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Abstract
Heuristics are often invoked in the philosophical, psychological, and cognitive science liter-
atures to describe or explain methodological techniques or “shortcut” mental operations that
help in inference, decision-making, and problem-solving. Yet there has been surprisingly little
philosophical work done on the nature of heuristics and heuristic reasoning, and a close inspec-
tion of the way(s) in which “heuristic” is used throughout the literature reveals a vagueness
and uncertainty with respect to what heuristics are and their role in cognition. This dissertation
seeks to remedy this situation by motivating philosophical inquiry into heuristics and heuristic
reasoning, and then advancing a theory of how heuristics operate in cognition. I develop a
positive working characterization of heuristics that is coherent and robust enough to account
for a broad range of phenomena in reasoning and inference, and makes sense of empirical
data in a systematic way. I then illustrate the work this characterization does by considering
the sorts of problems that many philosophers believe heuristics solve, namely those resulting
from the so-called frame problem. Considering the frame problem motivates the need to gain a
better understanding of how heuristics work and the cognitive structures over which they oper-
ate. I develop a general theory of cognition which I argue underwrites the heuristic operations
that concern this dissertation. I argue that heuristics operate over highly organized systems of
knowledge, and I offer a cognitive architecture to accommodate this view. I then provide an
account of the systems of knowledge that heuristics are supposed to operate over, in which I
suggest that such systems of knowledge are concepts. The upshot, then, is that heuristics oper-
ate over concepts. I argue, however, that heuristics do not operate over conceptual content, but
over metainformational relations between activated and primed concepts and their contents. Fi-
nally, to show that my thesis is empirically adequate, I consider empirical evidence on heuristic
reasoning and argue that my account of heuristics explains the data.

Keywords: Heuristics; concepts; mental representation; cognition; cognitive architecture;
relevance; the frame problem; reasoning; inference
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Chapter 1. Introduction 3

1.1 Dissertation outline

As its subtitle suggests, this dissertation is an investigation into how the mind works. How-

ever, its goal is not as lofty as attempting to describe how the mind works in toto. Rather, this

dissertation investigates only a specific aspect of how the mind works, namely how heuristics

operate in cognition. Heuristics are generally understood as effective shortcut rules or proce-

dures that require little cognitive resources to be deployed. In this dissertation, I argue that

heuristics are ways to exploit the organization of mental concepts, and it is this that makes

heuristics powerful shortcut procedures. More specifically, I do four things in this dissertation:

(i) I motivate philosophical inquiry into heuristic reasoning and develop a characterization of

“heuristic” that serves the practical interests of philosophy and cognitive science; (ii) I describe

a cognitive architecture that I argue facilitates heuristic operations; (iii) I draw implications for

a related and important philosophical problem, namely the so-called frame problem; and (iv) I

illustrate how my thesis is empirically adequate.

Chapter 2 is solely devoted to task (i). Interest in heuristics in cognitive science exploded in

the advent of the computational theory of mind, which encouraged a specific understanding of

what is required of computational cognition: Feasible computation requires computationally

tractable operations, and heuristics appear to be the perfect candidates to provide them. Yet,

a survey of contemporary philosophical and cognitive science literatures reveals that different

authors employ “heuristic” in ways that deviate from one another, and are sometimes incon-

sistent with one another. Given its widespread use in cognitive science, it is striking that there

does not appear to be a consensus on what phenomena “heuristics” or “heuristic processes”

refer to. In response, this dissertation considers a number of accounts found in the literature.

