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Abstract 

Compost generated through fish waste composting could provide an effective source of nutrient-rich organic matter 

for microbial growth, leading to the production of valuable products such as biosurfactants. Existing biosurfactant 

production is a relative expensive process and raw materials contribute about 30% of the production cost. Utilizing 

waste streams such as fish waste compost (FWC) as a substrate is an economically viable alternative. In this study, 

biosurfactant was produced by Rhodococcus erythropolis sp. P6-4P, a strain isolated from the North Atlantic Ocean. 
Biosurfactant production with FWC extract was compared with other soluble and insoluble carbon and nitrogen 

sources using emulsification assay and surface tension measurement. FWC extract showed good potential as an 

unconventional source of nutrient for microbial growth. The produced biosurfactant under optimum condition 

obtained via response surface methodology was further characterized for total carbohydrate, total lipid and total 

protein content.  The results provided evidence for using FWC extract as a novel substrate for biosurfactant 

production. 
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1. INTRODUCTION  

Biosurfactants are amphiphilic compounds produced by a wide variety of microorganisms containing both 

hydrophilic and hydrophobic moieties that allow them to array at the interface of polar and nonpolar media (Sen, 

2010). They have been identified for several industrial applications in cosmetic, pharmaceutical, food processes, 

and environmental engineering as emulsifiers, humectants, preservatives, and detergents. Because of their structural 

diversity (i.e., glycolipids, lipopeptides, fatty acid esters), low toxicity thus ecologically safe, and high 

biodegradability, biosurfactants have the potential for replacing synthetic surfactants in bioremediation and waste 

treatments (Pal et al., 2009). Despite all the advantages that biosurfactant have, low yields and high production cost 

limit the extension of biosurfactant applications (Makkar, Cameotra, and  Banat, 2011). Raw material can account 

for almost 30% of the overall cost of a microbial surfactant production, therefore the economical production of 

biosurfactant depends on the development of low-cost raw material and optimization of the production processes 

(George and  Jayachandran, 2013). The use of alternative substrates such as industrial and/or municipal wastes is 

one of the possible attractive strategies for economical biosurfactants production to minimize pollutants and produce 

valuable products (Kosaric, 1992). Improvement of efficiency of the production process (e.g., optimization of 

cultural condition) can also help to overcome the economic constraints associated with biosurfactant production 

(Mukherjee, Das, and  Sen, 2006). 
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From about 267,959 tonnes of fish landed in Newfoundland and Labrador, 54% were classified as fish waste in 

2001(Ghaly AE, 2013). Composting is considered to be a viable solution to the problems of waste disposal 

experienced by fish processing plants and fish farms (Liao, May, and  Chieng, 1995). Compost made from fish 

waste is rich in nutrients, particularly nitrogen and phosphorous (Benhabiles et al., 2012; Illera-Vives, Labandeira, 

and  López-Mosquera, 2013; Laos et al., 2002). It can be used to generate substrates for bacterial growth and 

production of valuable products such as biosurfactants.  

 

Medium compositions such as carbon sources, nitrogen sources, and inorganic salts strongly influence cell growth 

and the accumulation of metabolic products (Li, Bai, Cai, and  Ouyang, 2002). Environmental factors and growth 

conditions such as pH and time of cultivation also affect biosurfactant production through their effects on cellular 

growth or activity (Desai and  Banat, 1997). Through studying the effect of these factors on production process and 

optimizing media condition, the yield of biosurfactant production can be elevated (Kiran et al., 2009; Mukherjee et 

al., 2006). Among various statistical methods, response surface methodology (RSM) is the most widely used method 

in system optimization. By integrating a collection of statistical tools and techniques, RSM leads to constructing and 

exploring an approximate functional relationship between a response variable and a set of design variables (Venter, 

1998).  

 

This paper investigates the potential usage of fish waste compost (FWC) extract as a novel substrate for 

biosurfactant production by a strain Rhodococcus (P6-4P) isolated from the Atlantic Ocean.  RSM based on a central 

composite design will be used to develop an empirical model of the process and to optimize media conditions to 

enhance the yield of Rhodococcus biosurfactant using FWC extract as factor.  

2.  MATERIAL AND METHODS  

2.1 Strain and culture condition 

Biosurfactant producing microorganism P6-4P (Rhodococcus erythropolis sp.) isolated as an effective 

microorganisms from petroleum hydrocarbon contaminated marine sources in the North Atlantic was selected to 

produced biosurfactant (Cai et al., 2015). Bacteria colony was transferred from agar plate to 125-ml Erlenmeyer 

flask containing 50 ml BD 23400 nutrient broths (Fisher scientific company, Ottawa, Canada) to growth the culture 

on a rotary shaker for 24h at 37 °C and 180rpm to reach the optical density of the culture at 600 nm (OD600) of 0.8. 

