemma 3 The functions q and p of the proof of Theorem 3 are trice differ-
entiable.
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Proof By monotonicity, both g and p are increasing functions, hence almost
everywhere differentiable. The left hand side of eq. (15) is always differen-
tiable with respect to p, hence so is the right hand side of this equation.
Suppose p is not differentiable at p*. Since g is almost everywhere differen-
tiable, there is z such that g is differentiable at zp(p®), a contradiction. Since
p is differentiable, it follows by the differentiability of the left hand side of
eq. (15) that so is q. Differentiating both sides of eq. (15) with respect to p
we thus obtain

2pq(z) + (2 — 4p)r(z) = p'(p)zq'(zp(p)) (21)

The right-hand side of eq. (15) is differentiable with respect to z, and
since ¢ is differentiable, so is 7. It follows that the left-hand side of eq. (21)
is differentiable with respect to z, hence so is the right-hand side of this
equation, in other words, ¢” exists. Since p is differentiable, aq'(p(p))/Op
exists, and since the left-hand side of eq. (21) is differentiable with respect to
p, so must be p'(p). In other words, p is twice differentiable. Differentiating
both sides of eq. (21) with respect to p we obtain

2q(z) — 4r(z) = [p'(P)*2%¢" (zp(p)) + p"(p)zq'(zp(p)) (22)

Similarly to the above analysis, since both sides of eq. (22) are differen-
tiable with respect to z, ¢" exists, and since both sides are differentiable
with respect to p, p" exists. |

6 Ginl

Consider again eq. (20). \When ¢ = —1. V(Fy) = J zdg(Fx(z)), where
g(p) = p?, and when ¢ = . V(Fy) = fzdg™(Fx(zx)), which is the Gini
measure of income inequality. Since p(p) is monotonic (see eq. (14)), it follows
by eq. (17) that ¢ € [—1.1]. Since g" is concave it represents risk aversion (see
Yaari [48] and Chew, Karni, and Safra [13]), hence [ zdg*(F(z)) < E[Fx].
In other words. the Gini measure is the lower bound of all the monotonic
functionals that satisfy the assumptions of Theorem 3.

The axioms of constant risk aversion and mixture symmetry were made
in the context of decision theory, but they are meaningful in the analysis of
income distribution. In this literature, arguments were made for inequality
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indices that are not affected either by adding the same amount to each per-
son’s income or by multiplying all incomes by a positive scalar. Indices in
the first class are called absolute measures of inequality (see Blackorby and
Donaldson [6]), while indices in the second class are called relative measures
(see Atkinson (3], Kolm [29], and Sen [43]). The Gini index is both an abso-
lute and a relative measurement. Weymark [47] suggested the linear-utility
rank dependent as a generalized Gini index that still carries these properties.
Another axiomatization for a generalization of the Gini index is provided by
Ben Porath and Gilboa (4], where the representing function is an additively
separable function of the expected value and the Gini index. (See also Ben
Porath, Gilboa. and Schmeidler (5], where indices are assumed to be in both
absolute and relative measures).

The adaptation of the mixture symmetry axiom to income distributions
imposes some restriction on the domain of distributions. One way in which
this axiom was used in situations involving allocations of resources was to
assume the existence of lotteries over possible allocations (see Epstein and
Segal [19] and Border and Segal [7]). Here we offer two different approaches.
The domain of preferences in the first approach is the set of income distri-
butions in continuum economies, while the second assumes preferences over
income distributions in e/l finite economies.

For the first approach consider the set of all income distributions in a
continuum economy, where the distribution F' means that for income level z,
an F(z) part of the population receives z or less. The mixture aF +(l-a)G
is the distribution obtained by using the distribution F for an « part of the
economy, and the distribution G for the remaining 1 — o part. Mixture
symmetry state that if /' ~ . then for every a € [0, 1], is does not matter if
the o part receives F and the 1 — a part receives G, or if the o part receives
G and the 1 — « part receives F.