The most common accounts of “heuristic” assert something to the effect that “heuristics are

processes that do not guarantee correct outcomes”, or “heuristics are operations that do not op-

timize”. These accounts, however, are merely perfunctory, and I find them to be unsatisfactory

since the contexts in which there exist processes or operations that guarantee correct outcomes

or that optimize are not typical of real-world situations. I go on to consider some positive
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accounts of “heuristic”, including the influential accounts of George Pólya (1957), Herbert

Simon (e.g., Simon, 1957; Simon & Newell, 1958; Simon, Newell, Minsky, & Feigenbaum,

1967), Daniel Kahneman and Amos Tversky (e.g., Kahneman, Slovic, & Tversky, 1982a),

and Gerd Gigerenzer (e.g., Gigerenzer, Todd, & the ABC Research Group, 1999). These re-

searchers are not univocal with respect to how they characterize “heuristic”, but considering

them allows me to draw a number of distinctions between different kinds of heuristics. Specif-

ically, I distinguish between computational, perceptual, and cognitive heuristics; and between

methodological and inferential heuristics. These distinctions allow me to hone in on a cluster

of notions that is consistent with the influential positive accounts found in the literature, and

which puts me in a position to develop a working characterization of “heuristic” of my own:

Heuristics are cognitive procedures that satisfice (i.e., set a reachable aspiration level rela-

tive to the goals of the agent), and that require little cognitive resources for their recruitment

and execution; they operate by exploiting informational structures. This working definition is

developed with the aim of being coherent and robust enough to account for a broad range of

phenomena in reasoning and inference. To the extent that my account is successful, we will

better understand how the mind works and how heuristics fit within the conceptual structure of

cognitive science.

Chapter 3 addresses tasks (ii) and (iii). Having a working definition of heuristics, I illustrate

the work it does for us. I begin by considering a problem that many philosophers believe

heuristics solve, namely the frame problem. However, in order to appreciate the role heuristics

are supposed to have in solving the frame problem, we must gain an understanding of how

heuristics work in cognition and the structures they operate over.

Generally understood, the frame problem is the problem of determining which of a poten-

tially infinite number of beliefs are relevant to the task at hand. However, the frame problem

actually constitutes a set of closely related problems. I expound various aspects of the frame

problem and discuss their bearing on this dissertation. We will see that the controversy has to

do with the idea that the frame problem poses a tractability problem for computational cogni-
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tion.

Jerry Fodor (1983, 1987, 2000) believes that the frame problem (generally understood) is

intractable, and therefore detrimental to computational cognitive science. Yet, since heuris-

tics are generally understood to ensure computational tractability, heuristics are often invoked

to circumvent the frame problem. Philosophers such as Peter Carruthers (2006a, 2006c) and

Richard Samuels (2005, forthcoming) suggest that heuristics can serve as techniques that pick

out computationally feasible subsets of information to be brought to bear on cognitive tasks. I

contend, however, that merely pointing to heuristics to circumvent the frame problem reveals

a misunderstanding of the problem. For the frame problem is not only a problem of explain-

ing how computationally feasible subsets of information can be brought to bear on cognitive

tasks, it is also a problem of explaining the reasonable levels of success that humans enjoy in

determining what information is relevant to cognitive tasks; circumscribing what information

is to be considered in a computationally tractable way does not necessarily ensure that what

gets considered is in fact relevant.

I then proceed to investigate the kind of cognitive architecture that is able to facilitate

heuristic processes. I argue that heuristics operate within domain-general cognition by exploit-

ing informationally rich, specialized systems of knowledge. Heuristics can thus be fast and

frugal processes in virtue of these epistemic structures (what I call k-systems), since the lat-

ter shoulder much of the informational burden of computational cognition. If it turns out that

the assumptions about cognitive architecture which underlie my account of heuristics help in

solving, or otherwise circumventing, the frame problem, that is reason to suppose that those

assumptions are plausible.

In chapter 4, I continue with task (iii). An analysis reveals that concepts are the cognitive

structures that fulfill the role of k-systems. Nevertheless, the understanding of the nature of

concepts I adopt is unlike many of the common philosophical theories. Rather, it is an adap-

tation of a theory envisioned by psychologist Lawrence Barsalou (1999, 2008b, 2009). Barsa-

lou’s account is unlike many of the leading philosophical accounts insofar as it is grounded
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in perception rather than nonperceptual cognition or a “language of thought” hypothesis. The

language of thought hypothesis claims that thought consists of the tokening of representations

in a mental language (“Mentalese”), which possesses a productive and combinatorial syntax

(as well as a semantics) to which cognitive operations are sensitive. Thus, following Alan Tur-

ing’s (1936-7) idea of computation, the language of thought hypothesis postulates that thinking

consists in syntactic operations defined over Mentalese representations. Barsalou, on the other

hand, departs from this hypothesis by claiming that concepts are not amodal, formal represen-

tations, but are partly constituted by collections of neural patterns in the perceptual centres of

the brain that were originally activated upon perceiving instances of referents picked out by the

concepts.