Growth and biosurfactant production by the isolate was evaluated using media which is adopted and modified from 

(Peng, Liu, Wang, and  Shao, 2007) including  NaCl, 2.2 g; FeSO4‧7H2O, 2.8×10-4 g; KH2PO4, 3.4 g;K2HPO4‧3H2O, 

4.4 g; MgSO4‧7H2O, 0.5 g; yeast extract, 0.5 g, N-hexadecane 30 ml/L, (NH4)2SO4 15 g, and 0.5 mL/L trace element 

solution in 125  mL conical flasks. The trace element solution contained ZnSO4, 0.29 g; CaCl2, 0.24 g; CuSO4, 

0.25 g; MnSO4, 0.17 g L-1 and was sterilized separately. The chemicals used were analytical grade, unless otherwise 

specified. Incubation was conducted at 30oC, 200 rpm for 2 days. After 2 days, before inoculation, purity check was 

conducted by spreading the medium over nutrition broth agar plate to avoid cross contamination. Nutrition broth 

composed of peptone, 8 g; yeast extract, 3 g; NaCl, 6 g; Glucose, 1 g: and agar. 15 g. Difference carbon and nitrogen 

sources has been used to compare the efficiency of FWC extract as substrate for biosurfactant producing bacteria.  

2.2 Effect of carbon and nitrogen sources on biosurfactant production  

The effect of different carbon sources was studied by replacing the n-hexadecane with sucrose, starch, glucose, and 

fish waste compost extract (FWCC). The different carbon sources were added to the media at a concentration of 

5 g l−1. To evaluate the nitrogen sources, ammonium sulphate was replaced by an equivalent amount of different 

nitrogen sources, namely yeast, ammonium nitrate and FWC extract (FWCN). The different nitrogen sources were 

added to the media at a concentration of 15 g l−1. A 1% bacterial cell suspension from a 24-h culture was used as 

inoculum. 15 ml medium has been prepared in the 50 ml conical flask and incubated at 30oC, 200 rpm for 5 days. 

Cells were removed from the culture by centrifugation at 12, 000 rpm for 20 min. Cell- free culture broth was used 

for analytical measurements. 
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2.3 Surface tension and CMD measurement  

Surface tension measurements of culture broth supernatants were performed according to the Ring method with a 

surface tensiometer (DuNouyTensiometer, Interfacial, CSC Scientific). To increase the accuracy of the surface 

tension measurements, an average of triplicates was determined. All measurements were performed at room 

temperature (20 °C). Critical micelle concentration (CMD) is the dilution of the culture broth upon reaching the 

critical micelle concentration (Shavandi et al., 2011). After centrifuging at 12,000 rpm for 20 min and discarding the 

pellet, the cell free broth were diluted with distilled water, while the surface tension of each dilution was measured. 

The CMD was determined as the highest dilution with which the surface tension did not significantly increase. As 

the broth consists of both aqueous and oil phases, each dilution was conducted with sonication to ensure 

homogeneity. Before each measurement, the sonicated solution was allowed to stand for 15-20 min to achieve 

equilibrium.   

2.4 Emulsifying activity  

Emulsifying activity was determined by the addition of 2 ml of n-hexadecane to the same volume of cell-free culture 

broth supernatant in glass test tubes. The tubes were mixed with vortex at high speed for 2 min and subsequently 

incubated at 25 °C for 24 h. The stability of the emulsion was determined after 24 h, and the emulsification index 

(E24) was calculated as the percentage of the height of the emulsified layer (mm) divided by the total height of the 

liquid column (mm). All emulsification indexes were performed in triplicate. 

2.5 RSM experimental design 

To examine the combined effect of three different medium conditions and to obtain the functional relationship 

between incubation component including time, pH and FWC concentration and the response namely CMD, a 

Central Composite Design (CCD) with 3 factors was used.  A total of 23=8  factorial points, 6 center points,  one 

replicate of star points and one replicate of factorial points leading to a total of 20 experiments was designed. The 

value of the response (CMD) was the mean of three replications. Design Expert software (version 8.0, Stat-Ease, 

USA) was used to design and analyse the data collected from the experiment. Table 1 shows the variables and their 

high and low levels and Table 2 shows the factor combinations of the CCD, the corresponding observed responses 

and model predictions.  

