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CONCISELY SPECIFYING CHOICES
IN AN OUTCOME-SET FORM

Peter A. Streufert
Department of Economics

University of Western Ontario

Abstract. Von Neumann and Morgenstern (1944) specify both
nodes and choices as sets of outcomes. This outcome-set formu-
lation is extended to the infinite horizon by the discrete extensive
forms of Alós-Ferrer and Ritzberger (2013).

I propose to restrict such outcome-set forms with a new as-
sumption called “conciseness”. Conciseness requires that choices
be defined in an economical fashion. I find broad classes of infinite-
horizon forms that violate conciseness. Yet, I show that every
outcome-set form can be equivalently re-defined so as to satisfy
conciseness. Thus the assumption of conciseness can increase math-
ematical tractability at no cost to game theorists.

1. Introduction

1.1. Motivation

Von Neumann and Morgenstern (1944, Sections 9 and 10) specify

both nodes and choices as sets of outcomes. In particular, each node is

specified as the set of outcomes that remain conceivable at that point

in the tree. Then each choice is specified as a set of outcomes that can

remain conceivable after the choice is made.

Their formulation is limited to finite horizons. But recently, it has

been insightfully extended to the infinite horizon by the discrete ex-

tensive forms of Alós-Ferrer and Ritzberger (2013 henceforth AR). [The

Date: September 6, 2015. Keywords: extensive form, game form. JEL Classi-
fication: C72. Contact information: pstreuf@uwo.ca, 519-661-2111x85384, Depart-
ment of Economics, University of Western Ontario, London, Ontario, N6A 5C2,
Canada.
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2 1. Introduction

present paper always assumes discreteness. Still more general formula-

tions that do not satisfy discreteness are developed in Alós-Ferrer and

Ritzberger (2005, 2008).]

In this paper, I propose to restrict the AR definition with an ad-

ditional assumption known as conciseness. Conciseness requires that

choices are specified in an economical fashion. In particular, it rules

out choices that are not feasible from any node. Further, it prevents a

feasible choice from containing outcomes that are already inconceivable

at the node(s) from which the choice is feasible.

The AR definition implies conciseness in almost all finite-horizon

forms. Thus conciseness is almost redundant in the context of von

Neumann and Morgenstern (1944). In contrast, I show by example

that there are broad classes of infinite-horizon forms in which the AR

definition fails to imply conciseness. Thus conciseness is far from re-

dundant in the larger context of AR.

Nonetheless, I argue that conciseness imposes no loss of generality

that would be of concern to game theorists. I do this by showing that

every AR form can be equivalently re-specified in a way that satisfies

conciseness. This is the upshot of Theorems 1 and 2 below.

This paper contributes to a larger agenda. In essence, Streufert

(2015b) finds a triple equivalence between (a) the outcome-set forms

of AR that satisfy this paper’s conciseness, (b) the choice-set forms

of Streufert (2015a), and (c) the choice-sequence forms of Osborne

and Rubinstein (1994). This paper supports that larger agenda: By

justifying the assumption of conciseness, it shrinks the class of AR forms

under consideration, and thereby enables the construction of a one-to-

one correspondence between (a) and (b).

In addition, this paper reformulates the AR form to make it more

directly comparable to (b) and (c). This additional contribution is of

secondary importance.

1.2. Overview

Section 2. This section reformulates the definition of an AR form

in order [1] to conserve notation and [2] to make the concept more

directly comparable to (b) and (c) above. I call my reformulation an

“AR∗ outcome-set form”.

To be somewhat more precise, Theorem 1 nontrivially shows that

the class of AR∗ forms is equal to the class of AR forms except for two
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minor considerations. First, an AR∗ form assumes that every outcome

is contained in its own singleton (terminal) node. AR call this prop-

erty “completeness” and argue that it imposes no loss of generality of

concern to game theorists.

Second, an AR∗ form requires that simultaneous moves be specified

indirectly (by means of multiple information sets). In contrast, an AR

form also allows simultaneous moves to be specified directly (by having

multiple agents move at the same information set). Since the latter

does not extend the scope of strategic situations that can be modelled,

I disallow it so that I can conveniently identify agents with information

sets.

Sections 3 and 4. In order to introduce Sections 3 and 4, I need to

explain the difference between an AR∗ form (discussed above) and an

AR∗ “preform”. A preform specifies both nodes and choices as sets of

outcomes. In contrast, a form is a preform together with an allocation

of choices to players. Thus a preform can be regarded as a one-player

form. Section 3 concerns preforms, while Section 4 concerns forms.

Section 3.1 defines conciseness. In particular, a preform is said to be

“concise” if every outcome in every choice is contained in at least one

node from which the choice is feasible. Conciseness does two things.

First, it rules out choices that are not feasible from any node. Second,

it prohibits a somewhere-feasible choice from containing outcomes that

are outside of (i.e. already inconceivable from) all the nodes at which

the choice is feasible. I call such an outcome an “immaterial” member

of the choice.

Section 3.2 considers preforms with a finite horizon. In this context,

the definition of a preform implies conciseness except for one trivial

consideration.

Section 3.3 considers preforms with an infinite horizon. Here I find

(a) broad classes of preforms with many nowhere-feasible choices, and

(b) broad classes of preforms with many somewhere-feasible choices

that each have many immaterial outcomes. Thus conciseness is a sub-

stantial mathematical restriction.

Section 3.4 nonetheless argues that conciseness imposes no loss of

generality that would be of concern to game theorists. I do so by
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showing that any preform can be equivalently re-defined as a con-

cise preform. The conversion process naturally removes all nowhere-

feasible choices, and also removes all immaterial outcomes from every

somewhere-feasible choice.

Section 4 incorporates the above results about preforms into results

about forms. This is relatively straightforward. Proposition 4.1 shows

that conciseness is essentially redundant in the context of finite-horizon

forms. Then I show that there are broad classes of non-concise infinite-

horizon forms (this follows easily from Section 3.3 because a preform

can be seen as a one-player form). Finally, Theorem 2 shows that any

form can be equivalently re-defined as a concise form.

Concatenating Theorems 1 and 2. Theorems 1 and 2 can be concate-

nated to provide the central result stated casually in the fifth paragraph

of Section 1.1. By Theorem 1, any complete AR form without directly

specified simultaneous moves is an AR∗ form. By Theorem 2, any AR∗

form can be re-defined so as to satisfy conciseness. In this sense, the

class of AR forms can be reformulated and reduced to the class of concise

AR∗ forms. This tractability is the paper’s main contribution.

2. AR∗ forms

Sections 2.1, 2.2, and 2.3 together define AR∗ forms. Then Theorem 1

of Section 2.4 shows that an AR∗ form is essentially equivalent to an AR

form.

2.1. Trees specify nodes

Let W be an arbitrary set. Call a member w of the set W an outcome.

An AR∗ outcome-set tree is a pair (W, Ṅ) such that

Ṅ is a collection of subsets of W containing W but not ∅ ,(1a)

(∀ṅ1 6=ṅ2) ṅ1⊃ṅ2 or ṅ2⊃ṅ1 or ṅ1∩ṅ2=∅ ,(1b)

Ṅ ⊇ {{w}|w} ,(1c)

Ṅ ⊇ { ∩Ṅ∗ | Ṅ∗ is a nonempty chain in Ṅ } ,(1d)

and Ṅ ⊆ Ṫ∪{{w}|w} ,(1e)
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where Ṫ is defined by1

Ṫ := { ṅ | {ṅ[|ṅ[⊃ṅ} is finite } ,(2)

and {{w}|w} is the collection of singletons of the form {w}. A member

ṅ of the collection Ṅ is called a node.

(1a) requires that nodes are nonempty and that the set W itself is

a node. Thus (1a) implies that W 6= ∅. Accordingly, the smallest AR∗

trees have a singleton W and Ṅ = {W}.
For (1b), say that ṅ1 precedes ṅ2, and that ṅ2 succeeds ṅ1, whenever

ṅ1⊃ ṅ2. (1b) states that if two distinct nodes have a nonempty inter-

section, then either the first precedes the second or the second precedes

the first.

(1c) is called completeness (AR page 92). It requires that every single-

ton is a node. Define a terminal node to be a node without a successor.

Since ∅ /∈ Ṅ by (1a), (1c) immediately implies that the singleton nodes

coincide with the terminal nodes. Although the collection {{w}|w} of

terminal nodes {w} is in one-to-one correspondence with the set W of

outcomes w, the collection {{w}|w} and the set W are distinct.

For (1d), recall that a chain in Ṅ is a collection Ṅ∗ of nodes ṅ such

that for all distinct ṅ1 and ṅ2 in Ṅ∗ either ṅ1 ⊃ ṅ2 or ṅ2 ⊃ ṅ1. (1d)

requires that the intersection of every nonempty chain is a node. Since

a node cannot be empty by (1a), this implies that the intersection of

every nonempty chain of nodes is nonempty.

(1e) requires that every node either has a finite number of prede-

cessors or is a terminal node. The converse of (1e) is implied by the

definition of Ṫ and (1c). Hence every AR∗ tree satisfies

Ṅ = Ṫ∪{{w}|w} .(3)

For notational ease, let Ẋ denote the collection of nonterminal nodes.

In other words, define

Ẋ := Ṅr{{w}|w} .(4)

By replacing Ṅ in (4) with the right-hand side of (3) one obtains

Ẋ = Ṫr{{w}|w} .(5)

Thus Ẋ ⊆ Ṫ . Accordingly, I will denote an arbitrary nonterminal node

by ṫ∈ Ẋ.

1I use the superscript [ to suggest a predecessor, and the superscript ] to suggest
a successor.
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The following lemma shows that the class of AR∗ trees equals the

class of complete AR trees. Its proof is nontrivial because the definition

(1) of an AR∗ tree is some distance from AR Definitions 1 and 5.

The completeness appearing in the lemma is an insubstantial qual-

ification because of the discussion on AR page 92. That discussion, in

turn, is based upon the underlying result of Alós-Ferrer and Ritzberger

(2005, Proposition 10).

Lemma 2.1. (W, Ṅ) is an AR∗outcome-set tree (1) iff it is a complete

(1c) discrete game tree (AR Definitions 1 and 5 at N=Ṅ). (Proof B.4.)

In light of (3), it is useful to partition the class of AR∗ trees into the

three subclasses of trees satisfying

Ṫ ⊇ {{w}|w} ,(6a)

Ṫ∩{{w}|w} = ∅ , and(6b)

neither of the above .(6c)

[(6a) and (6b) together would imply {{w}|w}=∅, which contradicts

(1a)’s implication that W 6=∅.] A finite-horizon tree is a tree satisfying

(6a). Here every terminal node has a finite number of predecessors.

An infinite-horizon tree is a tree satisfying (6b) or (6c). Here there is

at least one terminal node that has an infinite number of predecessors.

Given (6b), every terminal node has an infinite number of predeces-

sors. Examples of such games appear in Section 3.3. Given (6c), some

terminal nodes have a finite number of predecessors and others have

an infinite number of predecessors.

Finally, let (W, Ṅ) be an AR∗ tree (1) with its Ṫ (2). Then define its

immediate predecessor function ṗ : Ṫr{W}→Ṫ by

ṗ(ṫ) := min{ṫ [|ṫ [⊃ṫ} .(7)

Lemma A.1 shows that the function ṗ is well-defined. (The analogous

claim on AR page 80 is immediate.) Further, Lemma A.3 shows (a)

that the function ṗ is onto the set Ẋ of nonterminal nodes, and (b)

that every nonterminal node ṫ∈Ẋ is partitioned by the set ṗ−1(ṫ) of

its immediate successors. (The first paragraph of Remark B.6 observes

that the analogous proposition in AR contains a minor mistake.)
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2.2. Preforms specify choices

An AR∗ outcome-set preform is a triple (W, Ṅ, Ċ) such that

(W, Ṅ) is an AR∗ outcome-set tree (1) ,(8a)

Ċ is a collection of nonempty subsets of W ,(8b)

(∀ṫ∈Ẋ) ṗ−1(ṫ) = { ṫ∩ċ | ċ∈Ḟ (ṫ) } ,(8c)

(∀ṫ∈Ẋ) the members of Ḟ (ṫ) are disjoint , and(8d)

(∀ṫ1, ṫ2) Ḟ (ṫ1)=Ḟ (ṫ2) or Ḟ (ṫ1)∩Ḟ (ṫ2)=∅ ,(8e)

where Ṫ , Ẋ, and ṗ are derived from (W, Ṅ) by (2), (4), and (7), and

where Ḟ is defined by

Ḟ := { (ṫ, ċ) | ċ 6⊇ṫ and (∃ṫ ]∈ṗ−1(ṫ)) ċ⊇ṫ ] } .(9)

A member ċ of the collection Ċ is called a choice. Ḟ is called the

feasibility correspondence. Accordingly Ḟ (ṫ) is called the set of choices

that are feasible from ṫ.

(8a) states that a preform incorporates a tree. (8b) says that choices

(like nodes) are nonempty sets of outcomes. (8c) states that the im-

mediate successors of a node are the intersections of the node with

the choices that are feasible from that node. This implies that the

collection Ẋ of nonterminal nodes equals the domain Ḟ−1(Ċ) of the

feasibility correspondence Ḟ (Lemma A.4). (8d) states that the collec-

tion of feasible choices at any node consists of choices that are disjoint

from one another.

(8e) enables an implicit specification of agents (i.e. information sets).

This implicit specification is analogous to that of AR (page 82), and the

idea itself can be traced back to Alós-Ferrer and Ritzberger (2005, page

791). In particular, let an agent be a member of

Ḣ := { Ḟ−1(ċ) | ċ } .(10)

Thus each agent Ḟ−1(ċ) is the collection of nodes from which a choice

ċ is feasible. By Lemma A.5, (8e) is equivalent to

(∀ċ1, ċ2) Ḟ−1(ċ1)=Ḟ−1(ċ2) or Ḟ−1(ċ1)∩Ḟ−1(ċ2)=∅ .

Thus (8e) assures that agents are disjoint from one another. Further,

∪Ḣ = ∪{ Ḟ−1(ċ) | ċ } = Ḟ−1(Ċ) = Ẋ ,

where the last equality holds by Lemma A.4. Thus, by the last two

sentences, every nonterminal node is assigned to exactly one agent.
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2.3. Forms specify players

Let I be an arbitrary set, and call i∈ I a player. An AR∗ outcome-set

form is a triple (W, Ṅ, (Ċi)i) such that

(W, Ṅ,∪iĊi) is an AR∗ outcome-set preform (8) ,(11a)

(∀i 6=j) Ċi∩Ċj∩Ḟ (Ẋ) = ∅ , and(11b)

(∀i)(∀ṫ∈Ẋ) Ḟ (ṫ)⊆Ċi or Ḟ (ṫ)∩Ċi=∅ .(11c)

where Ṫ , Ẋ, and Ḟ are derived from (W, Ṅ,∪iĊi) by (2), (4), and (9).

A form uses the individual choice collections Ċi to assign a preform’s

choices to individual players i. Accordingly, a preform can be under-

stood as a single-player form. To be precise, (W, Ṅ, Ċ) is a preform iff

(W, Ṅ, (Ċ)) is a form, provided that (Ċi)i = (Ċ) is taken to mean that

I = {1} and Ċ1 = Ċ.

For (11b), say that a choice ċ is nowhere-feasible if Ḟ−1(ċ) = ∅ and

that it is somewhere-feasible if Ḟ−1(ċ) 6= ∅. By Lemma A.4, Ḟ (Ẋ) is

the set of somewhere-feasible choices. Accordingly, (11b) states that

a somewhere-feasible choice can be in no more than one Ċi. Since

Ḟ (Ẋ) ⊆ ∪iĊi by the definition of Ḟ , this implies that every somewhere-

feasible choice is in exactly one Ci.

For (11c), define

(Ḣi)i := ({ Ḟ−1(ċ) | ċ∈Ċi })i .