For the alternative approach we need preferences to be over income dis-
tributions in all finite economies, but preferences still depend only on the
distribution. So for example, the income distribution of (50, 100) in the two
person economy is as good as the distribution (50. 50,100, 100) in the four
person economy.® Mixtures of lotteries mean the following. Let F and G be
income distributions for an n person economy. Then for every & and ¢, the

distribution L“?F + x'?G is a distribution for the (k + ¢)n person economy,

SThis property is called the Dalton [15) principle of population.
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where k groups of n people receive the distribution F and ¢ groups of n peo-
ple receive the distribution G. Mixture symmetry states that if F ~ G, then
P + 156G ~ &5F + 56

The justification for the mixture symmetry in both approaches is similar,
and we offer an explicit one for the first. If F ~ @, this does not mean that a
distribution where an « part of the economy receives F' and 1 —a receives G is
equally attractive as F' or G. (In other words, we do not assume betweenness
here). However, given that an « part is going to receive one distribution, and
a 1 —a part is to receive an equally attractive distribution, it does not matter
which of the two distributions does each part receive.

This analysis does not extend itself to finite economies if the sizes of the
economies for the ' and G distributions are not the same, for example, if
F is the income distribution of an n person economy, and G is the income
distribution of an m person economy. In such a case we can start with an
n X m person economy that will be able to support both the F' and the G
distributions (recall that for this approach we assumed that the preference
relation > depends on the distribution of outcomes and is independent of
the size of the economies). In this case mixture symmetry says that having
k times this economy with the distribution F and ¢ times the same economy
with G is indifferent to ¢ times the economy with F and k times the economy
with G. For example, if & > ¢, then in both situations £ groups of n people
get F', { groups get G, and either all the remaining k — ¢ groups get F', or
they all get G. Since F' ~ G, the mixture symmetry assumptions suggests
that the two income distributions L_%F + ﬁG and ﬁl’“ + Fi—eG are also
equally attractive.

7 Zero Independence

Suppose F' ~ G. What will be the relation between qF + (1 — q)éo and
qG + (1 — ¢)6o? Some existing empirical evidence suggests that if z > y>0
and (2.p;0,1 — p) ~ (y,1), then (z,qp;0.1 — gp) = (y,q;0,1 — q) (this is
called the common ratio effect—see Allais (2], MacCrimmon and Larsson [33],
or Kahneman and Tversky [27]). Assuming the rank dependent model, Se-
gal [39. 40] connected this effect to the elasticity of the probability transfor-
mation function g, and showed that if F ~ G iff gF+(1—¢) ~ qG+(1 —q)do
for all F'and G with two outcomes at most. then g(p) = 1 — (1 — p)t for some
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t > 0. Stronger results were achieved by Grant and Kajii [23], who proved
the same for a wider set of initially possible functionals. In this section we
prove that to a certain extent, it is enough to assume constant risk aversion
(although in that case the utility function will have to be linear). The formal
assumption we use is the following.

Zero Independence F ~ G iff for all ¢ € [0,1], gF +(1—q)bo ~ ¢G+(1 -
q)60

Slightly weaker assumptions were introduced by Rubinstein, Safra, and
Thomson (38], and later by Grant and Kajii [22], for the derivation of a
preference-based Nash bargaining solution that applies to generalized ex-
pected utility preferences. The outcome of zero is considered there to be the
disagreement outcome (the outcome that the bargainers receive if they fail
to reach an agreement). In (38] the similar assumption is called homogeneity
and it requires that zero independence should hold for G = §,. In [22] it is
called weak homogeneity and it requires that zero independence should hold
for G = 6, and for F = pb, + (1 — p)do. These assumptions play a crucial role
in establishing the existence and the uniqueness of the ordinal Nash solution.

To prove Theorem 4 we will modify a result from Gilboa and Schmei-
dler [21] and assume that preferences satisfy diversification (see below). As
in Section 2, let = (5, T, P) be a measure space and let X be the set of all
measurable bounded random variables on it.

Diversification If X ~ Y, then aX + (1 =)V = X for all 0 < a < 1.
Equivalently, if G ~ H. then for all X and Y such that G = Fy and
H=Fy,andforall0 < a < 1. Foxtti-ay = G.

Lemma 4 The following two conditions are equivalent.
1.V satisfies constant risk aversion and diversification.

2. There exists a unique set T of increasing, concave and onto functions
over [0, 1] such that > can be represented by

V(Fx) = rg%i%m{/xdg(Fx(:r))}
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Proof Clearly (2) implies (1) (see Lemma 1 in Section 2 above), so we prove
here that (1) implies (2). First note that for each X € X with certainty
equivalent z, the set {Y : Y = X} is a convex cone with a vertex at z. The
reason is that for X ~ x, constant risk aversion implies that for all o 20,
aX + (1 —a)z ~ z, and diversification implies convexity of supper sets.
Constant risk aversion also implies that all these cones are parallel shifts of
each other.