I show how Barsalou’s theory of concepts is closely related to a view that many philoso-

phers, psychologists, and cognitive scientists have converged on, namely the file model of

cognition. According to the file model, concepts are mental “files” that contain collections of

information about the entities in their extension. Barsalou’s theory of concepts may be under-

stood as a psychologically and biologically plausible account of how concepts exhibit the kind

of structure and organization envisioned by the file model. As I show, however, Barsalou’s

theory is not wholly compatible with the file model. I therefore offer a critical assessment of

each account, which leads to certain modifications and qualifications. The result is a reconciled

and more robust theory of concepts: Concepts are highly organized collections of linguistically

coded and perceptual information. This theory of concepts will not be fully defended, for it is

beyond the scope of this dissertation to offer such a defense. However, since my proposed cog-

nitive architecture enables us to model heuristic cognition, my reliance on Barsalou’s model

is justified insofar as we are able to explain a wide range of phenomena (which, again, is a

general aim of this dissertation).

What my theory of concepts and cognitive architecture implies for heuristic cognition is that

the informational content of our concepts is organized in such a way that there exist patterns of

relations among our activated and primed concepts. I contend that these informational relations
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guide and constrain heuristic operations. More precisely, I argue that heuristics do not operate

over conceptual content; rather, they operate over the higher-order structural relations that exist

between activated and primed concepts and their content. Such higher-order structural relations

embody metainformation about the concepts in question, and this is what enables heuristics to

be computationally frugal.

In chapter 5 I turn to task (iv). I illustrate how the account of heuristics developed to this

point explains some of the empirical data in the psychological literature. Although the literature

on heuristic reasoning is vast, I take up some of the evidence provided by the leaders in this kind

of research, namely that provided by Kahneman and Tversky, and Gigerenzer. Specifically, I

discuss two of Kahneman and Tversky’s most developed heuristics (Representativeness and

Availability) and two of Gigerenzer’s most developed heuristics (the Recognition heuristic and

Take the Best). I illustrate that the empirical data for each of these purported heuristics can

be understood as arising from cognitive operations over inherent relations within and between

one’s concepts and their content. This serves as additional support for my thesis. In addition,

this suggests that further empirical investigation can reveal the extent to which my thesis is

correct: Once the content of and relations between one’s concepts is determined, we can make

predictions about what heuristics one will employ and what inferences or judgments one will

thereby make.

Chapter 6 is the concluding chapter in which I return to an aspect of task (iii) that I have

left unaddressed, namely how relevance is determined in cognition. In addressing this matter,

I discuss what relevance is, and expound an influential theory developed by Daniel Sperber

and Deirdre Wilson (1982, 1986/1995). I offer a reinterpretation of Sperber and Wilson’s

theory within the framework of cognition developed in this dissertation. This enables me to

assess the role of heuristics in making determinations of relevance, as well as to explain the

reasonable levels of success exhibited by humans in judging what is and is not relevant in their

cognitive tasks. I then argue that our conceptual wherewithal predetermines what I call de

facto relevance (cf. Gabbay & Woods, 2003). De facto relevance, as I explain, arises from
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the extant relations between activated and primed concepts and their content. I conclude that

humans do not actually solve the problem of determining relevance; and so heuristic solutions

as traditionally conceived to this problem ipso facto are empty. However, I go on to suggest that

my thesis offers a more substantial understanding of how we pick out what is relevant in our

cognitive tasks: de facto relevance happens to reflect, in robust but fallible ways, what really

is relevant to the task at hand. Heuristics, operating over the informational relations among

concepts, thus bring to bear an appropriate subset of (mostly) relevant beliefs on our cognitive

tasks.