Each Ḣi is the set of agents (10) assigned to player i. Lemma A.6 uses

(11c) to show that a nonempty agent can be assigned to no more than

one Ḣi. Further,

∪iḢi = ∪i{ Ḟ−1(ċ) | ċ∈Ċi } = { Ḟ−1(ċ) | ċ∈Ċ } = Ḣ ,

where the last equality holds by (10). Thus, by the last two sentences,

every nonempty agent is in exactly one Ḣi.
2

2.4. Equality with AR forms

Theorem 1 will show that the class of AR∗ forms is equal to the class

of AR forms except for two minor considerations. First, AR∗ forms are

assumed to be complete. This restriction is insubstantial, as discussed

in the paragraph before Lemma 2.1.

2All agents are nonempty if every choice is somewhere-feasible. This is one
consequence of conciseness (below).
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Second, an AR∗ form requires that simultaneous moves be specified

indirectly (that is, by means of multiple information sets). In contrast,

an AR form also allows simultaneous moves to be specified directly

(that is, by having multiple agents move at the same information set).

Ritzberger (2002, pages 103-104) carefully discusses these two alterna-

tives in a framework similar to this one. Further, AR Examples 8 and

9 convincingly illustrate some of the advantages of direct specification.

However, since direct specification does not expand the scope of

strategic situations that can be modelled, I have chosen to disallow

it in order to conveniently identify agents with information sets. For-

mally, an AR form is said to be without directly specified simultaneous

moves if

J̈ is singleton-valued ,(12)

where the set-valued function J̈ is defined by AR Definition 6 (DEF.ii)

(symbols with two dots are taken directly from AR, and most such

symbols are confined to Appendix B).

Theorem 1. (W, Ṅ, (Ċi)i) is an AR∗ outcome-set form (11) iff it

is a complete (1c) discrete extensive form (AR Definition 6 at N=Ṅ

and (Ci)i=(Ċi)i) without directly specified simultaneous moves (12).

(Proof B.10.)

The proof of Theorem 1 is nontrivial, in part because an AR∗ form

is defined in terms of the feasibility correspondence Ḟ (9) while an AR

form is defined in terms of the extended predecessor correspondence

“P ” (AR pages 81–82). Lemma B.7 plays a key role in this conversion.

3. Concise AR∗ preforms

3.1. Definition

Let (W, Ṅ, Ċ) be an AR∗ preform (8) and let Ḟ be its feasibility

correspondence (9). Then (W, Ṅ, Ċ) is said to be concise iff

(∀ċ) ċ ⊆ ∪Ḟ−1(ċ) .(13)

Thus conciseness means that every choice is covered by the collection

of nodes from which it is feasible.

Conciseness can be understood as a pair of restrictions. To see

the first restriction, recall that every choice ċ is nonempty by (8b).

Thus conciseness implies that every choice has a nonempty collection
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Ḟ−1(ċ) of nodes from which it is feasible. In other words, it prohibits

nowhere-feasible choices. Examples of nowhere-feasible choices appear

in Section 3.2 (if W∈ Ċ) and in Section 3.3 (in Example 2’s family of

examples).

To see the second restriction, consider a somewhere-feasible choice.

In other words, consider a choice ċ for which Ḟ−1(ċ) is nonempty. Then

consider any ṫ ∈ Ḟ−1(ċ). By definition, ċ ∈ Ḟ (ṫ), and thus ċ∩ṫ is an im-

mediate successor of ṫ by (8c). Notice that the outcomes in ċrṫ are im-

material to this construction. Accordingly, the outcomes in ċr∪Ḟ−1(ċ)
are immaterial to such a construction at any node in Ḟ−1(ċ). To for-

malize this, let ċ∩∪Ḟ−1(ċ) be the set of material outcomes in ċ, so

that ċ r∪Ḟ−1(ċ) becomes the set of immaterial outcomes in ċ. Concise-

ness implies that somewhere-feasible choices cannot contain immaterial

outcomes. Examples of immaterial outcomes appear in Section 3.3 (in

Example 3’s family of examples).

It will often be useful to have a formal statement of this two-part

characterization of conciseness. First, Lemma A.4 implies that Ḟ (Ẋ) is

the collection of somewhere-feasible choices. Thus the equality Ḟ (Ẋ) =

Ċ is equivalent to the absence of nowhere-feasible choices. Second,

define the material-part function M, from the domain Ḟ (Ẋ), by

M(ċ) = ċ ∩ ∪F−1(ċ) .(14)

Accordingly, the statement (∀ċ∈Ḟ (Ẋ)) M(ċ) = ċ is equivalent to the

absence of immaterial outcomes in somewhere-feasible choices. The

following lemma puts these two parts together. Its proof is easy.

Lemma 3.1. Suppose (W, Ṅ, Ċ) is an AR∗ outcome-set preform (8)

with its Ẋ (4), Ḟ (9), and M (14). Then (W, Ṅ, Ċ) is concise (13) iff

Ċ = Ḟ (Ẋ) and (∀ċ) M(ċ) = ċ. (Proof C.1.)

3.2. Almost all finite-horizon preforms are concise

Lemma 3.2. Suppose that (W, Ṅ, Ċ) is a finite-horizon (6a) AR∗

outcome-set preform (8). Then (W, Ṅ, Ċ) is concise (13) iff W /∈ Ċ.

(Proof C.3.)

Conciseness implies W /∈ Ċ regardless of the finite-horizon assump-

tion. In other words, any preform (W, Ṅ, Ċ) with W ∈ Ċ is not concise.
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To see this, simply note that in any such preform, W is a nowhere-

feasible choice because

Ḟ−1(W ) = { ṫ | W 6⊇ṫ and (∃ṫ ]∈ṗ−1(ṫ)) W⊇ṫ ] } = ∅ .(15)

The first equality follows from the definition (9) of Ḟ , and the second

follows from the impossibility of W 6⊇ṫ.
The converse is more difficult and uses the finite-horizon assumption.

Essentially, deriving conciseness requires showing that every w in every

ċ belongs to some node from which ċ is feasible. Consider the chain

consisting of {w} and all its predecessors. It can be shown that the

desired node is the immediate predecessor of the largest member of the

chain that is yet a subset of ċ. Accordingly, if {w} is the only member

of the chain that is a subset of ċ, the desired node is the immediate

predecessor of {w}. The existence of this immediate predecessor is im-

plied by the finite-horizon assumption. However, this argument cannot

be extended to the infinite horizon, since there, a terminal node {w}
might not have an immediate predecessor.

3.3. Examples of non-concise infinite-horizon preforms

This subsection exhibits numerous examples of non-concise infinite-

horizon preforms. Some have many nowhere-feasible choices. Others

have many somewhere-feasible choices that each have many immaterial

outcomes. These examples are important because they demonstrate

that violations of conciseness are liberally allowed by the conditions

(8) that define an AR∗ preform.

Throughout this subsection and all its examples, let W 0 be the Can-

tor set, as defined for instance in Rudin (1976, page 41). The Cantor

set is the set of real numbers in [0, 1] that can be expressed in base 3

without the use of the digit 1.

This paragraph merely defines a convenient way to specify subsets

of W 0. First, let S be the set consisting of (a) the empty sequence
{} and (b) all finite nonempty sequences consisting of 0’s and 2’s. For

notational ease, write a nonempty sequence in S without punctuation.

For example, write (2, 0) as 20. Then define D :S→P(W 0) by (a) let-

ting D({}) = W 0 and (b) for each s∈Sr{{}} letting D(s) be the set of

numbers in W 0 that have a base-3 expansion beginning with (decimal)
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s. For example,

D(20) = [.200̄, .202̄]∩W 0 = [.20, .21]∩W 0

(where all numbers are expressed in base 3). Notice that D is injective.

Hence, D is a bijection from its domain S onto its range {D(s)|s}.
Then let

Ṅ0 := {D(s)|s} ∪ {{w}|w∈W 0} ,

and call (W 0, Ṅ0) the Cantor-set tree. Lemma D.1 shows [1] that the

Cantor-set tree is an AR∗ tree, [2] that its Ṫ 0 and Ẋ0 are both equal to

{D(s)|s}, [3] that its ṗ0 has domain Ṫ 0r{W 0} = {D(s)|s 6={}}, and [4]

that this ṗ0 satisfies

(∀s 6={}) ṗ0(D(s)) = D(s−)

where s− is the sequence derived from s 6={} by omitting its last com-

ponent. For example, D(20) is an element of Ṫ 0r{W 0}, and

ṗ0(D(20)) = D(20−) = D(2) .

The rest of this subsection endows the Cantor-set tree (W 0, Ṅ0) with

various choice collections Ċ in order to create various AR∗ preforms of

the form (W 0, Ṅ0, Ċ). The discussion centers on three relatively simple

examples. Example 1 is concise. Example 2 is non-concise because of

a nowhere-feasible choice. Example 3 is non-concise because of an

immaterial outcome in a somewhere-feasible choice.

Example 1. Suppose the choice collection is {D(s)|s 6={}}. Lemma D.4

shows that the triple

(W 0, Ṅ0, {D(s)|s 6={}} )

is a concise AR∗ preform. The lemma also shows that this preform’s Ḟ 1

(the superscript is for Example 1) is defined by

(∀s) Ḟ 1(D(s)) = { D(s⊕0), D(s⊕2) }

where ⊕ is the concatenation operator. For instance,

Ḟ 1(D(2)) = { D(20), D(22) } .

Thus the feasible choices at the node D(2) are identical to the node’s

immediate successors. Every other nonterminal node D(s) is similar.

Example 2. Suppose the choice collection is {D(s)|s 6={}}∪ {{1}}. In

other words, take the choice collection {D(s)|s 6={}} of Example 1, and
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introduce the choice {1}. (Recall that 1∈W 0 since 1 = .2̄ .) Lemma D.7

shows that the triple

(W 0, Ṅ0, {D(s)|s 6={}}∪{{1}} )

is an AR∗ preform. The proof is nontrivial. The lemma also shows that

the preform is not concise because {1} is a nowhere-feasible choice. To

see this, note that the preform’s Ḟ 2 (the superscript is for Example 2)

satisfies

(∀ċ) (Ḟ 2)−1(ċ) = { ṫ | ċ 6⊇ṫ and (∃ṫ ]∈(ṗ0)−1(ṫ)) ċ⊇ṫ ] }

by (9). By the last inclusion, every somewhere-feasible choice ċ must

contain at least one node ṫ ] with a finite number of predecessors. In

this example, the choice {1} does not subsume a node with a finite

number of predecessors because every such node is an infinite set of

the form D(s). Thus {1} is nowhere-feasible. Thus the preform is not

concise.

This second example is representative of a large class of non-concise

preforms. In particular, let Ċ+ be any nonempty collection of nonempty

countable subsets of W 0. The previous paragraph considered the spe-

cial case Ċ+ = {{1}}. Alternatively, Ċ+ could be the uncountable

collection {{w}|w∈W 0}. Or, Ċ+ could be the uncountable collection

consisting of all two-element subsets of W 0. For any such collection

Ċ+, Lemma D.6 shows that

(W 0, Ṅ0, {D(s)|s 6={}}∪Ċ+)

is a non-concise AR∗ preform in which all the members of Ċ+ are

nowhere-feasible. The lemma’s proof establishes nowhere-feasibility in

a manner similar to the previous paragraph: by assumption, each mem-

ber of Ċ+ is countable, and thus, it cannot subsume an uncountably

infinite set of the form D(s).

Example 3. Suppose Ċ is {D(s)|s/∈{{}, 22}}∪ {D(22)∪{.02}}. In

other words, take the choice collection {D(s)|s 6={}} of Example 1, and

replace the choice D(22) with the choice D(22)∪{.02}. Lemma D.3(b)

shows that the triple

(W 0, Ṅ0, {D(s)|s/∈{{}, 22}}∪ {D(22)∪{.02}} )

is an AR∗ preform. The proof is nontrivial.
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Further, Lemma D.3(a) shows that this preform’s Ḟ 3 satisfies

Ḟ 3(D(2)) = { D(20), D(22)∪{.02} } ,(16a)

{D(2)} = (Ḟ 3)−1(D(20)) , and(16b)

{D(2)} = (Ḟ 3)−1(D(22)∪{.02}) .(16c)

In accord with (16a) and (8c), the immediate successors of D(2) are

D(2)∩ D(20) = D(20) and

D(2)∩ (D(22)∪{.02}) = D(22) .

In this fashion, the choice D(20) restricts the set of conceivable outcomes

from D(2) to D(20), and similarly, the choice D(22)∪{.02} restricts the

set of conceivable outcomes from D(2) to D(22). However, .02 is an

immaterial outcome in the choice D(22)∪{.02} because (a) it does not

belong to (i.e. is inconceivable from) D(2) and (b) D(2) is, by (16c), the

only node from which D(22)∪{.02} is feasible. Such immaterial out-

comes are prohibited by conciseness. Hence the preform is not concise.

This example is representative of a large class of non-concise pre-

forms. In particular, let E be any set-valued function from {s|s 6={}}
such that [1] E(0) = E(2) = ∅, and [2] for every s with at least two

components, E(s) is a countable subset of D(	s), where 	s is the se-

quence that is obtained from s by changing its first component. For

example, one could set E(22) = {.02} and E(s) = ∅ everywhere else.

Note that E(22) ⊆ D(02) = D(	22), as the definition of E requires. (This

specification of E leads to Example 3.) A second alternative would be

to set

E(22) = {.02, .022, .0222, .02222, ...}(17)

and E(s) = ∅ everywhere else. Again, E(22) ⊆ D(02) = D(	22). A

third alternative would be to set

E(s) = { .	s, .	s⊕2, .	s⊕22, 	s⊕222, ...}(18)

at every s with at least two components, and to set E(0) = E(2) = ∅
(for instance, the E(22) specified by (18) equals the E(22) specified by

(17)). Again, for every s with at least two components, E(s) ⊆ D(	s),

as the definition of E requires.

Lemma D.2 shows that, for any such function E, (a) the triple

(W 0, Ṅ0, {D(s)∪E(s)|s 6={}} )
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is an AR∗ preform and (b) at every s, E(s) is the set of immaterial

outcomes in the choice D(s)∪E(s). Consequently the preform fails to be

concise if at least one E(s) is nonempty. Proving (a) is a nontrivial task.

In contrast, proving (b) is relatively easy. Consider any nonempty s.

Essentially, E(s) ⊆ D(	s) implies that every element of E(s) is outside

the node ṗ0(D(s)) from which D(s)∪E(s) is feasible. Because of this,

every element of E(s) is an immaterial outcome in the choice D(s)∪E(s).

Hence the non-emptiness of any E(s) implies non-conciseness.

3.4. Conciseness is costless to game theorists

The previous subsection showed by example that conciseness is a con-

siderable mathematical restriction. In contrast, the following lemma

shows that conciseness imposes no loss of generality that would con-

cern game theorists. It does so by showing that every preform can

be naturally and equivalently re-defined as a concise preform. This is

explained in detail after the lemma.

Lemma 3.3. Let (W, Ṅ, Ċ) be an AR∗ outcome-set preform (8) with

its Ṫ (2), Ẋ (4), and Ḟ (9). To re-define this preform, let ĊM :=

M(Ḟ (Ẋ)), where M is defined by (14). Then the following hold.

(a) (W, Ṅ, ĊM) is a concise (13) AR∗ outcome-set preform.

(b) M is a bijection from Ḟ (Ẋ) onto ĊM, and

(c) { (ṫ, M(ċ)) | (ṫ, ċ)∈Ḟ } equals the Ḟ M (9) from (W, Ṅ, ĊM).

(Proof C.7.)

First consider the definition of the new choice collection ĊM in the

lemma’s second sentence. This definition could be restated as

ĊM = { M(ċ) | ċ∈Ḟ (Ẋ) } .

This definition takes Ċ to ĊM into two steps. First, the original choices

in ṄrḞ (Ẋ) are excluded. In other words, all nowhere-feasible choices

are removed. Second, every original choice ċ∈Ḟ (Ẋ) is converted to M(ċ).

In other words, every somewhere-feasible choice loses all its immaterial

outcomes.

The examples of Section 3.3 illustrate this two-step definition. In Ex-

ample 2’s family, the first step removes all the nowhere-feasible choices

in Ċ+, and the second step is vacuous. In this fashion, each preform

in Example 2’s family is converted to Example 1. (Full details are in

Lemma D.6 and Example 1’s definition.) Meanwhile, in Example 3’s
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family, the first step is vacuous, and the second step removes all the im-

material outcomes from every somewhere-feasible choice. In particular,

each choice D(s)∪E(s) becomes M(D(s)∪E(s)) = D(s). In this fashion,

each preform in Example 3’s family is converted to Example 1. (Full

details are in Lemma D.2 and Example 1’s definition.)