The conditions in (1) imply the axioms of Gilboa and Schmeidler [21].
Therefore, by their Theorem 1 and Proposition 4.1, there exists a compact set
€ of finitely additive measures on Q such that X > Y iff mingee{f XdQ} >
mingee{/ Y'dQ}. For a given X, let F¥ denote the distribution function of
X with respect to the measure Q (F¥ is denoted by Fy, as before) and let
V:F — R be defined by V(Fx) = mingee{[ :dFg(z)}. Then Fy > Fy iff
V(Fx) 2 V(Fy).

Claim 1 Every Q € € is absolutely continuous with respect to P. That is,
forallQ and EC S, P(E)=0=> Q(E) =0.

Proof of Claim 1 Let E be such that P(E) = 0 and let [z; w] stand for
the random variable [z on E; w on E°] (E° is the complement of E). By

monotonicity with respect to first-order stochastic dominance, w; > w; im-
plies [z1;w1] > [23; wo]. Let ¢ = maxgee{Q(E)}. If there exists @ € C such

that Q(E) > 0. then ¢ > 0 and [4;5] > [5— ¢;5 — 1].
On the other hand. for = < w.
glelg{zQ(E) +w(l - Q(F))} = gqég{w +(:—w)Q(E)} =w+ (z — w)g

Therefore
zin{(5 - 0Q(E) + 5 - D - @ep} =5 - L - 8
On the other hand,
min{4Q(E) +5(1 - Q(E))} = 5 - g

Hence [5 — ¢;5 — 2] = {4: 5], a contradiction. o
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Claim 1 implies that, for all X, Q, 2, and z,,
Fx(z1) = Fx(22) = FR(21) = F3(z)

Consider now a given X € X and a measure Q € @, and define a function
9Q,x : [0, 1] — {0, 1] by

FR(F5'(p)) p € Image(Fx)
9o.x(p) =< 0 p=0
{(p) otherwise

where [ is the piece-wise linear function, defined on the complement of the
image of Fx, that makes gg x continuous. By the claim, g9Q.x is well de-
fined. Clearly, it is onto and non-decreasing, and it satisfies [zdFQ(z) =
J 2dgq x(Fx(z)).

For each X € X there exists Q(X) € @ such that

V(Fx) = mig{ [ 2dFR(:)| = [ 2dP§®(z) = [ zdgx(F(2)

where gx = go(x).x-

Let Com(X) = {Y : Vs1,5, € S, (X(s1) — X(52))(Y(s1) — Y(s2)) >
0} (that is, the set of all random variables that are comonotone with X).
Restricted to Com(.X), indifference sets of [ zdgz(Fy(z)) are hyperplanes in
X. Therefore, for ¥ € Com(X),

V(Fy) = min { :dF‘?‘Z’:}=
(Fy) zeCom(X),z~Y / vo(=)

min {/zdgz(FY(Z))}

zeCom(x),z~¥

Next. we discuss the case of non-comonotone random variables. Define
W*:F - Rby

we(Fx) = min { [ 2dga(Fu(2)}
By definition, W*(Fx) < V(Fx). Suppose there exists X such that W*(Fx
=% < r = V(Fx). Then there exists X ¢ Com(X) such that W*(Fx) =
[ zdg%(Fx(z)).
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Let X" be the set of all random variables ¥ € X that have at most n
different outcomes y; < -+ < y and satisfy Pr(Y = y;) = L. Assume first
that there exist n and X such that X, X € %" and Fy = Fy. Clearly,
Q(X) = Q(X). Therefore, gz = g, which implies W*(Fx) = V(Fx).