1.2 Computational cognition

I should take the time here to point out that throughout this dissertation I will be assuming,

minimally, that the mind is an information processor. More specifically, I will be assuming

that the mind is a computer, though I do not commit to classical computationalism. Indeed, the

theory of concepts I advance in this dissertation runs contrary to the classical computationalism

of the language of thought hypothesis. Nevertheless, I intend to leave open the matter of

whether and the extent to which classical computationalism holds for cognition generally.

I will be advancing a central systems view of cognition which understands the mind to

possess a holistic system, wherein there is free flow of conceptual information and wherein

any conceptual information can bear on any other (to be discussed in chapter 3). Although I

will not be arguing the matter here, I assume that the massive modularity hypothesis—i.e., the

hypothesis that the mind is largely or completely composed of a large collection of individ-

ual, domain-specific computational systems (modules)—is incompatible with my thesis (and

moreover, that it is in fact wrong). However, my thesis is amenable to Fodor’s (1983) view that

the mind is comprised of a central system in addition to a number of domain-specific, informa-

tionally encapsulated, input-output modules dedicated to peripheral functions, such as vision

and language comprehension.
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1.3 Philosophy in cognitive science

Some philosophers might consider some of the work done in this dissertation as not falling

under the heading of philosophy. Of course, I do not believe that I am guilty of not doing

philosophy. I do, however, believe that the kind of work undertaken in this dissertation may

be mistakenly thought of as not being philosophy because the role of philosophy vis-à-vis

cognitive science is not well understood. The confusion about the role of philosophy vis-à-vis

cognitive science is no doubt partly attributable to cognitive science being a relatively young

field of study, still without a standard doctrine. Yet it seems that philosophy has always had a

rather uncertain role as a discipline of cognitive science (Bechtel, 2010; Brook, 2004).

To clarify the role of philosophy vis-à-vis cognitive science, Andrew Brook (2004) distin-

guishes philosophy in cognitive science from philosophy of cognitive science. According to

Brook, philosophy of cognitive science is a branch of philosophy of science proper, as it seeks

to investigate how scientists do cognitive science. As such, philosophy of cognitive science is

better understood (by philosophers and cognitive scientists) than philosophy in cognitive sci-

ence. Philosophy in cognitive science, on the other hand, is the philosophical investigation of

issues concerning human cognition, such as mind and language, which are also studied empir-

ically by psychology, linguistics, and other sciences. It is thus philosophy in cognitive science

that is poorly understood.

However, William Bechtel (2010) has identified two ways in which philosophers have con-

tributed to (and continue to contribute to) what Brook calls philosophy in cognitive science:

Philosophers have informed and advanced work on the mind-body problem, or in its most con-

temporary incarnation, the problem of consciousness; and philosophers have offered philosoph-

ical treatments of mental representation, in terms of intentionality as well as representational

function. In the present dissertation, I believe I have contributed to philosophy in cognitive

science in the latter respect. Although I largely ignore issues pertaining to intentionality (al-

though see chapter 4, section 4.2.2.1), I discuss the nature of concepts and representations in

order to underwrite my theory of how heuristics work. Nevertheless, I believe that this disser-
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tation contributes to philosophy in cognitive science in more ways than that. The work I do in

this dissertation is philosophy, and so does not aim to offer new data, but it is an empirically

informed philosophy, drawing on work from empirical disciplines in cognitive science (espe-

cially psychology, but also research from artificial intelligence and computer programming, as

well as some from evolutionary anthropology). And I believe that this is how philosophy in

cognitive science must be undertaken. So-called “armchair” philosophy is now found to be

inadequate in many respects. We are at a time in which there are plenty of new and exciting

advances in the brain sciences. If anything, empirical data must be understood to constrain

philosophical inquiry. Indeed, what is found empirically to be the case should take precedence

over conceptual consistency argued from the armchair. But a more positive consequence is that

the constraining-relation can guide philosophical investigations. In this latter respect, however,

there is potential for a mutual constraining-relation—as empirical work guides philosophical

investigation, philosophical investigation can in turn potentially constrain empirical investiga-

tion. This, according to Daniel Dennett (2009), is how cognitive science can progress.