Part (a) of Lemma 3.3 shows that this two-step procedure will con-

vert any preform into a concise preform. In other words, it shows [1]

that a preform remains a preform after its nowhere-feasible choices and

immaterial outcomes have been removed, and [2] that the resulting pre-

form is concise. For instance, all of the above examples are converted

to Example 1 (by the previous paragraph), and Example 1 is a concise

preform (by Lemma D.4).

Parts (b) and (c) of Lemma 3.3 describe the sense in which the orig-

inal preform and the new preform are “equivalent”. In particular, part

(b) shows that there is a one-to-one correspondence between the col-

lection Ḟ (Ẋ) ⊆ Ċ of original somewhere-feasible choices and the col-

lection ĊM of new choices. Then part (c) relates the original feasibility

correspondence Ḟ to the new feasibility correspondence Ḟ M. Although

all the parts of the lemma are natural, they are not easily proved.

4. Concise AR∗ forms

Let a concise AR∗ outcome-set form be an AR∗ outcome-set form (11)

whose preform (11a) is concise (13). In other words, a concise AR∗

outcome-set form is a triple (W, Ṅ, (Ċi)i) such that

(W, Ṅ,∪iĊi) is a concise (13) AR∗ outcome-set preform (8) ,(19a)

(∀i 6=j) Ċi∩Ċj∩Ḟ (Ẋ) = ∅ , and(19b)

(∀i)(∀ṫ∈Ẋ) Ḟ (ṫ)⊆Ċi or Ḟ (ṫ)∩Ċi=∅ ,(19c)

where Ṫ , Ẋ, and Ḟ are derived from (2), (4), and (9).

The following proposition shows that conciseness is essentially vac-

uous for finite-horizon forms. This proposition follows easily from

Lemma 3.2, which concerned preforms rather than forms.

Proposition 4.1. Suppose that (W, Ṅ, (Ċi)i) is an AR∗ outcome-set

form (8) with a finite horizon (6a). Then (W, Ṅ, (Ċi)i) is a concise AR∗

outcome-set form (19) iff W /∈ ∪iĊi. (Proof C.8.)

Recall the many non-concise infinite-horizon preforms of Section 3.3.

Since a preform is a one-player form, these preforms also show that
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there are many non-concise infinite-horizon forms. These examples are

important because they demonstrate that violations of conciseness are

liberally allowed by the conditions (11) that define an AR∗ form. Hence,

by Theorem 1, such violations of conciseness are liberally allowed by

the definition of an AR form.

Nevertheless, the following theorem shows that conciseness imposes

no loss of generality that would concern game theorists. It does so by

showing that every form can be naturally and equivalently re-defined

as a concise form. The theorem itself is an extension of Lemma 3.3,

which concerned preforms rather than forms. Most of the work was

done there, and the discussion following that lemma can be readily

adapted to interpret the theorem here.

Theorem 2. Let (W, Ṅ, (Ċi)i) be an AR∗ outcome-set form (11), with

its Ṫ (2), Ẋ (4), and Ḟ (9). To re-define this form, let

( ĊM
i )i := ( M(Ċi∩Ḟ (Ẋ)) )i ,

where M is defined by (14). Then the following hold.

(a) (W, Ṅ, (ĊM
i )i) is a concise AR∗ outcome-set form (19).

(b) M is a bijection from Ḟ (Ẋ) onto ∪iĊ
M
i .

(c) { (ṫ, M(ċ)) | (ṫ, ċ)∈Ḟ } equals the Ḟ M (9) from (W, Ṅ, (ĊM
i )i).

(Proof C.9.)

Finally, I include a useful but very minor result. The following char-

acterization of a concise form is slightly simpler than its definition (19).

Specifically, (19b) can be simplified to (20b) in the presence of concise-

ness.

Proposition 4.2. (W,N, (Ċi)i) is a concise AR∗ outcome-set form

(19) iff

(W, Ṅ,∪iĊi) is a concise (13) AR∗ outcome-set preform (8) ,(20a)

(∀i6=j) Ċi∩Ċj = ∅ , and(20b)

(∀i)(∀ṫ∈Ẋ) Ḟ (ṫ)⊆Ċi or Ḟ (ṫ)∩Ċi=∅ ,(20c)

where Ṫ , Ẋ, and Ḟ are derived from (2), (4), and (9). (Proof C.10.)
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This appendix provides some basic lemmata for the AR∗ framework.

Most of these lemmata are discussed briefly in Section 2, and the re-

mainder are used in proving the ones that are discussed there. None

of the lemmata rely on AR, and none of them refer to conciseness.

A.1. For AR∗ trees

Lemma A.1. If (W, Ṅ) satisfies (1a) and (1b) in the definition of

an AR∗ outcome-set tree, then ṗ (7) is well-defined.

Proof. Define Ṫ (2), and take any ṫ∈ Ṫr{W}.
This paragraph makes three observations about {ṫ[|ṫ[⊃ṫ}. First,

{ṫ[|ṫ[⊃ṫ} is finite by ṫ∈ Ṫ and the definition of Ṫ . Second, {ṫ[|ṫ[⊃ṫ} is

nonempty because ṫ 6=W by assumption and thus W is an element of

the set by (1a). Third, {ṫ[|ṫ[⊃ṫ} is a chain. To see this, (a) take any

two distinct ṫ1 and ṫ2 in {ṫ[|ṫ[⊃ṫ}, (b) note that ṫ1∩ṫ2 6=∅ since both

sets subsume ṫ, and (c) conclude that one of ṫ1 and ṫ2 precedes the

other by (1b).

By the previous paragraph, {ṫ[|ṫ[⊃ṫ} is a finite nonempty chain.

Hence its minimum exists and is an element of Ṫ . 2

Lemma A.2. Suppose (W, Ṅ) is an AR∗ outcome-set tree (1) with

its Ṫ (2), Ẋ (4), and ṗ (7). Then if ṫ∈Ẋ is such that ṫ3w, there exists

ṫ]∈ṗ−1(ṫ) such that ṫ]3w.

Proof. Suppose ṫ∈Ẋ is such that ṫ3w. Since ṫ3w, we have ṫ⊇{w}.
Thus, by ṫ∈Ẋ and the definition of Ẋ, we have ṫ⊃{w}.

On the one hand, suppose there is not an ṅ+ such that ṫ⊃ṅ+⊃{w}.
The last two sentences imply {w}∈ Ṫr{W}, which is the domain of ṗ.

The last three sentences imply ṫ = ṗ({w}). Thus we may let ṫ] be {w}.
On the other hand, suppose there is a ṅ+ such that ṫ⊃ṅ+⊃{w}. Let

Ṅ+ := { ṅ | ṫ⊃ṅ⊇ṅ+ } .

The remainder of this paragraph makes three observations about Ṅ+.

First, Ṅ+ is nonempty because it contains ṅ+. Second, Ṅ+ is a chain.

To see this, [a] take two distinct elements ṅ1 and ṅ2 of Ṅ+, [b] note

that their intersection contains w since w∈ṅ+, and [c] conclude that

either ṅ1⊃ṅ2 or ṅ2⊃ṅ1 holds by (1b). Third, Ṅ+ is finite. To see this,

note [a] that ṅ+ ∈ Ẋ by virtue of its being a predecessor of {w}, [b]
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that this implies ṅ+ ∈ Ṫ by (5), and [c] that this implies n+ has a finite

number of predecessors by the definition of Ṫ .

By the previous paragraph, Ṅ+ is a nonempty finite chain. Hence it

contains its own union ∪Ṅ+. Hence by the definitions of Ṅ+ and ṅ+,

ṫ ⊃ ∪Ṅ+ ,(21a)

(/∃ṅ) ṫ⊃ ṅ⊃∪Ṅ+ , and(21b)

∪N+⊇n+⊃{w} .(21c)

(21a,b) imply ∪Ṅ+ ∈ Ṫr{W}, which is the domain of ṗ. (21a,b) and

the last sentence imply ṫ = ṗ(∪Ṅ+). This and (21c) allow us to let ṫ]

be ∪Ṅ+. 2

Lemma A.3. Suppose (W, Ṅ) is an AR∗ outcome-set tree (1) with

its Ṫ (2), Ẋ (4), and ṗ (7). Then the following hold.

(a) ṗ is onto Ẋ.

(b) (∀ṫ∈Ẋ) ṗ−1(ṫ) is a partition of ṫ that has at least two elements.

Proof. (a). To see that ṗ is into Ẋ, take any ṫ∈ Ṫr{W}. By

Lemma A.1, ṗ(ṫ) exists. Further, ṗ(ṫ) ⊃ ṫ by the definition of ṗ. Thus

ṗ(ṫ) ∈ Ẋ by the definition of Ẋ.

To see that ṗ is onto Ẋ, take any ṫ∈ Ẋ. Since ṫ is a node, there

exists w∈ ṫ. Thus Lemma A.2 implies the existence of a ṫ] ∈ ṗ−1(ṫ).
(b). Take any ṫ∈Ẋ. On the one hand, the definition of ṗ implies

that every ṫ]∈ṗ−1(ṫ) satisfies ṫ ⊃ ṫ]. Hence ṫ ⊇ ∪ṗ−1(ṫ). On the other

hand, Lemma A.2 implies that for every w∈ṫ there exists a ṫ] ∈ ṗ−1(ṫ)

such that w∈ṫ]. Hence ṫ ⊆ ∪ṗ−1(ṫ). By putting these two together we

obtain

ṫ = ∪ṗ−1(ṫ).(22)

This paragraph shows that ṫ is partitioned by ṗ−1(ṫ). Given (22), it

remains to show that the elements of ṗ−1(ṫ) are nonempty and disjoint.

Each element of ṗ−1(ṫ) in nonempty simply because each is a node and

nodes are nonempty by (1a). To show disjointness, suppose that ṫ1

and ṫ2 were two distinct elements of ṗ−1(ṫ) that are not disjoint. (1b)

would then imply that either ṫ1⊃ṫ2 or ṫ1⊃ṫ2. Without loss of generality

assume ṫ1⊃ṫ2. Then ṫ⊃ṫ1⊃ṫ2, where the first inclusion follows from

ṫ1∈ṗ−1(ṫ) and the second follows from the previous sentence. This

contradicts ṫ2∈ṗ−1(ṫ).
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Finally, this paragraph shows that ṗ−1(ṫ) contains at least two ele-

ments. Since ṫ is nonempty simply because it is a node, (22) implies

the existence of some ṫ1 ∈ ṗ−1(ṫ). By the definition of ṗ, ṫ⊃ṫ1, and

thus, we may take w ∈ ṫrṫ1. By (22) again, there exists ṫ2 ∈ ṗ−1(ṫ)

such that w∈ṫ2. Thus since w/∈ṫ1 by the definition of ṫ1, ṫ1 and ṫ2 are

distinct. 2

A.2. For AR∗ preforms

Lemma A.4. Suppose (W, Ṅ) is an AR∗ outcome-set tree (1) with

its Ẋ (4). Let Ċ be any set, and derive Ḟ by (9). Then the following

hold.

(a) Ḟ−1(Ċ) ⊆ Ẋ.

(b) Ḟ−1(Ċ) = Ẋ if (W, Ṅ, Ċ) satisfies (8c) in the definition of an

AR∗ outcome-set preform.

Proof. Also derive Ṫ (2) and ṗ (7).

(a). Take any ṫ in the domain Ḟ−1(Ċ) of Ḟ . Then there exists a ċ

such that (ṫ, ċ) ∈ Ḟ . Hence the definition of Ḟ implies the existence

of an ṫ ] ∈ ṗ−1(ṫ). Hence the definition of ṗ implies ṫ ] ⊂ ṫ. Hence the

definition of Ẋ implies ṫ ∈ Ẋ.

(b). I need only show the converse of part (a). Accordingly, take any

ṫ ∈ Ẋ. Then by Lemma A.3(a), ṗ−1(ṫ) is nonempty. Hence by (8c),

Ḟ (ṫ) is nonempty. Hence ṫ is in the domain Ḟ−1(C) of Ḟ . 2

Lemma A.5. If Ḟ ⊆ Ṫ×Ċ, the following are equivalent.

(a) (∀ċ, ċ′) Ḟ−1(ċ)=Ḟ−1(ċ′) or Ḟ−1(ċ)∩Ḟ−1(ċ′)=∅.

(b) (∀ṫ, ṫ′) Ḟ (ṫ)=Ḟ (ṫ′) or Ḟ (ṫ)∩Ḟ (ṫ′)=∅.

Proof. Every t, c, and F in this proof should have a dot over it.

I have removed the dots to make reading easier. By inspection, the

following seven statements are equivalent.

(∃c, c′) F−1(c) 6= F−1(c′) and F−1(c)∩F−1(c′) 6= ∅.(23a)

(∃c1, c2) F−1(c2)rF−1(c1) 6= ∅ and F−1(c2)∩F−1(c1) 6= ∅.

(∃c1, c2, t1, t2) t1∈F−1(c2), t1 /∈F−1(c1), t2∈F−1(c2), and t2∈F−1(c1).
(∃c1, c2, t1, t2) (t1, c1)/∈F and {(t1, c2), (t2, c1), (t2, c2)}⊆F.

(∃c1, c2, t1, t2) c1∈F (t2), c1 /∈F (t1), c2∈F (t2), and c2∈F (t1).
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(∃t1, t2) F (t2)rF (t1) 6= ∅ and F (t2)∩F (t1) 6= ∅.

(∃t, t′) F (t) 6= F (t′) and F (t)∩F (t′) 6= ∅.(23b)

(23a) is the negation of (a), and (23b) is the negation of (b). 2

A.3. For AR∗ forms

Lemma A.6. Suppose that (W, Ṅ, (Ċi)i) is an AR∗ outcome-set form

(11) with its Ḟ (9). Then the members of ({ Ḟ−1(ċ)6=∅ | ċ∈Ċi })i are

disjoint.

Proof. Suppose there exists i1 6= i2, ċ1 ∈ Ċi1 , and ċ2 ∈ Ċi2 such that

Ḟ−1(ċ1)∩Ḟ−1(ċ2) 6= ∅. Take ṫ ∈ Ḟ−1(ċ1)∩Ḟ−1(ċ2). I now gather four

facts about Ḟ (ṫ). [1] Since ċ1 ∈ Ḟ (ṫ), Ḟ (ṫ) 6= ∅. [2] Since ṫ ∈ Ḟ−1(ċ1),

ṫ ∈ Ḟ−1(C). Hence ṫ ∈ Ẋ by Lemma A.4(a). Hence Ḟ (ṫ) ⊆ Ḟ (Ẋ).

[3] Since ċ1 ∈ Ḟ (ṫ)∩Ċi1 , (11c) implies that Ḟ (ṫ) ⊆ Ċi1 . [4] Similarly,

since ċ2 ∈ Ḟ (ṫ)∩Ċi2 , (11c) implies that Ḟ (ṫ) ⊆ Ċi2 . These four facts

imply that Ḟ (ṫ) is a nonempty subset of Ḟ (Ẋ)∩Ċi1∩Ċi2 . This contra-

dicts (11b). 2

Appendix B. Connection with AR

This appendix proves Theorem 1 (Section 2.4), which shows that AR∗

forms are essentially identical to AR forms. En route, Lemma 2.1 relates

AR∗ trees to AR trees. Symbols with double dots are taken directly from

AR. Virtually all such symbols are confined to this appendix. The only

exception is the J̈ appearing in Section 2.4.

B.1. For Lemma 2.1

Lemma B.1. Suppose that (W, Ṅ) satisfies (1a) and (1c), and de-

rive its Ṫ (2) and Ẋ (4). Set the AR N to Ṅ . Then

(a) Ẋ = Ẍ, where Ẍ is defined by AR page 80.

Further, suppose (W, Ṅ) also satisfies (1e). Then

(b) Ṫ = F̈ (Ṅ), where F̈ (Ṅ) is defined by AR page 80.