 

 

Table 1: Biosurfactant production variables and their high and low levels 

Independent variables Coded  Low High 

Time (d) A 3 7 

pH B 6 8 

FWC concentration (%) C 20 80 

 

2.6 Biosurfactant extraction and assay 

To extract the produced biosurfactant, the cell free culture were mixed with an equal volume of chloroform/ 

methanol (1:2 v/v) and shaken on an orbital shaker (200 rpm) for 24 hours. The solvent was then evaporated by a 

rotary evaporator and kept at 4°C. For total lipid and total carbohydrate, (Pande, Khan, and  Venkitasubramanian, 

1963) and (Dubois, Gilles, Hamilton, Rebers, and  Smith, 1956) methods were used, respectively. The total 

carbohydrate in the sample solution was expressed in terms of D-Glucose (g/ 100 mL) and the total lipid in the 

sample solution was expressed in terms of Palmitic acid (g/ 100 mL). The surface tension of 10 mL diluted 

biosurfactant solution at various concentrations was determined in triplicate with a surface tensiometer at 25°C for 

CMC estimation. The CMC was determined by plotting the surface tension versus the concentration of 

biosurfactants in the solution. Total lipid and fatty acids test was conducted at the Ocean Science Centre (OSC) of 

Memorial University of Newfoundland.  Lipid samples were extracted according to (Parrish, 1999). Lipid class 

composition was determined using an Iatroscan Mark VI TLC-FID, silica coated Chromarods following a three-step 

development method (Parrish, 1987). The fatty acids composition of surfactant extracts was analysed by GC–FID.  
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Table 2: CCD for biosurfactant production   

Run Factor A Factor B Factor C Y0 observed  

CMD 

Y predicted 

CMD 

1 5 8.5 50 10.8 8.757 

2 5 7 50 14.2 13.34 

3 2 7 50 20.8 21.99 

4 5 7 50 12.2 13.34 

5 3 8 20 15.5 11.927 

6 5 7 50 12.4 13.34 

7 7 6 20 2.2 0 

8 3 8 80 21.5 23.64 

9 7 8 20 0 0 

10 7 8 80 8.13 12.112 

11 5 7 5 0 4.56 

12 5 7 95 23 22.13 

13 5 5.5 50 0 2.35 

14 5 7 50 17.6 13.34 

15 7 6 80 9.13 7.845 

16 8 7 50 0 4.7 

17 5 7 50 16.2 13.34 

18 3 6 20 2.83 7.659 

19 3 6 80 20.5 19.37 

20 5 7 50 16.7 13.34 

 

2.7 Biosurfactant stability test 

Stability studies were done using cell-free broth obtained after 72h of cultivation. Broth samples were incubated in a 

water bath at different temperatures: 4, 20, 40, 60, 80 and 100°C and cooled at room temperature. The pH stability 

was performed by adjusting the broth to different pH (3, 6, 9, and 12) values by adding 1N NaOH or 1 N HCl.  

Different concentrations of NaCl comprise 0, 5 and 10 % (W/V) were added to broth samples and mixed until 

complete dissolution to study the effect of salt addition on biosurfactant. 

3. RESULTS AND DISCUSSION  

3.1 Effect of Carbon and nitrogen sources on biosurfactant production  

The genus Rhodococcus bacteria has diverse and efficient metabolism which enables it to transform, biodegrade or 

utilize several hydrophobic compounds such as hydrocarbons, chlorinated phenols, steroids, lignin, coal and crude 

oil as a carbon source. This capability could be of great commercial and industrial importance (Bicca, Fleck, and  

Ayub, 1999). Biosurfactants produced by some Rhodococcus species have been reported to be more effective and 

efficient in reduction of surface and interfacial tensions than many synthetic surfactants (Bell, Philp, Aw, and  

Christofi, 1998).  Therefore, Rhodococcus erythropolis sp has been selected for this study. The type of carbon and 

nitrogen source affected biosurfactant yield which is depicted through ST, E24 and production rate shown in 

Figure1. Biosurfactant produced with FWC as a carbon and nitrogen sources showed excellent surface tension 

reduction activity and they reduce water surface tension to 29.33 and 28.95 mN/m, respectively. The lowest surface 

tension was recorded for sucrose (24.61 mN/m). All carbon and nitrogen sources except glycerol reduced water 

surface tension to under 40 mN/m. The highest emulsification activity was observed for n-hexadecane. Also, FWCN 
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showed well emulsification activity while it was less than n-hexadecane and yeast.  Yeast yielded the highest 

production rate, while yeast ammonium nitrate and FWCN produced higher biosurfactant. The lowest production 

rate was due to glycerol. According to surface tension, emulsification activity, and biosurfactant production, FWC 

was able to promote the production of biosurfactant as a nitrogen source and carbon source and it can be considered 

as a promising nutrient source for the selected Rhodococcus strain. 