If there is no such n then, by continuity, there exists n large enough for
which there exist X™, X* € X that satisfy W*(Fxn) = [ zdgzn(Fxn(2)) <
Z + 3(z — %) and V(Fx») > & + Y(z — ). A contradiction. Hence, for
T={92z:Z2€X},

V(Fx) = mip { [ 2dg(Fx(2))}

It remains to show that the functions gz are concave. Assume. without
loss of generality, that there exist n and X € int(X") such that, for some
10 € {2,...,1’1— 1},

? 20— 1 o+ 1
29x (—°> < gx ( - )) +9x ( 2 ))

n n n
Let @ = Q(X) and denote ¢; = Q(X = z;). By definition, gx(%) = ;-=1 g;.
Therefore, i, < gip41. Take ¢ > 0 small enough and consider X (e) € int(ff")
with the values z; < --- < z;,—z < Zip4+1+€ <+ -+ < z,. By the construction
of @, X(e) > X. This, however, contradicts risk aversion (note that risk
aversion is implied by diversification, see Dekel [17)). |

Theorem 4 The following two conditions are equivalent.

1. 'V satisfies constant risk aversion. diversification. and zero indepen-
dence.

2. V(F) = [ zdg(F(z)), where g(p) =1 — (1 — p)* for some t > 1.

Proof Obviously (2) = (1). \Ve prove that (1) = (2) for finite lotteries
(that is, for lotteries with a finite number of different outcomes) by induction
on the number of the nonzero outcomes. Continuity is then used to get the
desired representation for all F € ¥.

By Lemma 4 there is a family of probability transformation functions
{9a : @ € A} such that for every F. V(F) = min, J zdg.(F(z)). For lotteries
of the form (z,p; 0,1 — p) we obtain

V(z.p;0,1 - p) = minz(l - ga(1 - p)]
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Define f,(p) = 1 —ga(1—-p) and k(p) = min, fa(p) and obtain that V(z, p; 0,
1 = p) = zh(p).

By zero independence, (z,p;0,1—p) ~ 6, implies for all q €[0,1], (z, pg; 0,
1 —pg) ~ (¥,4;0,1 - q), hence zh(p) = y and zh(pq) = yh(q). Combining
the two we obtain

h(pq) = h(p)h(q)

The solution of this functional equation is 4(p) = p (see Aczél [1, p. 41]).
Suppose we have already proved that for lotteries with at most n prizes
V(F) = [zdg(F(z)) = [zd(1 - (1 - F(z))*) = [ zd(—(1 — F(z))"). That is,

forzy <--- €z,
n-1 n ¢ n ¢
V(Z1,p1;- -5 ZnyPa) = Taph + )_ Yopi| - > b
i=1 j=t J=i+l

We will now prove it for n +1. Let z; < -++ € Zn41, and consider the lottery
X = (Z1,p15 -} Tn41, Pns1)- By constant risk aversion,

ViFx) =21+ V(Fx — 1) =z, + V(0,p1;...; Tne1 — T1, Pry1)

By continuity there is y such that Fx —x; ~ (y,1 — py;0.p;). By zero
independence Fy. ~ §,, where

X" = (£2 -y, ﬂ—:...:.z',l.,.l - . M)
l—Pl ].—[)1

By the induction hypothesis. V(Fx.j = 1"(§,) implies

t
(Tntt = £1) ( Pnil ) + (23)
l—p
n n+1 P; t n41 P; ¢
;i —Iy) ~ = =
S| (E25) - (2,225) | -

Also. since Fiy —.ry ~ (y,1—p1;0.p;), it follows by the constant risk aversion
properties of V' that V' (Fx) = z; + y(1 — p;)!. Substitute into eq. (23) to
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obtain

t
V(FX) = n + (1 —pl)t {(xn+l - (tl) (lpi—-:;) +

Tn+1Pher + il‘f K’fm‘)t- ( nf Pj)t}

i=1 j=i j=i+l
which proves the induction hypothesis. |

The functional form of Theorem 4 has been previously appeared in the
literature on income distribution under the name of “the $-Gini family.” (see
Donaldson and Weymark (18] and Yitzhaki [49]).

8 Some Experimental Evidence

Throughout the paper we used several axioms, like Fréchet and Giteaux
differentiability, constant risk aversion. betweenness. mixture symmetry, and
zero independence. In this section we survey the experimental validity of
some of these axiom.

As is explained in Appendix .\. Fréchet differentiability implies (generi-
cally) second order attitude towards risk. Direct examination of differentja-
bility is probably impossible. but Loomes and Segal [32] found out that in
their experiments about one third of their subjects showed a clear first order
attitude. (About one third of the subjects showed a clear second order atti-
tude, while the results concerning the rest were less clear). In other words. a
significant minority does not satisfv the Fréchet differentiability assumption.