In light of these considerations, one might say that in this dissertation I adopt a naturalized

philosophy of mind, which in many ways departs from the traditional approach to the phi-

losophy of mind. Philosophers of mind have always discussed the nature of the mind and its

functions, but as the special sciences of cognition developed (psychology, linguistics, neuro-

science, etc.), the topics that were/are of interest to philosophers were/are seen by scientists to

bear little relevance to their empirical investigations. Indeed, “classic” philosophical problems

about the mind are often met today with a dismissive attitude (Bechtel, 2010; Brook, 2004;

Dennett, 2009). For example, philosophers of mind have often appealed to drawn out thought

experiments to argue for substantive conclusions about our concepts. Yet as Bechtel (2010) re-

marks, “In the context of cognitive science, with its ingenious research programs challenging

the notion of fixed concepts, the ensuing philosophical arguments often seem beside the point”

(p. 358).

Nevertheless, a naturalized philosophy of mind offers a way for philosophy to be accepted
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and have a central role in cognitive science. The approach that a naturalized philosophy of

mind takes is inspired by W. V. O. Quine’s (1969) idea of a naturalized epistemology. Quine’s

proposal was to situate epistemology within the empirical program of psychology, while still

addressing fundamental questions about knowledge and how it is acquired. In his own words

from a widely quoted passage: “Epistemology, or something like it, simply falls into place as a

chapter of psychology and hence of natural science. . . . But a conspicuous difference between

old epistemology and the epistemological enterprise in this new psychological setting is that

we can now make free use of empirical psychology” (pp. 82-83).

Quine’s view that we should replace traditional epistemology with psychology is not widely

accepted by contemporary epistemologists,1 and even Quine’s (1990) later views were more

moderate (R. Feldman, 2008). Nevertheless, there is at least a kernel of wisdom in Quine’s

naturalized epistemology that can be applied to how we approach the philosophy of mind. A

naturalized philosophy of mind benefits from the empirical research undertaken by the special

sciences by aiming to offer conclusions that have a direct bearing on the practice of cognitive

science. As Bechtel (2010) puts it,

a naturalized philosophy of mind would become the philosophy of cognitive sci-
ence and draw upon results in cognitive science as well as its own inquiries to
probe the nature of mental phenomena. . . . One might recognize philosophical
discussions conducted in a naturalistic manner not as arcane intellectual exercises,
but as theoretical and methodological contributions to cognitive science. As a
bonus, unlike other sciences subjected to philosophical inquiry, cognitive science
offers a two-way street: Its theoretical frameworks and findings are a resource
philosophers can draw upon to add nuance and techniques to their own subsequent
inquiries. (pp. 358-359)2

In this light, philosophy can contribute to and advance cognitive science by developing

theoretical frameworks for investigating and explaining specific cognitive phenomena. This is

1In his famous criticism of Quine, for instance, Jaegwon Kim (1988) points out that to adopt Quine’s natu-
ralized epistemology would be to abandon traditional epistemology altogether. For, as Kim argues, traditional
epistemology is interested in the epistemic support between our sensory experiences (our basic evidence) and our
beliefs about the world, and this involves questions pertaining to rationality, justification, and knowledge. What
Quine recommends, however, is to ignore such matters of epistemic support and investigate instead the causal
connections between our sensory experiences and our beliefs.