Proof. (a). Suppose ṅ∈ Ẋ. By the definition of Ẋ, ṅ cannot be a

singleton. Also note [1] ṅ 6=∅ by (1a), so [2] there is some ŵ∈ ṅ, and

so [3] ṅ⊇{ŵ}∈ Ṅ by (1c). By the last two sentences, ṅ⊃{ŵ}∈ Ṅ and

thus ṅ∈ Ẍ by the definition of Ẍ.
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Conversely, take any ṅ∈ Ẍ. Then by the definition of Ẍ, there

exists ṅ] such that ṅ⊃ ṅ]. Since ṅ] cannot be empty by (1a), ṅ is not

a singleton. Hence ṅ∈ Ẋ by the definition of Ẋ.

(b). Suppose ṅ∈ Ṫ . Then by the definition of Ṫ , either ṅ has no

predecessors or ṅ has a finite positive number of predecessors. In the

first case, ṅ = W by (1a). Thus ṅ ∈ F̈ (Ṅ) by the definition of F̈ (Ṅ).

In the second case, {ṅ[|ṅ[⊃ṅ} has a minimum, which implies that ṅ is

“finite” in the sense of AR page 80. This implies that ṅ∈ F̈ (Ṅ) by the

definition of F̈ (Ṅ).

Conversely, take any ṅ∈ F̈ (Ṅ). Then by the definition of F̈ (Ṅ),

either ṅ = W or ṅ is “finite” in the sense of AR page 80. In the first

case, ṅ∈ Ṫ by the definition of Ṫ . In the second case, the definition

of “finiteness” allows us to let ṅ∗ be the minimum of {ṅ[|ṅ[⊃ṅ}. Note

[1] ṅ∗⊃ ṅ, so [2] ṅ∗ /∈{{w}|w} since ṅ is nonempty by (1a), and so [3]

ṅ∗ ∈ Ṫ by (1e). Therefore, the definitions of ṅ∗ and Ṫ imply that ṅ∈ Ṫ .

2

Lemma B.2. Suppose that (W, Ṅ) is an AR∗ outcome-set tree (1)

with its Ṫ (2) and Ẋ (4). Then the following hold (set the AR N to Ṅ).

(a) Ẋ = Ẍ, where Ẍ is defined on AR page 80.

(b) Ṫ = F̈ (Ṅ), where F̈ (Ṅ) is defined on AR page 80.

(c) (W, Ṅ) is a complete (1c) discrete game tree (AR Definitions 1

and 5).

Proof. (a,b). These two parts follow from Lemma B.1.

(c). First I show that (W, Ṅ) is a game tree (AR Definition 1). I do

this in four steps. [1] The first three lines of AR Definition 1 are implied

by (1a). [2] AR Definition 1 (GT.i) in the forward direction is implied

by (1d) together with the fact that ∅ /∈ Ṅ by (1a). [3] To derive AR

Definition 1 (GT.i) in the reverse direction, consider any Ṅ∗ ⊆ Ṅ and

for which there exists w∈∩Ṅ∗ (set their h to Ṅ∗). Take any distinct

ṅ1 and ṅ2 in Ṅ∗. By the existence of w, ṅ1∩ṅ2 6=∅. Hence ṅ1⊃ ṅ2

or ṅ2⊃ ṅ1 by (1b). Thus Ṅ∗ is a chain. [4] To derive AR Definition 1

(GT.ii), take any w and w′ and let x = {w} and x′ = {w′}. These are

members of Ṅ by (1c).

Next I show that (W, Ṅ) is discrete (AR Definition 5). I do this in

three steps. [1] No node is “strange” in the sense of AR Definition 2.

To see this, take any ṅ ∈ Ṅr{W} (set their x to ṅ and their N to

Ṅ). Then their (↑ x)r{x} becomes {ṅ[|ṅ[⊃ṅ}. I must show that this
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collection has an infimum in Ṅ . By AR Definition 1 (GT.i) in the reverse

direction (which was derived in the previous paragraph), {ṅ[|ṅ[⊃ṅ} is a

chain. Hence by (1d), ∩{ṅ[|ṅ[⊃ṅ} is a node. This node is the infimum

of {ṅ[|ṅ[⊃ṅ}. [2] (W, Ṅ) is regular in the sense of AR Definition 4. This

follows immediately from [1]. [3] (W, Ṅ) is discrete. To show this, I

apply AR Theorem 1. By the previous paragraph and [2], (W, Ṅ) is

a regular game tree. Further, condition (d) of AR Theorem 1 holds

because of part (a) and because Ẋ ⊆ Ṫ by (5). Hence AR Theorem

1(d⇒a) implies that (W, Ṅ) is discrete.

Finally, completeness (1c) is directly assumed as part of the definition

of an AR∗ outcome-set tree. 2

Lemma B.3. Suppose (W, Ṅ) is a complete (1c) discrete game tree

(AR Definitions 1 and 5 at N=Ṅ). Derive its Ẍ and F̈ (Ṅ) by AR page

80. Then the following hold.

(a) Ẍ = Ẋ, where Ẋ is defined by (4).

(b) F̈ (Ṅ) = Ṫ , where Ṫ is defined by (2).

(c) (W, Ṅ) is an AR∗ outcome-set tree (1).

Proof. First, I show (i) that (W, Ṅ) satisfies (1a) and (1c), and (ii)

that part (a) holds. (1a) follows from the first three lines of AR Defi-

nition 1. (1c) has been assumed directly. Thus Lemma B.1(a) implies

part (a).

Second, I show two intermediate results: (i) that (W, Ṅ) is regular

in the sense of AR Definition 4, and (ii) that Ẍ ⊆ Ṫ . By AR Definition 5

and AR Proposition 3 in the forward direction, the assumed discreteness

of (W, Ṅ) implies that (W, Ṅ) is regular. Because of regularity and

discreteness, AR Theorem 1 (a⇒d) implies that (∀ṅ∈Ẍ) {ṅ[|ṅ[⊃ṅ} is

finite. By the definition of Ṫ , this is equivalent to Ẍ ⊆ Ṫ .

Third, I show (i) that (W, Ṅ) satisfies (1e), and (ii) that part (b)

holds. By part (a) and by the second conclusion of the previous para-

graph, Ẋ ⊆ Ṫ . Hence

Ṅ = (Ṅr{{w}|w})∪{{w}|w} = Ẋ∪{{w}|w} ⊆ Ṫ∪{{w}|w} ,

where the second equation holds by the definition of Ẋ and the set

inclusion holds by the previous sentence. This result is (1e). Finally,

(1e), the first conclusion of the first paragraph, and Lemma B.1(b)

together imply part (b).
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Finally, consider part (c). (1a), (1c), and (1e) have already been

established by the first and third paragraphs. To derive (1b), suppose

that ṅ1 and ṅ2 are distinct and have a nonempty intersection. Since ṅ1

and ṅ2 have a nonempty intersection, the reverse direction of AR Defi-

nition 1 (GT.i) implies that {ṅ1, ṅ2} is a chain. Thus the distinctness

of ṅ1 and ṅ2 implies that either ṅ1⊃ṅ2 or ṅ2⊃ṅ1.

It remains to derive (1d). Accordingly, take any nonempty chain

Ṅ∗ ⊆ Ṅ . Suppose Ṅ∗ is a finite chain. Then ∩Ṅ∗ is the smallest node

in Ṅ∗. This implies ∩Ṅ∗ ∈ Ṅ by the assumption that Ṅ∗ ⊆ Ṅ . Hence

we may suppose henceforth that

Ṅ∗ is an infinite chain .(24)

By AR Definition 1 (GT.i) in the forward direction, there exists some

w1 such that ∩Ṅ∗ 3w1. Suppose that ∩Ṅ∗ = {w1}. Then ∩Ṅ∗ ∈ Ṅ

by completeness. Hence we may suppose henceforth that

∩Ṅ∗ ⊃ {w1} .(25)

The remainder of this proof shows that this leads to a contradiction.

By the regularity derived in the first conclusion of the second para-

graph,

ṅ1 := inf{ṅ|ṅ⊃{w1}}

is a well-defined node. Note that

∩Ṅ∗ ⊇ ∩{ṅ|ṅ⊇{w1}} ⊇ inf{ṅ|ṅ⊇{w1}} = ṅ1 ,(26)

where the first set inclusion follows from (25) and the equality is the

definition of ṅ1. (∩Ṅ∗ and ∩{ṅ|ṅ⊇{w1}} may or may not be nodes.)

Since {w1} is a node by completeness, the definition of ṅ1 implies

that ṅ1 ⊇ {w1}. Suppose ṅ1 ⊃ {w1}. Then ṅ1 ∈ Ẍ by the definition

of Ẍ. Yet ṅ1 /∈ Ṫ by (24), (26), and the definition of Ṫ . The last

two sentences contradict Ẍ ⊆ Ṫ , which is the second conclusion of the

second paragraph. Hence we may suppose henceforth that

ṅ1 = {w1} .(27)

By (25), there exists w2 such that

w2 6= w1 and(28a)

∩Ṅ∗ 3 w2 .(28b)
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Further, (28a), (27), and the definition of ṅ1 imply the existence of a

ṅ+ such that

ṅ+ ⊃ {w1} and(29a)

ṅ+ 63 w2 .(29b)

Now consider any ṅ∗ in the chain Ṅ∗. By (25) and (29a), we have

w1 ∈ ṅ∗∩ṅ+. By (28b) and (29b), we have w2 ∈ ṅ∗rṅ+. The last

two sentences and (1b) (which has already been derived) imply that

ṅ∗ ⊃ ṅ+. Since this holds for all ṅ∗ ∈ Ṅ∗, we have ∩Ṅ∗ ⊇ ṅ+.

By (24), the last sentence, and the definition of Ṫ , we have that

ṅ+ /∈ Ṫ . Yet by (29a), we have that ṅ+ ∈ Ẍ. The last two sentences

contradict Ẍ ⊆ Ṫ , which is the second conclusion of the second para-

graph. 2

Proof B.4 (for Lemma 2.1). Lemma 2.1 follows immediately from

Lemma B.2(c) and Lemma B.3(c). 2

B.2. Further observations about trees

The remark and two lemmata in this section are concerned only with

trees. They will be used to support Section B.3’s proofs about forms.

Lemma B.5. Suppose that (W, Ṅ) is an AR∗ outcome-set tree (1).

Derive ṗ (7), F̈ (Ṅ) (AR page 80 at N=Ṅ), and p̈ (AR page 80). Then

(a) ṗ = p̈|F̈ (Ṅ)r{W} and

(b) ṗ∪{(W,W )} = p̈.

Proof. Define Ṫ by (2). By Lemma B.2(b), Ṫ = F̈ (Ṅ).

(a). Since Ṫ = F̈ (Ṅ), the definition of ṗ and the definition of

p̈|F̈ (Ṅ)r{W} in AR page 80 equation (2) together imply that ṗ = p̈|Ṫr{W}.

(b). Since Ṫ = F̈ (Ṅ), AR page 80 defines the domain of p̈ to be all

of F̈ (Ṅ) and sets p̈(W ) = W . Thus ṗ∪{(W,W )} = p̈. 2

Remark B.6. AR Proposition 1(a) appears to have a minor mistake.

To be precise, suppose (W, Ṅ) is a complete (1c) discrete game tree (AR

Definitions 1 and 5 at N=Ṅ), and derive its F̈ (Ṅ) and p̈ by AR page 80.

The proposition claims that every nonterminal node x is partitioned

by p̈−1(x). However, the initial node W is not partitioned by p̈−1(W )

(given W is nonterminal). Rather, (i) W is nontrivially partitioned by
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(p̈|F̈ (Ṅ)r{W})
−1(W ) and (ii) p̈−1(W ) is the union of this partition and

{W}. The latter is not a partition because its elements are not disjoint.

This paragraph proves claims (i) and (ii). To prove (i), note that

(W, Ṅ) is an AR∗ outcome-set tree by Lemma 2.1, and derive its ṗ by (7).

Lemma A.3(b) implies that ṗ−1(W ) is a partition of W with at least

two elements. Hence Lemma B.5(a) implies that (p̈|F̈ (Ṅ)r{W})
−1(W ) is

a partition of W with at least two elements. To prove (ii), note that

W ∈ F̈ (Ṅ) and that F̈ (Ṅ) is the domain of p̈. Hence (ii) is equivalent

to p̈(W ) = W . This equality is part of the definition of p̈ on AR page

80.

In accord with its Proposition 1(a), AR interprets p̈−1(x) as the collec-

tion of immediate successors of a nonterminal node x (see for example

the discussion of (DEF.ii) after Definition 6). In light of the above, I

replace p̈−1(x) with (p̈|F̈ (Ṅ)r{W})
−1(x) as the need arises. This expres-

sion appears on several occasions, including Lemma B.7, equation (43),

and equation (49). In effect, I prohibit W from ever being regarded as

a successor.

Lemma B.7. Suppose that (W, Ṅ) is a complete (1c) discrete game

tree (AR Definitions 1 and 5 at N=Ṅ). Next define its Ẍ, F̈ (Ṅ), p̈,

and P̈ by AR pages 80 and 82. Then

P̈ = { (a, x)∈P(W )×Ẍ | a 6⊇x and (∃ṅ∈(p̈|F̈ (Ṅ)r{W})
−1(x)) a⊇ṅ } .

Proof. The lemma’s conclusion is equivalent to

(∀a∈P(W ))(30)

P̈ (a) = { x∈Ẍ | a 6⊇x and (∃ṅ∈(p̈|F̈ (Ṅ)r{W})
−1(x)) a⊇ṅ } .

This will be proven by considering two cases.

First consider a = W . Here I will argue that the empty set is on

both sides of the equality in (30). The right-hand side is

{ x∈Ẍ | W 6⊇x and (∃ṅ∈(p̈|F̈ (Ṅ)r{W})
−1(x)) W⊇ṅ } .

No x can belong to this set because W is a superset of every node x.

Meanwhile, the left-hand side P̈ (W ) equals

{ x∈Ṅ | (∃y⊆W ) {ṅ|ṅ⊇x}={ṅ|ṅ⊇y}r{ṅ|ṅ⊆W} }

by the definition of P̈ on AR page 82. No x can satisfy the equality

defining this set because (a) {ṅ|ṅ⊇x} is nonempty for every x (since



Appendix B 27

W belongs to it) and yet (b) {ṅ|ṅ⊇y}r{ṅ|ṅ⊆W} is empty (since every

node ṅ belongs to {ṅ|ṅ⊆W}).
Second consider any a ∈ P(W )r{W}. Consider AR Proposition 2.

The discreteness (AR Definition 5) of (W, Ṅ) implies up-discreteness.

Further, completeness (1c) implies that a is an element of the “A(T )”

defined at the start of AR Proposition 2. Thus AR Proposition 2(b)

implies that

P̈ (a) = { p̈(ṅ) | ṅ∈N̈(a)∩F̈ (Ṅ) } ,(31)

where AR equation (6) defines

N̈(a) := { ṅ | a⊇ṅ and (/∃ṅ[) a⊇ṅ[⊃ṅ } .(32)

This paragraph argues that

N̈(a)∩F̈ (Ṅ)(33)

= { ṅ∈F̈ (Ṅ) | a⊇ṅ and (/∃ṅ[) a⊇ṅ[⊃ṅ }

= { ṅ∈F̈ (Ṅ)r{W} | a⊇ṅ and (/∃ṅ[) a⊇ṅ[⊃ṅ }

= { ṅ∈F̈ (Ṅ)r{W} | a⊇ṅ and a 6⊇ p̈(ṅ) } .

The first equality holds by (32). To prove the second equality, it must

be argued that the left-hand set is included within the right-hand set.

Accordingly, consider any ṅ∈F̈ (Ṅ) that satisfies a⊇ṅ. Because a 6=W

by assumption, a⊇ṅ implies ṅ 6=W . Thus ṅ∈F̈ (Ṅ)r{W}. Finally,

the third equality follows from the definition of p̈ over F̈ (Ṅ)r{W},
as stated in AR page 80 equation (2).

The remainder of the proof establishes the equality in (30) by arguing

that

P̈ (a)

= { p̈(ṅ) | ṅ∈N̈(a)∩F̈ (Ṅ) }

= { p̈(ṅ) | ṅ∈F̈ (Ṅ)r{W}, a⊇ṅ, a 6⊇ p̈(ṅ) }

= { p̈(ṅ) | a 6⊇ p̈(ṅ), a⊇ṅ, ṅ∈F̈ (Ṅ)r{W} }

= { x∈Ẍ | a 6⊇x and (∃ṅ∈(p̈|F̈ (Ṅ)r{W})
−1(x)) a⊇ṅ } .