 

 
Figure 1: Effect of carbon and nitrogen sources on the biosurfactant production by Rhodococcus P6-4P 

3.2 Biosurfactant production optimization 

The ANOVA table from the CCD results of Table 2 is shown in Table 3.  

 

Table 3: ANOVA table for biosurfactant production   

Source Sum of Squares df Mean Square F Value p-value 

Model 1025.13998 4 256.285 20.05758 < 0.0001 

A-Time 415.526792 1 415.5268 32.52029 < 0.0001 

B-pH 56.903112 1 56.90311 4.453397 0.0520 

C-FWC (%) 429.010632 1 429.0106 33.57558 < 0.0001 

B2 123.6994438 1 123.6994 9.681066 0.0071 

Residual 191.6619152 15 12.77746   

Lack of Fit 165.4135819 10 16.54136 3.150935 0.1086 

Pure Error 26.24833333 5 5.249667   

Cor Total 1216.801895 19    

R2 = 0.843     Adj R2 = 0.801 Pred R2  = 0.697 Adeq Precision  = 15.39 

 

From Table 3, all model terms are tested at the 5% significance level. The coefficients and the corresponding p-

values suggest that, among the input variables time, pH, and FWC concentration are significant model terms. It can 

be seen that there is a highly significant quadratic effect of pH (B).  The lack-of-fit p-value is greater than 5% 

indicating that the lack of fit is not significant. This means all significant model terms have been included. The 

resulting regression equation is given by: 
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[1]       
246.386.513.277.535.13 BCBAY      

 

Where: Y is the response (CMD) of the produced biosurfactant and A, B and C are coded values of the test 

variables, time, pH and FWC concentration (%), respectively.  Goodness-of-fit statistics show that the regression 

model provided a fairly good fit to the experimental data. Figure 2 shows the response surface plots as a function of 

Time and pH, and as a function of pH and FWC.  

 

 
Figure 2: Response surface plot for CMD of biosurfactant production (1) as a function of time and pH, (2) pH and 

FWC concentration 

 

Since linear effect of FWC concentration is significant which means that it can act as limiting nutrient source and 

variation in its concentration will change the product CMD. Increase of time has a negative effect on CMD. pH has 

a positive linear effect and negative quadratic effect on CMD of the produced biosurfactant, therefore pH changes 

alter the CMD. To achieve the highest CMD the time of 3.31 days, pH of 7.38 and FWC concentration of 73.97 

were suggested as optimal conditions to generate biosurfactant for further tests.   

3.3 Biosurfactant production assay  

Biosurfactant production over the course of 72 h was investigated by means of ST, E24% and production rate 

measurement. As expressed by decrease in surface tension, the Rhodococcus (P6-4P) started to produce 

biosurfactant after 12 hours of cultivation. Dramatic decrease was observed in surface tension until 24 hours and 

then it reached its minimum values at 31 (mN/m). The emulsification index increased continuously until it reached 

its maximum value after 30 h. The maximum production rate of biosurfactant has been observed after 60 h of 

cultivation which was 3.2 g/l.  

 

Figure 3: Times course of growth and biosurfactant production 
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A direct relationship between biosurfactant production and cell growth was observed during the biosurfactant 

production by Rhodococcus (P6-4P). The biosurfactant production with FWC started soon after inoculation and 

increased progressively, then remained constant during stationary phase and reached its maximum value at the end 

of the stationary phase. Cell growth stayed at stationary phase form 24 h to 60h of cultivation. Although it can be 

stated that FWC is a promising substrate for bacterial growth and biosurfactant production by the tested 

microorganism, it cannot be claimed that biosurfactant production by Rhodococcus (P6-4P) with FWC is a 

metabolic process and it is growth-associated, since biosurfactant production continued during the stationary phase.  