2We should take Bechtel’s use of “philosophy of cognitive science” as referring to “philosophy in cognitive
science” in Brook’s sense.
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what I aimed to achieve through this dissertation, as I offer a theoretical framework concerning

the architecture of cognition and the nature of concepts in order to explain how heuristics

work. In this way, I take Dennett’s advice: “If philosophers aren’t to do the sort of refutation

by counter-example and reductio ad absurdum that their training prepares them for, what is the

alternative? To take on the burden of working out an implication or two that is actually testable,

if not today, in the near future” (Dennett, 2009, p. 233).
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A quick survey of contemporary philosophical and cognitive science literatures reveals that

“heuristic” and its cognates are often used to label certain methods or procedures that guide in-

ference and judgment in problem-solving and decision-making. In more specific terms, heuris-

tics are commonly understood to be shortcut procedures that lead to results that may not be

optimal but are in some sense “good enough”. However, taking shortcuts carries risks. Though

heuristics are understood to generally produce satisfactory outcomes, they are not failsafe pro-

cedures, and thus they can result in errors or mistakes. But it is a trade-off: heuristics forego

optimal outcomes in favour of computational economy. Procedures that ensure correct or op-

timal outcomes are typically complex and difficult to carry out, whereas heuristics offer a way

to avoid such a computational burden—they are, after all, supposed to be shortcuts.

Since heuristics are believed to economize, and since heuristics generally produce satisfac-

tory outcomes, it is received wisdom that heuristics are a stock commodity in human cognition.

Yet a close inspection of the literature reveals that different authors employ “heuristic” in ways

that deviate from one another, and are sometimes inconsistent with one another. Given its

widespread use in philosophy and cognitive science, it is striking to see that there does not

appear to be a consensus on what phenomena “heuristics” or “heuristic processes” refer to. At

the same time, however, defining precisely what heuristics are is a difficult task; as Jonathan

St.B.T. Evans (2009) remarks, “The term ‘heuristic’ is deeply ambiguous” (p. 36). Since the

term is used in diverse ways in different disciplines, and its meaning has evolved over the years

(Gigerenzer & Todd, 1999), it is hard to pinpoint what “heuristic” exactly refers to. Indeed,

it may very well not express a single, unified concept. Nevertheless, we might settle for a

characterization broad enough to satisfy most of its uses, or at least some of the interesting

ones.

In this chapter, we will be introduced to a number of different meanings assigned to “heuris-

tic”. I will examine these meanings with an aim to develop a working characterization of my

own. I begin, in section 1, by briefly motivating the need for an appropriate understanding

of “heuristic”. In section 2, I discuss some negative characterizations that are often found in
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the literature. It is important that we begin by considering these negative characterizations,

since many authors often appear to place too much emphasis on what heuristics fail to do. The

most common definitions assert something to the effect of “heuristics are processes that do not

guarantee correct outcomes” or “heuristics are operations that do not optimize”. These types of

definitions tell us what heuristics do not do, but they do not really tell us anything about what

heuristics do do for us; in fact, as I shall argue, in certain contexts these definitions do not tell

us anything interesting at all. By analyzing these negative definitions, my aim is to get clear

on why we need a positive characterization of heuristics, as well as what an adequate, positive

characterization needs to be in order to get a decent grasp on what heuristics are and their role

in cognition.

Before offering my own positive characterization, however, I discuss some influential ac-

counts of heuristics in section 3. In particular, I discuss those offered by George Pólya, Herbert

Simon, Daniel Kahneman and Amos Tversky, and Gerd Gigerenzer. These authors are not

univocal with respect to how they characterize “heuristic”, but considering their accounts will

allow me to hone in on the positive elements offered by them. In section 4, I synthesize these

positive contributions. I draw a number of distinctions between different kinds of heuristics,

and then develop my working definition of the sorts of heuristics that are believed to be em-

ployed in human cognition. My goal is to offer an account of heuristics that is coherent and

robust enough to account for a broad range of phenomena in reasoning and inference,1 and thus

makes sense of empirical data in a systematic way.2 As we work through this chapter, it will

become obvious that the other accounts I survey—both positive and negative—do not provide

these benefits.

1In light of certain ambiguities with the terms “coherent” and “robust”, it should be understood that when I
employ these terms throughout this dissertation I mean them, as I say, in the sense of consistently accounting for,
or being applicable to, a broad range of phenomena.