The first equality holds by (31), the second equality holds by (33), the

third equality is a rearrangement, and the final equality is proved by

the next two paragraphs.

On the one hand, take any p̈(ṅ) in the set on the final equation’s left-

hand side. Let x = p̈(ṅ). This x is in the right-hand set because [1]
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x∈Ẍ by the definition of p̈, [2] a 6⊇x by the left-hand fact that a 6⊇ p̈(ṅ)

and the definition of x, [3] ṅ∈(p̈|F̈ (Ṅ)r{W})
−1(x) by the definition of x

and the left-hand fact that ṅ∈F̈ (Ṅ)r{W}, and [4] a⊇ṅ because this is

itself a left-hand fact.

On the other hand, take any x in the right-hand set. Then

a 6⊇ x ,(34)

and there exists ṅ in (p̈|F̈ (Ṅ)r{W})
−1(x) such that

a ⊇ ṅ .(35)

Further, since ṅ is in (p̈|F̈ (Ṅ)r{W})
−1(x), we have both

ṅ ∈ F̈ (Ṅ)r{W} and(36a)

x = p̈(ṅ) .(36b)

Note that p̈(ṅ) is in the left-hand set because [1] a 6⊇p̈(ṅ) by (34) and

(36b), [2] a⊇ṅ by (35), and [3] ṅ∈F̈ (Ṅ)r{W} by (36a). Thus x is in

the left-hand set by (36b). 2

B.3. For Theorem 1

Lemma B.8. Suppose (W, Ṅ, (Ċi)i) is an AR∗ outcome-set form

(11). Then the following hold.

(a) (W, Ṅ) is a complete (1c) discrete game tree (AR Definitions 1

and 5 at N=Ṅ).

(b) (W, Ṅ, (Ċi)i) is a complete discrete extensive form (AR Defini-

tion 6 at N=Ṅ and (Ci)i=(Ċi)i) without directly specified simultaneous

moves (12).

Proof. (a). Let Ċ=∪iĊi. By (11a) in the definition of an AR∗ form,

(W, Ṅ, Ċ) is an AR∗ preform (8). Thus by (8a) in the definition of an

AR∗ preform, (W, Ṅ) is an AR∗ tree (1). Thus by Lemma 2.1, (W, Ṅ) is

a complete discrete game tree.

(b). Since completeness was shown in part (a), it remains to be

shown that (W, Ṅ, (Ċi)i) is a discrete extensive form (AR Definition

6) without directly specified simultaneous moves. The next eight para-

graphs establish AR Definition 6. The last paragraph shows the absence

of directly specified simultaneous moves.
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This paragraph shows the opening four lines of AR Definition 6.

(W, Ṅ) is a discrete game tree by part (a). Further, every Ċi consists

of nonempty unions of nodes by (8b) and (1c).

This paragraph collects the four identities listed in (37). Define Ṫ ,

Ẋ, ṗ, and Ḟ by (2), (4), (7), and (9). Further, by part (a), we may

define Ẍ, F̈ (Ṅ), p̈, and P̈ by AR pages 80 and 82.3 By Lemmata B.2(a),

B.2(b), and B.5(a),

Ẍ = Ẋ ,(37a)

F̈ (Ṅ) = Ṫ , and(37b)

p̈|F̈ (Ṅ)r{W} = ṗ ,(37c)

Further, the remainder of this paragraph argues that

P̈ |Ċ(37d)

= { (ċ, x)∈Ċ×Ẍ | ċ6⊇x and (∃ṅ∈(p̈|F̈ (Ṅ)r{W})
−1(x)) ċ⊇ṅ }

= { (ċ, x)∈Ċ×Ẋ | ċ 6⊇x and (∃ṅ∈ṗ−1(x)) ċ⊇ṅ }

= { (ċ, ṫ)∈Ċ×Ẋ | ċ 6⊇ṫ and (∃ṅ∈ṗ−1(ṫ)) ċ⊇ṅ }

= Ḟ−1 .

The first equality holds by Lemma B.7, part (a), and the fact that

Ċ ⊆ P(W ) by (8b). The second equality holds by (37a) and (37c). The

third equality holds because Ẋ ⊆ Ṫ by (5) (the symbol ṫ is reserved

for members of Ṫ ). The final equality holds by the definition (9) of Ḟ

and Lemma A.4(a).

This paragraph shows AR Definition 6 (DEF.i). Accordingly, take any

ċ and ċ′ such that P (ċ)∩P (ċ′) 6= ∅ and ċ 6= ċ′ (the argument here does

not require that ċ and ċ′ belong to the same Ċi). By (37d), P (ċ)∩P (ċ′)

6= ∅ implies

Ḟ−1(ċ)∩Ḟ−1(ċ′) 6= ∅ .(38)

By (8e) and Lemma A.5(b⇒a), we have

Ḟ−1(ċ)=Ḟ−1(ċ′) or Ḟ−1(ċ)∩Ḟ−1(ċ′)=∅ .

3Symbols with double dots are taken directly from AR. Although this is usually
natural, both Ḟ and F̈ appear in this proof (as well as the next proof). Ḟ and F̈

are completely unrelated. While Ḟ is the feasibility correspondence (9) in an AR∗

form, F̈ (Ṅ) is a collection of nodes that is defined on AR page 80.
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Thus (38) implies Ḟ−1(ċ) = Ḟ−1(ċ′), which implies P (ċ) = P (ċ′) by

(37d) again. Further, (38) also implies the existence of a ṫ such that

{ċ, ċ′} ⊆ F (ṫ). Thus ċ 6= ċ′ implies ċ∩ċ′ = ∅ by (8d).

This and the next four paragraphs show AR Definition 6 (DEF.ii).

Since Ẍ = Ẋ by (37a), it suffices to consider an arbitrary member of

Ẋ. Since Ẋ ⊆ Ṫ by (5), I can denote this arbitrary member by ṫ (the

symbol ṫ is reserved for members of Ṫ ). This ṫ is fixed through the

next three paragraphs.

This paragraph argues that {i|Ḟ (ṫ)∩Ċi 6=∅} is a singleton. Since

ṫ∈Ẋ by the previous paragraph, and since Ẋ is the domain of Ḟ by

Lemma A.4, Ḟ (ṫ) is nonempty. Further, by the definition of Ḟ , Ḟ

assumes values in Ċ=∪iĊi. Thus the last two sentences imply that

{i|Ḟ (ṫ)∩Ċi 6=∅} has at least one element. Finally, (11b) implies that

the set can have no more than one element.

This paragraph proves (41). Note that

(∀i) Äi(ṫ) = {ċ∈Ċi|ṫ∈P (ċ)} = {ċ∈Ċi|ṫ∈Ḟ−1(ċ)}(39)

= {ċ∈Ċi|ċ∈Ḟ (ṫ)} = Ḟ (ṫ)∩Ċi ,

where the first equality is the definition of Äi in AR Definition 6 (DEF.ii)

and the second equality follows from (37d). Thus

J̈(ṫ) = {i|Äi(ṫ) 6=∅} = {i|Ḟ (ṫ)∩Ċi 6=∅} ,(40)

where the first equality is the definition of J̈ in AR Definition 6 (DEF.ii),

and the second equality holds by the previous sentence. Hence the

previous paragraph implies that

J̈(ṫ) is a singleton .(41)

Let i∗ be the unique element of J̈(ṫ). By (40), Ḟ (ṫ)∩Ċi∗ 6=∅. Thus

by (11c),

Ḟ (ṫ) ⊆ Ċi∗ .(42)

Therefore

(p̈|F̈ (Ṅ)r{W})
−1(ṫ)(43)

= ṗ−1(ṫ)

= { ṫ∩ċ | ċ∈Ḟ (ṫ) }

= { ṫ∩ċ | ċ∈Ḟ (ṫ)∩Ċi∗ }

= { ṫ∩(∩i∈{i∗}ċi) | (ċi)i∈{i∗} ∈{i∗}×(Ḟ (ṫ)∩Ċi∗) }
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= { ṫ∩(∩i∈{i∗}ċi) | (ċi)i∈{i∗} ∈{i∗}×Äi∗(ṫ) }

= { ṫ∩(∩i∈{i∗}ċi) | (ċi)i∈{i∗} ∈Πi∈{i∗}Äi(ṫ) }

= { ṫ∩(∩i∈J̈(ṫ)ċi) | (ċi)i∈J̈(ṫ) ∈Πi∈J̈(ṫ)Äi(ṫ) }

= { ṫ∩(∩i∈J̈(ṫ)ċi) | (ċi)i∈J̈(ṫ) ∈ Ä(ṫ) } ,

where the first equality holds by (37c), the second equality holds by

(8c), the third follows from (42), the fourth is a rearrangement, the fifth

follows from (39) at i = i∗, the sixth is a rearrangement, the seventh

follows from (41) and the definition of i∗, and the last follows from the

definition of Ä in AR Definition 6 (DEF.ii).

Equation (43) suffices to prove AR Definition 6 (DEF.ii) under the

presumption that p̈−1(W ) on the left-hand side of (DEF.ii) was not

meant to contain W itself (see the third paragraph of Remark B.6).

Further, the above argument established (41) for any member ṫ of

Ẍ. This shows the absence of directly specified simultaneous moves

(12). 2

Lemma B.9. Suppose (W, Ṅ, (Ċi)i) is a complete (1c) discrete ex-

tensive form (AR Definition 6 at N=Ṅ and (Ci)i=(Ċi)i) without directly

specified simultaneous moves (12). Then the following hold.

(a) (W, Ṅ) is an AR∗ outcome-set tree (1).

(b) (W, Ṅ,∪iĊi) is an AR∗ outcome-set preform (8).

(c) (W, Ṅ, (Ċi)i) is an AR∗ outcome-set form (11).

Proof. (a). By the second line of AR Definition 6, (W, Ṅ) is a discrete

game tree. This, the assumption of completeness, and Lemma 2.1

together imply that (W, Ṅ) is an AR∗ outcome-set tree.

(b). This paragraph collects the four identities listed in (44). Let

Ċ=∪iĊi. Derive Ẍ, F̈ (Ṅ), p̈, and P̈ from (W, Ṅ, (Ċi)i) by AR pages

80 and 82. Further, by part (a) and Lemma A.1, we may define Ṫ ,

Ẋ, ṗ, and Ḟ by (2), (4), (7), and (9). By Lemmas B.3(a), B.3(b), and

B.5(a),

Ẍ = Ẋ ,(44a)

F̈ (Ṅ) = Ṫ , and(44b)

p̈|F̈ (Ṅ)r{W} = ṗ .(44c)
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Further, the remainder of this paragraph argues that

P̈ |Ċ(44d)

= { (ċ, x)∈Ċ×Ẍ | ċ6⊇x and (∃ṅ∈(p̈|F̈ (Ṅ)r{W})
−1(x)) ċ⊇ṅ }

= { (ċ, x)∈Ċ×Ẋ | ċ 6⊇x and (∃ṅ∈ṗ−1(x)) ċ⊇ṅ }

= { (ċ, ṫ)∈Ċ×Ẋ | ċ 6⊇ṫ and (∃ṅ∈ṗ−1(ṫ)) ċ⊇ṅ }

= Ḟ−1 .

The first equality follows from Lemma B.7 because [1] (W, Ṅ) is an AR

discrete game tree by the second line of AR Definition 6, [2] completeness

has been assumed, and [3] Ċ ⊆ P(W ) by the third and fourth lines of

AR Definition 6. The second equality holds by (44a) and (44c). The

third equality holds because Ẋ ⊆ Ṫ , which follows from (5), which in

turn follows from part (a) (the symbol ṫ is reserved for elements of Ṫ ).

The final equality holds by the definition of Ḟ and Lemma A.4(a).

I now show the five components of the definition (8) of an AR∗

outcome-set preform. (8a) follows from part (a). (8b) follows from

the third and fourth lines of AR Definition 6.

(8c). Take any ṫ ∈ Ẋ. By (44a), ṫ ∈ Ẍ. Note that

(∀i) Äi(ṫ) = {ċ∈Ċi|ṫ∈P̈ (ċ)} = {ċ∈Ċi|ṫ∈Ḟ−1(ċ)}(45)

= {ċ∈Ċi|ċ∈Ḟ (ṫ)} = Ḟ (ṫ)∩Ċi .

where the first equality is the definition of Äi from AR Definition 6

(DEF.ii), the second equality holds by (44d), and the last two equalities

are rearrangements. Further,

J̈(ṫ) = {i|Äi(ṫ)6=∅} = {i|Ḟ (ṫ)∩Ċi 6=∅} .(46)

where the first equality is the definition of J̈ from AR Definition 6

(DEF.ii), and the second equality holds by (45).

J̈(ṫ) is a singleton by the assumed absence of directly specified si-

multaneous moves (12). Let i∗ be its member. Then by (46),

(∀i 6=i∗) Ḟ (ṫ)∩Ċi = ∅ .(47)

Further,

Ḟ (ṫ)∩Ci∗ = (Ḟ (ṫ)∩Ċi∗)∪
⋃

i 6=i∗(F (ṫ)∩Ċi)(48)

= Ḟ (ṫ)∩
⋃

iĊi = Ḟ (ṫ) ,
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where the first equality holds by the previous sentence, and the last

holds because Ḟ is defined to assume values in Ċ=∪iĊi.

Finally, (8c) holds by

ṗ−1(ṫ) = (p̈|F̈ (Ṅ)r{W})
−1(ṫ)(49)

= { ṫ∩(∩i∈J̈(ṫ)ċi) | (ċi)i∈J̈(ṫ) ∈ Ä(ṫ) }

= { ṫ∩(∩i∈J̈(ṫ)ċi) | (ċi)i∈J(ṫ) ∈Πi∈J̈(ṫ)Äi(ṫ) }

= { ṫ∩(∩i∈{i∗}ċi) | (ċi)i∈{i∗} ∈Πi∈{i∗}Äi(ṫ) }

= { ṫ∩ċ | ċ∈Äi∗(ṫ) }

= { ṫ∩ċ | ċ∈Ḟ (ṫ)∩Ċi∗ }

= { ṫ∩ċ | ċ∈Ḟ (ṫ) } ,

whose eight equalities are justified as follows. The first equality holds

by (44c). The second equality holds by AR Definition 6 (DEF.ii) un-

der the presumption that p̈−1(W ) on left-hand side of (DEF.ii) was not

meant to contain W itself (see the third paragraph of Remark B.6). The

third equality holds by the definition of Ä in AR Definition 6 (DEF.ii),

and the fourth by the definition of i∗ above. The fifth is a rearrange-

ment, the sixth holds by (45), and the seventh holds by (48).

(8d). Suppose that ṫ, ċ1, and ċ2 were such that {ċ1, ċ2} ⊆ Ḟ (ṫ) and

ċ1∩ċ2 6= ∅. Then since ṫ belongs to both Ḟ−1(ċ1) and Ḟ−1(ċ2), we

have Ḟ−1(ċ1)∩Ḟ−1(ċ2) 6= ∅. Thus by (44d), we have P̈ (ċ1)∩P̈ (ċ2) 6=
∅. This and the assumption ċ1∩ċ2 6= ∅ imply ċ1 = ċ2 by AR Definition

6 (DEF.i).

(8e). By Lemma A.5, (8e) is equivalent to

(∀ċ1, ċ2) Ḟ−1(ċ1)=Ḟ−1(ċ2) or Ḟ−1(ċ1)∩Ḟ−1(ċ2)=∅ .

To prove this, take any ċ1 and ċ2. On the one hand, if ċ1=ċ2, the

first contingency holds. On the other hand, suppose ċ1 6=ċ2. Further

suppose that the second contingency fails: Ḟ−1(ċ1)∩Ḟ−1(ċ2)6=∅. By

(44d), P̈ (ċ1)∩P̈ (ċ2)6=∅. Thus by ċ1 6=ċ2 and AR Definition 6 (DEF.i),

P̈ (ċ1)=P̈ (ċ2). Hence by (44d) again, Ḟ−1(ċ1)=Ḟ−1(ċ2). Thus the first

contingency holds.