The assumption of constant. absolute. and relative. risk aversion was
tested by levy [31], who found out that at a 5% significance level. 24 out of 62
participants satisfied neither increasing nor decreasing absolute risk aversion
(p- 296). The results regarding relative risk aversion are not explicitly given
but, in Levy’s words (p. 298) “The other 31 [out of 62] subjects reveal either
constant relative risk aversion or decreasing relative risk aversion.” Kreps [30.
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P- 76] too claims that when prizes are not too large, one should be very
comfortable with constant absolute risk aversion.

The zero independence axiom is related to the common ratio effect (Al-
lais [2]). According to this effect, if z < y and 6, ~ (y,p;0,1 — p), then
for A < 1. (y,Ap;0,1 — Ap) > (£.1;0.1 = ). Many experiments show the
existence of such an effect (see, for example, MacCrimmon and Larsson (33]
and Kahneman and Tversky [27]). Such a behavior obviously contradicts
zero independence, but recently Cubitt, Starmer, and Sugden [14] showed
that the existence of this effect may well depend on the design of the experi-
ment. When properly designed (that is, when each participant is asked only
one question and issues of dynamic consistency are eliminated), the common
ratio effect appears less frequently and zero independence may be satisfied.

For experimental tests of betweenness. quasi concavity / convexity, and
mixture symmetry, see Harless and Camerer {25], Hey and Orme [26], and
references there.

A Orders of Risk Aversion and Fréchet Dif-
ferentiability

Machina [34] introduced the concept of smooth representations of preferences
over risky assents and argued that since many problems in economics involve
only local analysis (for example. optimization and comparative statics anal-
ysis), and since by eq. (1) the functional V' can be locally approximated by
an expected utility functional. it should follow that the economic results of
expected utility apply to all (smooth) nonexpected utility functionals.

It turns out that some well known functionals are not Fréchet differ-
entiable tsee Chew. Karni. and Safra [13]). but they too have local utility
approximations. although only in L, for p > 1 (see Wang [46]). It thus seems
that although the Fréchet differentiability assumption rules out some mod-
els, it does not have any effect on our ability to analyze local behavior under
risk. In this appendix we show that this. however. is not true. and assuming
Fréchet differentiability has some economic meaning.

At points where the increasing utility function u : R — R is differentiable
(that is. almost everywhere), the expected utility functional Ju(z)dF(z)
behaves locally like expected value. Extending this property to nonexpected
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utility preferences, Segal and Spivak {41] defined the concept of second order
risk aversion as follows. For a random variable ¢ with expected value zero
and for z* € R, define the risk premium function 7 implicitly by 8ze_n(ze,5) ~
z" +¢€. The preference relation = is said to satisfy second order risk aversion
at z* if for every & with expected value zero,

d

E’n’(z',t . :’3)

t=0t

Similarly, the preference relation > is said to represent first order attitude
towards risk at z* if for every such &,

0

a—th'((l:.,t . :3:)

£0

t=0+

The concept of orders of risk aversion is not without economic significance.
A second order risk averter will buy full insurance if and only if its price is
“fair,” that is, when the price of a dollar insurance equals the probability of
loss. On the other hand, a second order risk averter will buy full insurance
even at the face of some marginal loading. (For this, see Segal and Spivak [41].
See also Karni (28] for other results concerning insurance and orders of risk
aversion. For other applications, see Epstein and Zin [20]).

Segal and Spivak [42] show that under the assumption of Fréchet differen-
tiability of the representation functional V', the preference relation > satisfies
first [second] order risk aversion at a point z* iff the local utility u(z; é,.) is
not differentiable [differentiable] with respect to its first argument at = = z".

Using these results, Theorem 5 below states a connection between Fréchet
differentiability and orders of risk aversion.

Theorem 5 [f the monotonic preference relation > can be represented by a
Fréchet differentiable functional V. then for almost all z=. = satisfies second
order risk aversion at £*. In other words. the set of points where = satisfies
first order risk aversion is of measure zero.

Proof By monotonicity, the functional V satisfies V (bz) > V(by) = z >
y, hence the set of points where dV(6,)/0z does not exist is of measure

zero. The theorem now follows from the equivalence of the following three
conditions.
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1. The derivative V(4,)/dz exists at z = z*.
2. The preference relation > satisfies second order risk aversion at z = z~.