3.4 Critical micelle concentration determination  

When biosurfactants were produced in the water, the surface tension changes with increasing concentration of 

biosurfactants until it reaches the critical micelle concentration (CMC), at this point surface tension remains constant 

and biosurfactant molecules start to form aggregates like micelles because of the chemical interactions between the 

polar head groups and the non-polar tail groups including hydrophobic, Van der Waals' force, and hydrogen bonding   

(Mulligan, 2005; Schramm, 2000; Soberón-Chávez and  Maier, 2011). To evaluate biosurfactant content in the cell 

free broth, the CMC was determined by measuring the surface tension of the supernatant at various dilutions 

(Mulligan, Yong, and  Gibbs, 2001).  The CMC can be determined by plotting surface tension as a function of 

biosurfactant (or broth) concentration since the slope of the curve abruptly changes at the CMC. However, the 

abruptness is a function of both the particular surfactant and the presence of impurities in the system (Sheppard and  

Mulligan, 1987). The method of (Sheppard and  Mulligan, 1987) has been followed to determine CMC of the 

produced biosurfactant. In the Figure 4 the minimum effective concentration of biosurfactants corresponds to 0.0155 

g/ml. CMC varies with the structure of surfactants, pH, ionic strength, temperature, and the polarity of the solvent 

(Desai and  Banat, 1997). Improving the downstream process for biosurfactant extraction and reducing the 

impurities can reduce the CMC.   

 
Figure 4: Method for determining the critical micelle concentration (CMC) from measurements of surface tension of 

the broth after dilution with distilled water. A line is drawn from B to intersect the tangent E--F at 90 degrees 

 

Biochemical composition of the produced biosurfactant revealed that the total carbohydrate content in 1 g 

biosurfactant was 18.2 mg in term of D-glucose and the total lipid content was 48.6 mg in term of Palmitic acid in 

1g product. Certain species of Rhodococcus, such as Rhodococcus erythropolis are an important biosurfactant 

producer.  These species produce biosurfactants through the utilization of water-insoluble hydrocarbons. Most of the 

biosurfactants produced in this way are lipids containing trehalose. Although the diversity of Rhodococcus 

glycolipids has been reported, free fatty acids are rarely reported as major biosurfactant products of Rhodococcus 

erythropolis (Peng et al., 2007). The major component of produced biosurfactant was fatty acid and accounted for 

64% of total lipid composition.  
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Table 3: Lipid composition of the biosurfactant (percent of the total amount of lipid) 

% Lipid Composition in biosurfactant 

Hydrocarbons 2.71 

Steryl Esters/Wax Esters 0.00 

Ethyl Esters 0.79 

Methyl Esters 0.00 

Ethyl Ketones 1.99 

Methyl Ketones 0.00 

Glycerol Ethers 0.00 

Triacylglycerols 0.00 

Free Fatty Acids 63.84 

Alcohols 0.93 

Sterols 6.64 

Diacylglycerols 0.00 

Acetone Mobile Polar  Lipids 9.80 

Phospholipids 13.31 

 

Table 4: Fatty acid composition of the biosurfactant (percent of the total amount of fatty acids) 

% ID'ed Fatty acids in biosurfactant  

14:0 1.30 

Trimethyltridecanoic acid (TMTD) 1.04 

16:0 8.26 

16:1w7 1.77 

i17:0 1.29 

18:0 7.88 

18:1w9 5.36 

18:1w7 7.30 

18:2w4 3.22 

20:1w11 1.67 

20:1w9 23.06 

20:1w7 2.71 

22:1w11(13) 17.50 

22:1w9 4.86 

21:5w3 1.99 

24:1 1.72 

Sums 100.00 

 

3.5 Biosurfactant stability 

Surface tension of the produced biosurfactant was measured under wide range of temperature, pH and salinity to 

study the stability of the biosurfactant. The biosurfactant showed stability at all temperature ranges and salinity 

ranges and its surface tension changed slightly. At low pH, biosurfactant precipitated and surface tension was high. 

Biosurfactant stayed stable for 4 days when salt concentration was 5% (w/v) at 80 °C in the pH range of 6.5–10.5. 
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Stability studies demonstrated that the biosurfactant is stable under extreme temperature and salinity and wide range 

of pH. 

4. CONCLUSION  

This study investigated the novel use of FWC as substrates for the production of biosurfactant and the use of 

response surface methodology to study the influence of media condition on biosurfactant production, screening of 

experimental significant factors on media conditions, and optimization of biosurfactant production. The effort of 

using FWC as a cheap substrate and optimization of the production condition to enhance the biosurfactant 

production rate and decrease the cost can help to make the microbial surfactant competitive with synthetic 

surfactants. The significance of the present work lies in the fact that FWC can be used as a cheap and novel source 

of nutrient to produce biosurfactants. 
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