(c). I show the three components of the definition (11) of an AR∗

outcome-set form. (11a) holds by part (b).
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(11b). Consider any ċ ∈ Ḟ (Ẋ). Then there exists ṫ ∈ Ẋ such that

ċ ∈ Ḟ (ṫ). Since ṫ ∈ Ẋ, we may repeat the first two paragraphs in the

above argument for (8c), in order to obtain an i∗ for which (47) holds.

(47) implies (11b).

(11c). Take any i and any ṫ ∈ Ẋ. Since ṫ ∈ Ẋ, we may repeat

the first two paragraphs in the above argument for (8c), in order to

obtain an i∗ for which (47) and (48) hold. If i = i∗, then (48) implies

Ḟ (ṫ) ⊆ Ċi. If i 6= i∗, then (47) implies Ḟ (ṫ)∩Ċi = ∅. 2

Proof B.10 (for Theorem 1). The theorem follows immediately

from Lemma B.8(b) and Lemma B.9(c). 2

Appendix C. General Results about Conciseness

This appendix proves Theorem 2 (Section 4) as well as all the lem-

mata and propositions in Sections 3 and 4. Like every appendix except

Appendix B, it does not rely on AR.

C.1. For AR∗ preforms

Proof C.1 (for Lemma 3.1). I will argue that (W, Ṅ, Ċ) is not

concise iff Ċ 6=Ḟ (Ẋ) or (∃ċ∈Ḟ (Ẋ)) M(ċ)6=ċ. By the definition (13) of

conciseness, non-conciseness is equivalent to

(∃ċ /∈Ḟ (Ẋ)) ċ 6⊆ ∪Ḟ−1(ċ) or(50a)

(∃ċ∈Ḟ (Ẋ)) ċ 6⊆ ∪Ḟ−1(ċ) .(50b)

(50a) is equivalent to the existence of a ċ /∈Ḟ (Ẋ) because [1] ċ 6= ∅ for

every ċ and [2] Ḟ−1(ċ)=∅ for every ċ /∈Ḟ (Ẋ) since Ẋ is the domain

of Ḟ by Lemma A.4. The existence of a ċ /∈Ḟ (Ẋ) is equivalent to

Ċ 6=Ḟ (Ẋ) because Ċ is always a superset of Ḟ (Ẋ) by the definition of

Ḟ . Meanwhile, (50b) is equivalent to (∃ċ∈Ḟ (Ẋ)) ċ∩∪Ḟ−1(ċ) ⊂ ċ. By

the definition of M, this is equivalent to (∃ċ∈Ḟ (Ẋ)) M(ċ) 6= ċ. 2

Lemma C.2. (a) Suppose (W, Ṅ) is an AR∗ outcome-set tree (1)

with its Ṫ (2) and ṗ (7). Further suppose W ⊃ ṫ. Then there exists

a unique integer K≥1 such that the sequence (ṗk(ṫ))Kk=1 is well-defined

and W = ṗK(ṫ).

(b) Suppose (W, Ṅ, Ċ) is an AR∗ outcome-set preform (8) with its Ṫ

(2), ṗ (7), and Ḟ (9). Further suppose W ⊃ ċ ⊇ ṫ and define K as
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in part (a). Then there exists an integer L such that K ≥ L ≥ 1 and

ċ ∈ Ḟ (ṗL(ṫ)).

Proof. (a). Define Ẋ (4). Since ṫ∈ Ṫr{W}, Lemma A.1, Lemma A.3,

and equation (5) together imply that ṗ(ṫ) exists and belongs to Ṫ .

This paragraph considers any k≥1 and shows that if ṗk(ṫ) exists and

belongs to Ṫ , then either [1] ṗk(ṫ) = W or [2] ṗk+1(ṫ) exists and belongs

to Ṫ . Accordingly, assume ṗk(ṫ) exists and belongs to Ṫ . Suppose con-

tingency [1] fails. Then ṗk(ṫ) ∈ Ṫr{W}, so Lemma A.1, Lemma A.3,

and equation (5) together imply that ṗk+1(ṫ) exists and belongs to Ṫ .

Thus contingency [2] holds.

By beginning with the last sentence of the first paragraph, and iter-

atively applying the first sentence of the second paragraph, one finds

that either [1] there exists a K≥1 such that (ṗk(ṫ))Kk=1 is well-defined

and W = ṗK(ṫ), or [2] the infinite sequence (ṗk(ṫ))k≥1 is well-defined.

Since each ṗk+1(ṫ) ⊃ ṗk(ṫ) by the definition of ṗ, the second contingency

would imply that { ṗk(ṫ) | k≥1 } is an infinite collection of predecessors

of ṫ. This contradicts the definition of Ṫ . Hence the first contingency

must hold.

It remains to be shown that K is unique. Accordingly suppose there

were K ′ > K such that both ṗK
′
(ṫ) and ṗK(ṫ) equal W . Then W =

ṗK
′−K(W ). This contradicts ṗK

′−K(W ) ⊃ W which follows from K ′ >

K and the definition of ṗ.

(b). By the definition of K and part (a), (ṗk(ṫ))Kk=1 is well-defined

and ṗK(ṫ) = W . Define ṗ0(ṫ) = ṫ so that the sequence (ṗk(ṫ))Kk=0

becomes well-defined. Note that

ċ 6⊇ ṗK(ṫ) ,(51)

because ṗK(ṫ) = W and W ⊃ ċ by assumption. Also note that

ċ ⊇ ṗ0(ṫ)(52)

because ṗ0(ṫ) = ṫ and ċ ⊇ ṫ by assumption. Because of (52), we may

let k∗ = max{ k≥0 | ċ⊇ṗk(ṫ) }. Further k∗<K because of (51). Hence

ċ 6⊇ pk
∗+1(ṫ) and ċ ⊇ pk

∗
(ṫ) .

Thus ċ ∈ Ḟ (pk
∗+1(ṫ)) by the definition of Ḟ . Set L = k∗+1. 2

Proof C.3. (for Lemma 3.2)

⇒ direction. See the paragraph following the lemma statement.
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⇐ direction. Derive Ḟ (9) from (W, Ṅ, Ċ). Suppose W /∈ Ċ. Then

take any ċ and any w ∈ ċ. Note that W ⊃ ċ ⊇ {w} and that {w} ∈ Ṫ

because of the finite-horizon assumption. Thus by Lemma C.2(b),

there exists an integer L≥1 such that ċ ∈ Ḟ (ṗL({w})). Equivalently,

ṗL({w}) ∈ Ḟ−1(ċ). Thus w ∈ ṗL({w}) ⊆ ∪Ḟ−1(ċ). Since this has been

shown to hold for any ċ and any w ∈ ċ, (W, Ṅ, Ċ) satisfies the definition

of conciseness. 2

Lemma C.4. Suppose (W, Ṅ, Ċ) is an AR∗ outcome-set preform (8)

with its Ẋ (4) and Ḟ (9). Then the following hold.

(a) Ḟ equals the Ḟ ′ (9) derived from (W, Ṅ, Ḟ (Ẋ)).

(b) (W, Ṅ, Ḟ (Ẋ)) is an AR∗ outcome-set preform.

Proof. Also derive Ṫ (2) and ṗ (7). Note that Ṫ , Ẋ, and ṗ depend

only on the tree (W, Ṅ).

(a). I argue

Ḟ = { (ṫ, ċ) | ċ 6⊇ṫ and (∃ṫ]∈ṗ−1(ṫ)) ċ⊇ṫ] }
= { (ṫ, ċ) | ċ 6⊇ṫ and (∃ṫ]∈ṗ−1(ṫ)) ċ⊇ṫ] }|Ṫ×Ḟ (Ẋ)

= Ḟ ′ .

The first equality is the definition of Ḟ , and the third equality is the

definition of Ḟ ′. To see the second equality, note that [1] Ẋ is the

domain of Ḟ by Lemma A.4(b), and thus [2] Ḟ (Ẋ) is the range of Ḟ .

(b). By assumption, (W, Ṅ, Ċ) satisfies the five components of (8).

This paragraph derives the five components for (W, Ṅ, Ḟ (Ẋ)). (8a)

follows from (8a) for (W, Ṅ, Ċ) because (8a) only concerns the tree

(W, Ṅ). (8b) follow from (8b) for (W, Ṅ, Ċ) because Ḟ (Ẋ) ⊆ Ċ. (8c-

e) follow from (8c-e) for (W, Ṅ, Ċ) by part (a). 2

Lemma C.5. Let (W, Ṅ, Ċ) be an AR∗ outcome-set preform (8) with

its Ṫ (2), Ẋ (4), and Ḟ (9). Let ĊM := M(Ḟ (Ẋ)). Then

(a) M is a bijection from Ḟ (Ẋ) onto ĊM, and

(b) { (ṫ, M(ċ)) | (ṫ, ċ)∈Ḟ } equals the Ḟ M (9) from (W, Ṅ, ĊM).

Proof. (a). By construction, M is a function from Ḟ (Ẋ) onto M(Ḟ (Ẋ)),

which is ĊM by definition. Thus it remains to be shown that M is in-

jective. Accordingly, suppose that ċ1 and ċ2 are two members of Ḟ (Ẋ)

such that M(ċ1) = M(ċ2). I will show that ċ1 = ċ2.
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I start with two observations. Firstly, since M(ċ1) = M(ċ2), the defi-

nition of M implies

ċ1 ∩ ∪Ḟ−1(ċ1) = ċ2 ∩ ∪Ḟ−1(ċ2) .(53)

Secondly, and independently, since ċ1 and ċ2 are members of Ḟ (Ẋ), we

may take ṫ1 and ṫ2 such that ċ1 ∈ Ḟ (ṫ1) and ċ2 ∈ Ḟ (ṫ2).

This paragraph shows that ċ2 6⊇ ṫ1. Suppose hypothetically that

ċ2 ⊇ ṫ1. Note that W ⊃ ċ2 since ċ2 6⊇ ṫ2 by ċ2 ∈ Ḟ (ṫ2) and the defini-

tion of Ḟ . By the last two sentences, Lemma C.2(b) implies that there

exists an integer L≥1 such that ċ2 ∈ Ḟ (ṗL(ṫ1)). Note that

∪Ḟ−1(ċ2) ⊇ ṗL(ṫ1) ⊇ ṫ1 ,

where the first inclusion holds because Ḟ−1(ċ2) 3 ṗL(ṫ) by the previous

sentence, and the second inclusion holds by the definition of ṗ. Thus

ċ1 ⊇ ċ1 ∩∪Ḟ−1(ċ1) = ċ2 ∩∪Ḟ−1(ċ2) ⊇ ṫ1 ,

where the first inclusion is obvious, the equality is (53), and the second

inclusion follows from [1] the hypothetical assumption that ċ2 ⊇ ṫ1 and

[2] the previous sentence. The previous sentence contradicts ċ1 6⊇ ṫ1,

which follows from ċ1 ∈ Ḟ (ṫ1), which follows from the definition of ṫ1.

Now define ṫ1
]

= ṫ1∩ċ1. Since ċ1 ∈ Ḟ (ṫ1) by the definition of ṫ1, (8c)

implies

ṫ1
] ∈ ṗ−1(ṫ1) .(54)

Further,

ċ2 ⊇ ċ2 ∩∪Ḟ−1(ċ2) = ċ1 ∩∪Ḟ−1(ċ1) ⊇ ċ1 ∩ ṫ1 = ṫ1
]

.(55)

where the first inclusion is obvious, the first equality holds by (53), the

second inclusion holds because Ḟ−1(ċ1) 3 ṫ1 by the definition of ṫ1, and

the final equality holds by the definition of ṫ1
]
. By the last paragraph,

(54), and (55), we have that ċ2 6⊇ ṫ1, ṫ1
] ∈ ṗ−1(ṫ1), and ċ2 ⊇ ṫ1

]
. Thus

the definition of Ḟ implies ċ2 ∈ Ḟ (ṫ1).

At this point, we have [1] ċ1 ∈ Ḟ (ṫ1) by the definition of ṫ1, [2]

ċ2 ∈ Ḟ (ṫ1) by the previous sentence, [3] ċ1 ⊇ ṫ1
]

by the definition of

ṫ1
]
, and [4] ċ2 ⊇ ṫ1

]
by (55). Facts [3] and [4] imply that ċ1∩ċ2 is

nonempty. Hence facts [1] and [2] imply that ċ1 = ċ2 by (8d) applied

at ṫ1.
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(b). This paragraph shows Ḟ M ⊆ { (ṫ, M(ċ)) | (ṫ, ċ)∈Ḟ }. Take any

(ṫ, ċM) ∈ Ḟ M. By the definition (9) of Ḟ M, there is some ṫ] such that

ṫ = ṗ(ṫ]) ,(56a)

ċM 6⊇ ṫ , and(56b)

ċM ⊇ ṫ] .(56c)

By the definition of ĊM, there is a ċ such that (a) ċ ∈ Ḟ (Ẋ) and (b)

ċM = M(ċ). By (a) and (15),

W ⊃ ċ .(57)

By (b) and the definition of M, ċM = ċ ∩ ∪Ḟ−1(ċ). By this equality,

(56b) and (56c) imply

ċ ∩ ∪Ḟ−1(ċ) 6⊇ ṫ and(58)

ċ ∩ ∪Ḟ−1(ċ) ⊇ ṫ] .(59)

(59) trivially implies that

ċ ⊇ ṫ] .(60)

Lemma C.2(b), (57), and (60) together imply the existence of an L≥1

such that ċ ∈ Ḟ (ṗL(ṫ])). Hence Ḟ−1(ċ) 3 ṗL(ṫ]). Thus

∪Ḟ−1(ċ) ⊇ ṗL(ṫ]) ⊇ ṗ(ṫ]) = ṫ ,

where the first inclusion follows from the last sentence, the second

inclusion follows from the definition of ṗ, and the final equality is (56a).

This and (58) imply that ċ 6⊇ ṫ. (56a), (60), and the previous sentence

imply that (ṫ, ċ) ∈ Ḟ by the definition of Ḟ .

Conversely, this paragraph shows Ḟ M ⊇ { (ṫ, M(ċ)) | (ṫ, ċ)∈Ḟ }. Take

any (ṫ, ċ) ∈ Ḟ . By the definition of Ḟ , there is some ṫ] such that

ṫ = ṗ(ṫ]) ,(61a)

ċ 6⊇ ṫ , and(61b)

ċ ⊇ ṫ] .(61c)

(61b) implies that ċ ∩ ∪Ḟ−1(ċ) 6⊇ ṫ. By the definition of M, this is

equivalent to

M(ċ) 6⊇ ṫ .(62)

Further note that

∪Ḟ−1(ċ) ⊇ ṫ = ṗ(ṫ]) ⊇ ṫ] ,
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where the first inclusion holds since Ḟ−1(ċ) 3 ṫ by the definition of ṫ,

the equality is (61a), and the last inclusion holds by the definition of

ṗ. The previous sentence and (61c) imply that

ċ ∩ ∪Ḟ−1(ċ) ⊇ ṫ] .

By the definition of M, this implies M(ċ) ⊇ ṫ]. (61a), (62), and the

previous sentence imply that (ṫ, M(ċ)) ∈ Ḟ M by the definition of Ḟ M. 2

Lemma C.6. Let (W, Ṅ, Ċ) be an AR∗ outcome-set preform (8) with

its Ẋ (4) and Ḟ (9). Let ĊM := M(Ḟ (Ẋ)). Then (W, Ṅ, ĊM) is a concise

(13) outcome-set preform.

Proof. The next five paragraphs will show that (W, Ṅ, ĊM) is an AR∗

outcome-set preform by deriving the five parts of (8). The final three

paragraphs will show conciseness. Note that the five parts of (8) hold

for (W, Ṅ, Ḟ (Ẋ)) because (W, Ṅ, Ḟ (Ẋ)) is an AR∗ outcome-set preform

by Lemma C.4(b).

(8a). This follows from (8a) for (W, Ṅ, Ḟ (Ẋ)) simply because (8a)

only concerns the tree (W, Ṅ).

(8b). Take any ċM. By the definition of ĊM there exist ċ and ṫ such

that cM = M(ċ) and ċ ∈ Ḟ (ṫ). I argue cM is a subset of W because

ċM = M(ċ) = ċ∩∪Ḟ−1(ċ) ⊆ ċ ⊆ W .