3. The local utility u(z; 6,+) is differentiable with respect to its first argu-
ment at z = z~.

The equivalence of (2) and (3) is proved in [42]. To see why (1) and (3)
are equivalent, note that

V(bzese) = V(6z+) = u(z™ + €;65¢) — u(z™; 65+) + o(€)

Divide both sides by ¢ and let ¢ — 0 to obtain that V(6;) is differentiable
with respect to z at z = z* iff u(z;6,.) is differentiable with respect to its
first argument at z = . ]

The theorem implies that all models that always have kinked indifference
curves along the main diagonal in a states-of-the-world representation are
not (L;) Fréchet differentiable. Such is the rank dependent model (for a
direct proof that this model is not Fréchet differentiable, see Chew, Karni
and Safra (13]. For a proof that this model satisfies first order risk aversion,
see Segal and Spivak [41]). Another example is Gul’s [24] disappointment
aversion model. Indeed, since for two-outcome lotteries it behaves like the
rank dependent model, disappointment aversion implies first order behavior
at all z (see {32]). By Theorem 3, this functional is not Fréchet differentiable.

The theorem also implies that there is an economic behavioral difference
between preferences that are L; Fréchet differentiable and preferences that
are L, Fréchet differentiable for p > 1. as the latter may display first order
risk aversion everywhere.

B Disappointment Aversion Theory and Gat-
eaux Differentiability

In this appendix we prove that the disappointment aversion with linear utility
is Gateaux differentiable. In our case, we assume that V() = k. Therefore,
for fixed s and ¢. the value of V at F is the number & that solves the implicit
equation

/ok[s:c + (1 = s)k]dF(z) + /:o[t:z: +(1 - t)k|dF(z) — k=0
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For given F' and G, let H, = aG + (1 — a)F, and obtain that the value
of V(H,) is the number k() that solves

k(o) )
/0 o(z, k(c))dHa(z) + /k o V1@ k(@))dHu(z) — k(a) = 0
where ¢(z, k() = sz+(1—s)k(a) and ¥(z, k(a)) = tz+(1 —t)k(c). Define
k )
J(a, k) = / oz, k)dHa(z) + / ¥(z, k)dHa(z) — k =
0 k
00 k
/ b(z, k)dHq(z) + (s — t) / (z — k)dHy(z) — k
0 ()
By the implicit function theorem, dk/da = —J,/Ji. Trivially,
k
9 _ /0 oz, k)d[G(z) - F(z)] + ] (2, b)d[G(z) - F(z)]  (24)
We compute next the derivative of J with respect to k. We need only the

derivative at o = 0, in which case H, = F. Therefore, the derivative of J
with respect to k at o = 0 is given by

e—=0 ¢

(l—t)/o dF(z) + (s — t)lim - [/Okﬂ(:v—k—a)dF(a:)_
/o(x—k)dF(x)] 1=

k4e k+e
Ct4(s—)lim - [/ .\.E—A--s;dF(,L-)_/O (z-k)dF(.r')] +
0

c=0 ¢

k+e

(s—/)lirnl (r—k)dF(z) =
=0 £ Jy

. . 1 ke
—t = (s = )lim F(k +<) +(3_”§5’32/k (z — k)dF(z)

The expression

ke
/k (z — k)dF(z) (25)

is bounded from above by the maximal change in z — & multlphed by the
maximal change in the cumulative probability, that is. by e[F(k +¢) — F(k)).
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The integral at eq. (25) is bounded from below by € multiplied by the minimal
possible change in the value of F', namely by lim._o F(k + €) — F(k). Hence,
€' times the integral at eq. (25) is between lim,_, F(k+¢)— F(k) and
F(k +€) - F(k). It thus follows that

(s - t)lim é / (@ = k)dF(z) = (s - ){lim F(k + ) - F(k)]
and

aJ

35| == (s —OF(k) = —t(1 = F(k)) - sF(k) < 0

a=0

From eq. (24) it now follows that

ok

_ Iy ¢(z, k)d[G(z) = F(2)] + [ $(z. k)d[G(z) — F(z)]
Oa

a0 t+ (s —t)F(k)

Obviously, this expression is continuous in G- F and also linearin G— F. B
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