2In chapter 5, I illustrate how the account of heuristics developed in this chapter, and elaborated upon in
following chapters, accounts for empirical data.
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2.1 Why we need an appropriate characterization of “heuris-
tic”

Given its widespread use within (and without) philosophy and cognitive science, it is intriguing

that there is little concern for a fully developed characterization of “heuristic”. The lack of a

developed characterization of the notion is disconcerting in two ways. First, since heuristics

have rapidly made their way as central tenets in theories in cognitive science, we might expect

something that approaches a refined and robust explication of what is meant by “heuristic”.

But, as far as I can tell, no one has produced such an explication. If cognitive science is in-

deed a science, then careful consideration should be taken to delimit heuristics qua entities of

scientific theories. To put it another way, if cognitive science is in the business of discovering

and studying the kinds within its domain, pains should be taken to appropriately characterize

these kinds (Carruthers, 2006a; Pylyshyn, 1999), among which heuristics are included. For

example, the dual-processes theory of cognition, which lately has been gaining popularity (and

to be briefly discussed below), invokes heuristics to explain certain kinds of cognitive pro-

cesses, namely what is known as “type 1” processes (see e.g., Wason & Evans, 1975; J. Evans

& Over, 1996; J. Evans, 2009). Other psychological theories, such as that propounded by

the heuristics and biases program (also to be discussed below), are based on the presumption

that many of our judgments follow from a small set of basic heuristics (e.g., Kahneman et al.,

1982a). Furthermore, heuristics are sometimes invoked to suggest ways to circumvent prob-

lems of determining what, of all the available information, should be considered in a cognitive

task (Carruthers, 2006a, 2006c; Samuels, 2005, forthcoming)—a problem known as the frame

problem (to be discussed in chapter 3). Being clear on what phenomena are picked out by

“heuristic” should be of concern to both scientists and philosophers who wish to make sense

of, and even adopt, such theories of cognition.

Secondly, many arguments—descriptive and normative—are made on the premise that

heuristics are ubiquitous in human cognition. Such arguments try to decide the extent to which

humans rely on heuristics, what heuristics people employ in what circumstances, and whether
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it is rational to do so. But vagueness (or, in the best case, ambiguity) in the concepts employed

by a theory will be inherited by any arguments based on the theory. Unclarity in what heuris-

tics are in the first place therefore impedes progress on matters involving the purported uses

and abuses of heuristics in judgment, inference, and decision-making. In the face of vagueness

(or ambiguity) in concepts, the arguments concerning human reasoning may very well lack a

sufficient basis to be decisive. For instance, both the heuristics and biases research program

and the fast and frugal heuristics research program (again, to be discussed below) assert that

heuristics are pervasive in human cognition and have a substantial role in our judgment and

decision-making. But if we do not know what cognitive processes “heuristics” refer to, then it

is unclear whether and to what extent purported heuristics have a role in our cognitive lives. In-

deed, it is sometimes hard to understand what claims are exactly being made by these research

programs (cf. Samuels, Stich, & Faucher, 2004). Furthermore, there has been a long-standing

debate between those who believe that heuristic strategies are or can be rational, and those

who believe that rationality resides in the dictates of some normative theory which heuristic

strategies do not meet (see e.g., Simon, 1957; Gigerenzer, 1996; Kahneman & Tversky, 1996;

Samuels, Stich, & Bishop, 2002). But once again, if it is unclear what either party means by

“heuristic” or “heuristic process”, then it is equally unclear what the force of the arguments

from either side of the debate is, or precisely what is being claimed.3

These two problems act as barriers that inhibit the advancement of research on cognition.

To overcome these barriers, we need an account of heuristics that is coherent and robust enough

to plausibly fit a natural kind,4 on the one hand, as well as to provide clarity in the objects of

3It is instructive to note that Samuels et al. (2002) argue that the debate—which they dub the “rationality
wars”—is not really much of a debate at all, since upon close inspection both parties actually agree: heuristics
can sometime produce good outcomes, but can also lead to systematic errors, depending on the context. Thus, it
must be recognized, I think, that much of the debate may very well stem from both sides not being clear on what
heuristics are in the first place.