The first equality holds by the definition of ċ and the second equality

holds by the definition of M. The final inclusion holds by (8b) for

(W, Ṅ, Ḟ (Ẋ)). Further, I argue cM is nonempty because

ċM = M(ċ) = ċ∩∪Ḟ−1(ċ) ⊇ ċ∩ ṫ 6= ∅ .

The first equality holds by the definition of ċ and the second equality

holds by the definition of M. The inclusion holds because ∪Ḟ−1(ċ) ⊇ ṫ

because Ḟ−1(ċ) 3 ṫ by the definitions of ċ and ṫ. The inequality holds

because ċ∩ ṫ is an immediate successor of ṫ by [1] ċ ∈ Ḟ (ṫ) from the

definition of ċ and ṫ and [2] (8c) for (W, Ṅ, Ḟ (Ẋ)).

(8c). I argue that

(∀ṫ∈Ẋ) ṗ−1(ṫ) = { ṫ∩ ċ | ċ∈ Ḟ (ṫ) }

= { ṫ∩ ċ∩∪Ḟ−1(ċ) | ċ∈ Ḟ (ṫ) }

= { ṫ∩ M(ċ) | ċ∈ Ḟ (ṫ) }
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= { ṫ∩ M(ċ) | M(ċ)∈ Ḟ M(ṫ) and ċ∈ Ḟ (Ẋ) }

= { ṫ∩ ċM | ċM ∈ Ḟ M(ṫ) } .

The first equality is (8c) for (W, Ṅ, Ḟ (Ẋ)). The second holds because,

for any ċ ∈ Ḟ (ṫ), we have Ḟ−1(ċ) 3 ṫ and thus ∪Ḟ−1(ċ) ⊇ ṫ. The third

holds by the definition of M. To see the fourth equality, note [1] the

left-hand predicate is equivalent to the first right-hand predicate by

Lemma C.5(b) and [2] the left-hand predicate implies the second right-

hand predicate since ṫ∈ Ẋ. The fifth equality holds by Lemma C.5(a).

(8d). Consider any ṫ ∈ Ẋ and any distinct ċMA and ċMB in Ḟ M(ṫ). By

Lemma C.5(a),

M−1(ċMA ) 6= M−1(ċMB ) .(63)

Further, by Lemma C.5(b),

M−1(ċMA ) ∈ Ḟ (ṫ) and M−1(ċMB ) ∈ Ḟ (ṫ) .(64)

I argue

ċMA ∩ ċMB

= M(M−1(ċMA )) ∩ M(M−1(ċMB))

= (M−1(ċMA) ∩ ∪F−1(M−1(ċMA)) ∩ (M−1(ċMB) ∩ ∪F−1(M−1(ċMB))

⊆ M−1(ċMA) ∩ M−1(ċMB)

= ∅ .

The first equality follows from Lemma C.5(a). The second follows

from the definition of M. The set inclusion follows from elementary

manipulation. The last equality follows from (63), from (64), and from

(8d) for (W, Ṅ, Ḟ (Ẋ)).

(8e). Take any two ṫ1 and ṫ2. By (8e) for (W, Ṅ, Ḟ (Ẋ)),

Ḟ (ṫ1) = Ḟ (ṫ2) or Ḟ (ṫ1)∩Ḟ (ṫ2) = ∅ .

By Lemma C.5(a), this implies (and is in fact equivalent to)

M(Ḟ (ṫ1)) = M(Ḟ (ṫ2)) or M(Ḟ (ṫ1))∩M(Ḟ (ṫ2)) = ∅ .

By Lemma C.5(b), this implies (and is in fact equivalent to),

Ḟ M(ṫ1) = Ḟ M(ṫ2) or Ḟ M(ṫ1)∩Ḟ M(ṫ2) = ∅ .

Conciseness. First, I argue

Ḟ M(Ẋ) = M(Ḟ (Ẋ)) = ĊM .(65)
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The first equality holds by Lemma C.5(b). The second equality is the

definition of ĊM.

Second, let MM be the material-part function (14) derived from

(W, Ṅ, ĊM). I argue

(∀ċM) MM(ċM) = ċM ∩ ∪(Ḟ M)−1(ċM)(66)

= ċM ∩ ∪Ḟ−1(M−1(ċM))

= M(M−1(ċM)) ∩ ∪Ḟ−1(M−1(ċM))

= M−1(ċM) ∩ ∪Ḟ−1(M−1(ċM)) ∩ ∪Ḟ−1(M−1(ċM))

= M−1(ċM) ∩ ∪Ḟ−1(M−1(ċM))
= M(M−1(ċM))

= ċM ,

The first equality in (66) is the definition of MM. The second equality

holds by Lemma C.5(b), and the third holds by Lemma C.5(a). The

fourth and sixth equalities hold by the definition of M. The last equality

holds by Lemma C.5(a).

By Lemma 3.1, (65) and (66) imply that (W, Ṅ, ĊM) is concise. 2

Proof C.7 (for Lemma 3.3). Part (a) follows from Lemma C.6.

Parts (b) and (c) follow from Lemma C.5. 2

C.2. For AR∗ forms

Proof C.8 (for Proposition 4.1). By definition (in the sentence be-

fore (19)), the form (W, Ṅ, (Ċi)i) is concise iff its preform (W, Ṅ,∪iĊi)

is concise. Thus it must be shown that (W, Ṅ,∪iĊi) is concise iff

W /∈ ∪iCi. This follows immediately from Lemma 3.2 because of the

finite-horizon assumption. 2

Proof C.9 (for Theorem 2). As in the theorem’s first sentence, let

(W, Ṅ, (Ċi)i) be an AR∗ outcome-set form (11), with its Ṫ (2), Ẋ (4),

and Ḟ (9). As in the theorem’s second and last sentences, derive M by

(14), let (ĊM
i )i = (M(Ċi∩Ḟ (Ẋ))i, and derive Ḟ M (9) from (W, Ṅ, (ĊM

i )i).

Further, let Ċ = ∪iĊi and ĊM = ∪iĊM
i . Note that

ĊM = ∪iĊM
i(67)

= ∪iM(Ċi∩Ḟ (Ẋ))

= M(∪i[Ċi∩Ḟ (Ẋ)])
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= M((∪iĊi)∩Ḟ (Ẋ))

= M(Ċ∩Ḟ (Ẋ))

= M(Ḟ (Ẋ)) ,

where first equality is the definition of ĊM, the second equality follows

from the definition of (ĊM
i )i, the fifth equality follows from the definition

of Ċ, and the last holds because Ḟ (Ẋ) ⊆ Ċ by the definition of Ḟ .

This paragraph applies Lemma 3.3. By (11a) and the definition of

Ċ, (W, Ṅ, Ċ) is an AR∗ outcome-set preform (8), as assumed by the

lemma. The lemma’s definitions of Ṫ , Ẋ, and Ḟ coincide with the

definitions in the first sentence of this proof. The lemma’s definition

of ĊM coincides with (67). The lemma’s definition of Ḟ M coincides with

the definition in the second sentence of this proof. Hence, the lemma

allows us to conclude that

(W, Ṅ, ĊM) is a concise (13) AR∗ outcome-set preform ,(68a)

M is a bijection from Ḟ (Ẋ) onto ĊM , and(68b)

Ḟ M = { (ṫ, M(ċ)) | (ṫ, ċ)∈Ḟ } .(68c)

(a). I will show that (W, Ṅ, (ĊM
i )i) satisfies (19). To begin, (19a) for

(W, Ṅ, (ĊM
i )i) follows from (68a) and the definition of ĊM.

To show (19b) for (W, Ṅ, (ĊM
i )i), I argue that something slightly

stronger holds, namely, that

(∀i, j) ĊM
i ∩ĊM

j = M(Ċi∩Ḟ (Ẋ)) ∩ M(Ċj∩Ḟ (Ẋ))

= M( Ċi∩Ḟ (Ẋ) ∩ Ċj∩Ḟ (Ẋ) )

= M( Ċi∩Ċj∩Ḟ (Ẋ) )

= ∅ .

The first equality follows from the definition of (ĊM
i )i, the second follows

from (68b), and the last follows from (11b) for (W, Ṅ, (Ċi)i).

Finally, this and the next three paragraphs will show (19c) for

(W, Ṅ, (ĊM
i )i). Take any i and any ṫ∈Ẋ. By (11c) for (W, Ṅ, (Ċi)i),

Ḟ (ṫ)⊆ Ċi or Ḟ (ṫ)∩Ċi =∅ .(69)

First I argue

Ḟ (ṫ) ⊆ Ċi(70)

⇒ Ḟ (ṫ) ⊆ Ċi∩Ḟ (Ẋ)
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⇒ M(Ḟ (ṫ)) ⊆ M(Ċi∩Ḟ (Ẋ))

⇒ M(Ḟ (ṫ)) ⊆ ĊM
i

⇒ Ḟ M(ṫ) ⊆ ĊM
i .

The first implication holds because ṫ∈Ẋ implies Ḟ (ṫ)⊆Ḟ (Ẋ). The

second is obvious, the third holds by the definition of ĊM
i , and the

fourth holds by (68c).

Second I argue

Ḟ (ṫ)∩Ċi = ∅(71)

⇒ Ḟ (ṫ)∩Ḟ (Ẋ) ∩ Ċi∩Ḟ (Ẋ) = ∅

⇒ M( Ḟ (ṫ)∩Ḟ (Ẋ) ∩ Ċi∩Ḟ (Ẋ) ) = ∅

⇒ M(Ḟ (ṫ)∩Ḟ (Ẋ)) ∩ M(Ċi∩Ḟ (Ẋ)) = ∅

⇒ M(Ḟ (ṫ)∩Ḟ (Ẋ)) ∩ ĊM
i = ∅

⇒ M(Ḟ (ṫ)) ∩ ĊM
i = ∅

⇒ Ḟ M(ṫ) ∩ ĊM
i = ∅ .

The first two implications are obvious. The third follows from (68b).

The fourth follows from the definition of ĊM
i . The fifth holds because

ṫ∈Ẋ implies Ḟ (ṫ)⊆Ḟ (Ẋ). The last holds by (68c).

To conclude, (69), (70), and (71) together imply

Ḟ M(ṫ)⊆ ĊM
i or Ḟ M(ṫ)∩ ĊM

i =∅ ,

which is (19c) for (W, Ṅ, (ĊM
i )i).

(b–c). These are identical to (68b) and (68c). 2

Proof C.10 (for Proposition 4.2). To put it succinctly, the propo-

sition claims that (19) and (20) are equivalent.

Take any (W, Ṅ, (Ċi)i) satisfying (19). (19a) is identical to (20a).

(19c) is identical to (20c). Finally, since (W, Ṅ,∪iĊi) is concise by

(19a), Lemma 3.1 implies Ḟ (Ẋ) = ∪iĊi. Hence (19b)’s statement

that Ċi∩Ċj∩Ḟ (Ẋ) = ∅ implies (20b)’s statement that Ċi and Ċj are

disjoint.

Take any (W, Ṅ, (Ċi)i) satisfying (20). (20a) is identical to (19a).

(20b) implies (19b). (20c) is identical to (19c). 2
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This appendix concerns the examples of Section 3.3. All are AR∗ pre-

forms. The most direct means of analyzing these examples is convo-

luted superficially. To begin, Lemma D.1 in Appendix D.1 establishes

basic results about the Cantor-set tree.

Next, Lemma D.2 in Appendix D.2 concerns Example 3’s family.

Lemma D.3 concerns Example 3 itself. Lemma D.4 concerns Exam-

ple 1, which happens to be a degenerate case within Example 3’s fam-

ily.

Finally, Lemma D.6 in Appendix D.3 concerns Example 2’s family.

It uses Lemma D.4 about Example 1 in its proof. Lemma D.7 concerns

Example 2 itself.

D.1. The Cantor-set tree

Lemma D.1. Let (W 0, Ṅ0) be the Cantor-set tree that is defined

along with S and D in Section 3.3. Then the following hold.

(a) {D(s)|s} is the Ṫ 0 (2) of (W 0, Ṅ0).

(b) (W 0, Ṅ0) is an AR∗ outcome-set tree (1).

(c) {D(s)|s} is the Ẋ0 (4) of (W 0, Ṅ0).

(d) { (D(s]), D(s)) | s]∈{s⊕0, s⊕2} } is the ṗ0 (7) of (W 0, Ṅ0).

Proof. (a). Since Ṅ0 = {D(s)|s}∪{{w}|w} by definition, it suffices to

show that [1] every D(s) has a finite number of predecessors and [2] every

{w} has an infinite number of predecessors. [1] Take any s. On the one

hand, if s = {}, D(s) = W 0, which has no predecessors. On the other

hand, if s = (si)
m
i=1 has m elements, the collection of its predecessors is

{D({})}∪{D((si)
j
i=1)|1≤j<m}, which is finite. [2] Take any {w}. Since

w ∈ W 0, it has a infinite base-3 expansion (xi)i≥1 listing 0’s and 2’s.

Thus the collection of {w}’s predecessors is {D((xi)
j
i=1)|1≤j}, which is

infinite.

(b). Since Ṅ0 = {D(s)|s}∪{{w}|w} by definition, conditions (1a)

and (1c) follow by inspection, the fact that D({}) = W 0, and the fact

that every D(s) is nonempty.

(1b). Take any ṅ1 and ṅ2 in Ṅ0. I consider three cases. [1] Suppose

that either ṅ1 or ṅ2 equals W 0. Then distinctness implies that exactly

one of the nodes is W 0 and that this node precedes the other. [2]

Suppose that either n1 or n2 is a singleton. Then distinctness and
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nonempty intersection imply that exactly one of the nodes is a singleton

and that this node succeeds the other. [3] Suppose that neither node

is W 0 and that neither node is a singleton. Then there exist nonempty

s1 and s2 such that ṅ1 = D(s1) and ṅ2 = D(s2). Four subcases arise:

[a] s1 = s2, [b] s1 ⊂ s2, [c] s1 ⊃ s2, or [d] there exists some i, no larger

than the minimum of the lengths of s1 and s2, such that s1i 6= s2i . In

case [a], n1=n2. In case [b], ṅ1 ⊃ ṅ2. In case [c], ṅ1 ⊂ ṅ2. In case [d],

ṅ1∩ṅ2 = ∅.

(1d). Let Ṅ∗⊆ Ṅ0 be a nonempty chain. On the one hand, suppose

Ṅ∗ contains a singleton {w′}. Because Ṅ∗ is a chain of nonempty sets,

∩Ṅ∗ = {w′}. Therefore, since Ṅ0 contains all singletons, ∩Ṅ∗ ∈ Ṅ0.

On the other hand, suppose Ṅ∗ contains no singletons. Then by the

definition of Ṅ0, we have the existence of a collection S∗ such that Ṅ∗ =

{D(s)|s∈S∗}. Since Ṅ∗ is a nonempty chain, and since D(s1)⊇D(s2)

iff s1⊆s2, S∗ is also a nonempty chain. If S∗ is finite, then ∩Ṅ∗ is

D(∪S∗), where ∪S∗ is the longest element of S∗. If S∗ is infinite, then

∩Ṅ∗ is the singleton containing the w whose base-3 representation is

(decimal) ∪S∗. Therefore, regardless of whether S∗ is finite or infinite,

∩Ṅ∗ ∈ Ṅ0.

(1e). This follows from part (a) and the definition of Ṅ0.

(c). I argue

Ẋ0 = Ṅ0r{{w}|w} = {D(s)|s}∪{{w|w}}r{{w|w}} = {D(s)|s} .

The first equality is the definition of Ẋ0. The second holds by the

definition of Ṅ0. The third holds because {D(s)|s}∩{{w}|w} = ∅,

which holds because every D(s) has more than one element.

(d). I argue

ṗ0 = { (ṫ ], ṫ) | ṫ ] 6=W 0, ṫ=min{ṫ′|ṫ′⊃ṫ ]} }
= { (D(s]), D(s)) | D(s]) 6=W 0, D(s)=min{D(s′)|D(s′)⊇D(s])} }
= { (D(s]), D(s)) | s] 6={}, s=max{s′|s′⊂s]} }
= { (D(s]), D(s)) | s]∈{s⊕0, s⊕2} } .

The first equality is the definition of ṗ0. The second follows from part

(a). The third and fourth are rearrangements. 2
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D.2. Example 3’s family

Lemma D.2. (Example 3’s family) Let (W 0, Ṅ0) be the Cantor-set

tree that is defined along with S and D in Section 3.3. Then let E be

a function from {s|s 6={}} such that [1] E(0) = E(2) = ∅ and [2] for

every s with at least two elements, E(s) is a countable subset of D(	s),

where 	s is the sequence that is obtained from s by changing its first

element. Finally, let ΦE denote the triple (W 0, Ṅ0, {D(s)∪E(s)|s 6={}}).

Then the following hold.

(a) { (D(s), D(s])∪E(s])) | s]∈{s⊕0, s⊕2} } is the Ḟ E (9) of ΦE.

(b) ΦE is an AR∗ outcome-set preform (8).

(c) { (D(s)∪E(s), D(s)) | s 6={} } is the ME (14) of ΦE.

(d) ΦE is concise (13) iff (∀s 6={}) E(s) = ∅.

Proof. Derive Ṫ (2), Ẋ (4), and ṗ0 (7) from (W 0, Ṅ0).

(a). Take any ṫ and any ċ∈{D(s)∪E(s)|s 6={}}. I argue that

(ṫ, ċ) ∈ Ḟ E

⇔ (∃ṫ ]) ṫ=ṗ0(ṫ ]), ċ 6⊇ṫ, and ċ⊇ṫ ]

⇔ (∃ṫ ]) (∃s, s]) ṫ=D(s), ṫ ]=D(s]), s]∈{s⊕0, s⊕2}, ċ 6⊇ṫ, and ċ⊇ṫ ]

⇔ (∃s, s]) ṫ=D(s), s]∈{s⊕0, s⊕2}, ċ 6⊇D(s), and ċ⊇D(s])

⇔ (∃s) ṫ=D(s) and either

ċ 6⊇D(s) and ċ⊇D(s⊕0) or

ċ 6⊇D(s) and ċ⊇D(s⊕2)

⇔ (∃s, sc) ṫ=D(s), ċ=D(sc)∪E(sc), and either

D(sc)∪E(sc)6⊇D(s) and D(sc)∪E(sc)⊇D(s⊕0) or

D(sc)∪E(sc)6⊇D(s) and D(sc)∪E(sc)⊇D(s⊕2)

⇔ (∃s, sc) ṫ=D(s), ċ=D(sc)∪E(sc), and either

D(sc) 6⊇D(s) and D(sc)⊇D(s⊕0) or

D(sc) 6⊇D(s) and D(sc)⊇D(s⊕2)

⇔ (∃s, sc) ṫ=D(s), ċ=D(sc)∪E(sc), and either

sc 6⊆s and sc⊆s⊕0 or

sc 6⊆s and sc⊆s⊕2
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⇔ (∃s, sc) ṫ=D(s), ċ=D(sc)∪E(sc), and either

sc=s⊕0 or

sc=s⊕2 .

The first equivalence is the definition (9) of ḞE, and the second follows

from Lemma D.1(d). The next two are rearrangements. The fifth holds

because ċ was taken to be an element of {D(s)∪E(s)}. The sixth will be

justified in the following paragraph. The last two are rearrangements.

To justify the sixth equivalence, this paragraph shows that, for any s1

and s2, and for any countable set E⊆W , D(s1)∪E⊇D(s2) iff D(s1)⊇D(s2).

The reverse direction is obvious. To show the contrapositive of the for-

ward direction, suppose that D(s1) 6⊇D(s2). Either [1] there exists an

i (no larger than the minimum of the lengths of s1 and s2) such that

s1i 6=s2i or [2] there does not. In [1], D(s1)∩D(s2) 6=∅. Hence D(s2)rD(s1) is

uncountable because it equals D(s2). In [2], the assumption D(s1)6⊇D(s2)

implies that s1⊃s2, which implies that D(s2)rD(s1) is uncountable. In

either case, the uncountability of D(s2)rD(s1) and the countability of E

imply E 6⊇D(s2)rD(s1). Hence D(s1)∪E 6⊇D(s2).

(b). (8a) holds by Lemma D.1(b). (8b) holds by inspection.

(8c). By Lemma D.1(c), we may let D(s) be an arbitrary element of

Ẋ0. I argue that

{ D(s)∩ċ | ċ∈Ḟ E(s) }
= { D(s)∩(D(s])∪E(s])) | s]∈{s⊕0, s⊕2} }
= { (D(s)∩D(s])) ∪ (D(s)∩E(s])) | s]∈{s⊕0, s⊕2} }
= { D(s]) ∪ (D(s)∩E(s])) | s]∈{s⊕0, s⊕2} }
= { D(s]) ∪ ∅ | s]∈{s⊕0, s⊕2} }
= (ṗ0)−1(D(s)) .

The first equality follows from part (a). The second equality is a re-

arrangement. The third holds because D(s)⊇D(s]). The fourth will be

proved in the following paragraph. The last holds by Lemma D.1(d).

The fourth equality requires two cases. On the one hand, if s={},
then s] is either 0 or 2 and the definition of E states that both E(0) and

E(2) are empty. On the other hand, suppose s 6={}. I argue

D(s)∩E(s]) ⊆ D(s)∩D(	s ]) ⊆ D(s)∩D(	s) = ∅ .
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The first inclusion follows from the definition of E. The second inclusion

follows from D(	s ])⊆D(	s), which follows from s]∈{s⊕0, s⊕2}. The

equality holds because s and 	s differ in their first element.

(8d). By Lemma D.1(c), let D(s) be an arbitrary element of Ẋ0. By

part (a), it only needs to be shown that the two elements of

Ḟ E(D(s)) = { D(s⊕0)∪E(s⊕0), D(s⊕2)∪E(s⊕2) }

are disjoint. On the one hand, if s={},

[D({}⊕0)∪E({}⊕0)] ∩ [D({}⊕2)∪E({}⊕2)]

= [D(0)∪E(0)] ∩ [D(2)∪E(2)]

= D(0) ∩ D(2) = ∅ ,

where the second equality follows from the definition of E. On the other

hand, if s 6={},

[D(s⊕0)∪E(s⊕0)] ∩ [D(s⊕2)∪E(s⊕2)]

⊆ [D(s⊕0)∪D(	s⊕0)] ∩ [D(s⊕2)∪D(	s⊕2)]

= ∅ ,

where the set inclusion holds by the definition of E, and where the

equality holds because s⊕0, 	s⊕0, s⊕2, and 	s⊕2 are four distinct

sequences of the same length.

(8e). Part (a) implies that (Ḟ E)−1 is single-valued. Thus condition

(a) of Lemma A.5 holds. Hence Lemma A.5(a⇒b) implies (8e).

(c). Take any s 6={}. I argue

ME(D(s)∪E(s))

= [D(s)∪E(s)] ∩ ∪(Ḟ E)−1(D(s)∪E(s))

= [D(s)∪E(s)] ∩ D(s−)

= [D(s)∩D(s−)] ∪ [E(s)∩D(s−)]

= D(s) ∪ [E(s)∩D(s−)]

= D(s) ∪ ∅ ,

where s− is the sequence derived from s 6={} by omitting its last com-

ponent. The first equality is the definition of ME. The second follows

from part (a). The third is a rearrangement. The fourth holds because

D(s)⊆D(s−). The fifth must be justified in two cases. First, if s has one
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element, then E(s) = ∅ by the definition of E. Second, if s has more

than one element, I argue

E(s)∩D(s−) ⊆ D(	s)∩D(s−) ⊆ D(	s−)∩D(s−) = ∅ .

The first inclusion follows from the definition of E. The second inclu-

sion holds because [1] 	s− is well-defined because s has more than one

element and [2] D(	s)⊆D(	s−). The equality holds because 	s− and s−
differ in their first element.

(d). I argue

ΦE is concise(72)

⇔ [ Ḟ E(Ẋ0) = {D(s)∪E(s)|s 6={}} and

(∀s 6={}) ME(D(s)∪E(s)) = D(s)∪E(s) ]

⇔ (∀s 6={}) ME(D(s)∪E(s)) = D(s)∪E(s)

⇔ (∀s 6={}) D(s) = D(s)∪E(s)

⇔ (∀s 6={}) E(s) = ∅ .

The first equivalence follows from Lemma 3.1. The second equivalence

holds because

ḞE(Ẋ0) = ḞE({D(s)|s})
= ∪{ Ḟ E(D(s)) | s }
= ∪{ {D(s])∪E(s])|s]∈{s⊕0, s⊕2}} | s }
= { D(s])∪E(s]) | s] 6={} } ,

where the first equality follows from Lemma D.1(c), the third equality

follows from this lemma’s part (a), and the other two equalities are

rearrangements. Returning to (72), the third equivalence follows from

this lemma’s part (c). The reverse direction of the fourth equivalence

is obvious. The forward direction holds because

D(s)∩E(s) = ∅ .

Proving this requires two cases. If s has one element, then E(s) = ∅
by the definition of E. If s has more than one element, then D(s)∩E(s)

⊆ D(s)∩D(	s) = ∅ by the definition of E and the fact that s and 	s

differ in their first element. 2
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Corollary D.3. (Example 3) Let (W 0, Ṅ0) be the Cantor-set tree

that is defined along with S and D in Section 3.3. Let Φ3 denote the

triple

(W 0, Ṅ0, {D(s)|s/∈{{}, 22}}∪ {D(22)∪{.02}} ) .

(a) The Ḟ 3 (9) of Φ3 is

{ (D(s), D(s])) | s 6=2, s]∈{s⊕0, s⊕2} }
∪ { (D(2), D(20)), (D(2), D(22)∪{.02}) } .

(b) Φ3 is an AR∗ outcome-set preform (8).

(c) .02 is an immaterial outcome in the choice D(22)∪{.02}.
(d) Φ3 is not concise (13).

Proof. Define E by setting E(22) = {.02} and by setting E(s) = ∅ at

every other nonempty s. Since E(22) ⊆ D(02) = D(	2), this E satisfies

the assumption of Lemma D.2. Thus we may apply Lemma D.2 at

ΦE = Φ3. In particular, part (a) follows from Lemma D.2(a). Similarly,

part (b) follows from Lemma D.2(b). Further, part (c) holds because

.02 /∈ D(2) and {D(2)} = (Ḟ 3)−1(D(22)∪{.02}) by part (a). Finally, part

(d) follows from part (c) and Lemma 3.1. (Alternatively, parts (c,d)

can be derived from Lemma D.2(c,d).) 2

Corollary D.4. (Example 1) Let (W 0, Ṅ0) be the Cantor-set tree

that is defined along with S and D in Section 3.3. Let Φ1 denote the

triple

(W 0, Ṅ0, {D(s)|s/∈{}}) .

(a) The Ḟ 1 (9) of Φ1 is { (D(s), D(s])) | s]∈{s⊕0, s⊕2} }.
(b) Φ1 is a concise (13) AR∗ outcome-set preform (8).

Proof. Define E by setting E(s) = ∅ at every nonempty s. Since this

E satisfies the assumption of Lemma D.2, we may apply Lemma D.2 at

ΦE = Φ1. In particular, part (a) follows from Lemma D.2(a). Further,

part (b) follows from Lemma D.2(b,d). 2

D.3. Example 2’s family

Lemma D.5 does not assume the Cantor-set tree used elsewhere in

this Appendix D. Its argument is easier to see at an abstract level.
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Lemma D.5. Let (W, Ṅ, Ċ) be an AR∗ outcome-set preform (8) with

its Ṫ (2) and Ḟ (9). Further let

A+ = { W⊇a⊃∅ | (/∃ṫ) a⊇ṫ }

and let Ċ+ be a nonempty subcollection of A+. Then the following hold.

(a) Ḟ is also derived (9) from (W, Ṅ, Ċ∪Ċ+).

(b) (W, Ṅ, Ċ∪Ċ+) is a non-concise (13) AR∗ outcome-set preform (8)

in which all the members of C+ are nowhere-feasible.

Proof. Derive ṗ (7) from (W, Ṅ). Derive Ḟ+ (9) from (W, Ṅ, Ċ∪Ċ+).

Before proceeding with parts (a) and (b), I argue

(∀ċ+∈Ċ+) (Ḟ+)−1(ċ+) =(73)

{ ṫ | ċ+ 6⊇ṫ and (∃ṫ ]∈ṗ−1(ṫ)) ċ+⊇ṫ ] } = ∅ .

Accordingly, take any ċ+∈Ċ+. The first equality follows from the def-

inition of Ḟ+. The second equality follows from (/∃ṫ ]) ċ+⊇ṫ ], which

follows from Ċ+⊆A+ and the definition of A+.

(a). Note that

(∀ċ∈Ċ) (Ḟ+)−1(ċ) = { ṫ | ċ 6⊇ṫ and (∃ṫ ]∈ṗ−1(ṫ)) ċ⊇ṫ ] } = Ḟ−1(ċ) ,

where the first equality follows from the definition of Ḟ+ and the second

equality follows from the definition of Ḟ . Also note that

(∀ċ+∈Ċ+rĊ) (Ḟ+)−1(ċ+) = ∅ = Ḟ−1(ċ+) ,

where the first equality follows from (73) and the second equality fol-

lows from the fact that Ḟ is a subset of Ṫ×Ċ. These two observations

together imply that (∀ċ′∈Ċ∪Ċ+) (Ḟ+)−1(ċ′) = Ḟ−1(ċ′). Thus Ḟ+ = Ḟ .

(b). By assumption, (W, Ṅ, Ċ) satisfies the five components of the

definition (8) of a preform. This paragraph derives the five components

for (W, Ṅ, Ċ∪Ċ+). (8a) follows from (8a) for (W, Ṅ, Ċ) because (8a)

only concerns the tree (W, Ṅ). (8b) holds because [1] Ċ is a collection

of nonempty subsets by (8b) for (W, Ṅ, Ċ) and [2] Ċ+ is a collection of

nonempty subsets of W by Ċ+ ⊆ A+ and the definition of A+. (8c-e)

follow from (8c-e) for (W, Ṅ, Ċ) because of part (a).

(73) implies that every element of Ċ+ is nowhere-feasible. Thus,

since Ċ+ 6= ∅ by assumption, (W, Ṅ, Ċ∪Ċ+) has at least one nowhere-

feasible choice. Hence, the preform is not concise by Lemma 3.1. 2
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Lemma D.6. (Example 2’s family) Let (W 0, Ṅ0) be the Cantor-set

tree that is defined along with S and D in Section 3.3. Next let Ċ+ be a

nonempty collection of nonempty countable subsets of W 0. Then

(W 0, Ṅ0, {D(s)|s 6={}}∪Ċ+ )

is a non-concise (13) AR∗ outcome-set preform (8) in which all the

elements of Ċ+ are nowhere-feasible choices.

Proof. Define A+ as in Lemma D.5. This paragraph shows that Ċ+

(as defined in this lemma’s statement) is a nonempty subcollection of

the A+. Ċ+ is nonempty by definition. Further, Lemma D.1(a) implies

A+ = { W 0⊇a⊃∅ | (/∃s) a⊇D(s) } .(74)

Now take any ċ+∈Ċ+. By (74), it suffices to show that [1] ċ+ is a

nonempty subset of W 0 and that [2] (/∃s) ċ+⊇D(s). The former holds

by the definition of Ċ+. The latter holds because ċ+ is countable by

the definition of Ċ+ and because every D(s) is uncountable.

I now apply Lemma D.5 to (W 0, Ṅ0, {D(s)|s}).4 (W 0, Ṅ0, {D(s)|s}) is

a preform by Lemma D.4(b). This and the previous paragraph establish

Lemma D.5’s assumptions. Thus Lemma D.5(b) implies this lemma’s

conclusion. 2

Corollary D.7. (Example 2) Let (W 0, Ṅ0) be the Cantor-set tree

that is defined along with S and D in Section 3.3. Then

(W 0, Ṅ0, {D(s)|s 6={}}∪{{1}})
is a non-concise (13) AR∗ outcome-set preform (8) in which {1} is a

nowhere-feasible choice.

Proof. Apply Lemma D.6 at Ċ+ = {{1}}. 2
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