4The way in which “natural kind” is construed can vary quite widely. For the purposes of this dissertation,
I follow Richard Samuels (2009) in adopting Richard Boyd’s (1991) notion of “homeostatic property clusters”.
As Samuels explains, on this account a kind is natural if (i) it is associated with a range of particular charac-
teristics which tend to be co-instantiated by instances of the kind (though these characteristics are not necessary
conditions); (ii) there is some underlying causal mechanisms and constraints whose operations explain the co-
instantiation of the characteristics of (i); and (iii) it is not the characteristics of (i) that define the kind, but the
underlying causal mechanisms and constraints of (ii). For the remainder of this dissertation, I should be taken to
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study, on the other. To the extent that an account of heuristics is successful with respect to

these tasks, we will better understand how the mind works and how heuristics fit within the

conceptual structure of cognitive science. As we shall see, the working definition of “heuristic”

offered in this chapter will be developed such that these conditions are satisfied.

2.2 Abuses of “heuristic”

Some authors attempt to make clear their intended meaning of the word “heuristic”. Other

researchers, however, do not even bother to provide a simple definition, taking its meaning

to be intuitive or obvious, when in fact it is not (cf. Simon’s remarks below). Indeed, it is

not uncommon for a book to be missing “heuristic” from its index, despite of the fact that

the term was mentioned throughout.5 Nevertheless, those authors who do provide definitions

almost always offer simple, merely perfunctory definitions, without any concern for whether

the implicated concept is coherent or robust. What I intend to do now is critically assess these

definitions of “heuristic”. My target will be negative definitions that characterize heuristics in

terms of what they fail to do, while ignoring any detailed explication of their positive aspects.

I will argue that such negative definitions do not provide an adequate understanding of what

heuristics are, especially within the context of practical, real-world problems—problems that

are of interest to cognitive science. More specifically, I will show that the definitions do not

apply sensibly to a range of important cases. Considering these negative definitions will thus

motivate the need for a positive characterization of heuristics. We will also get a clearer idea

of what an adequate, positive characterization needs to be if heuristics are to be interesting and

meaningful kinds within our theories of cognition.

refer to this view when I speak of natural kinds. According to Samuels, this is the most plausible view of natural
kinds, and the view that comports best with cognitive science research on cognitive architecture, and I tend to
agree (at least with the last part).

5One example is Michalewicz and Fogel’s (2000) book How to Solve It. Michalewicz and Fogel’s lack of con-
cern for a clear understanding of what heuristics are is especially alarming; the subtitle of their book is “Modern
Heuristics”!
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2.2.1 Heuristics vs. guaranteed correct outcomes

A common feature among almost all perfunctory accounts of heuristics is that they are neg-

atively defined (cf. Fodor, 2008, p. 116). A heuristic is thus understood to be deficient or

inadequate in some respect. Indeed, it is not uncommon to happen upon a definition that states

that heuristics are procedures that can produce good outcomes but do not guarantee correct so-

lutions (e.g., Dunbar, 1998) or do not always work (e.g., Fodor, 2008). At other times one finds

heuristics contrasted with algorithms (e.g., Richardson, 1998). Algorithm here is not meant as

a “procedure determined by a set of instructions that specify, at each moment, precisely what

is to be done next” (Simon et al., 1967, p. 18). If the latter were the case then the heuristic-

algorithm distinction6 would be meaningless for computer programming and artificial intelli-

gence (AI) research, as well as for human cognition provided that one subscribes to a version

of the computational theory of mind (CTM). Rather, in this context, algorithms are understood

as procedures that, when applied properly, invariably produce correct outcomes; hence, heuris-

tics are conceived simply as procedures that do not invariably produce correct outcomes. In

one textbook on cognition, it is claimed that a “hallmark” of a heuristic approach to solving a

problem is that “It will work part of the time or for part of the answer, but it is very unlikely to

furnish the complete, accurate answer” (Ashcraft, 2002, p. 465). Thus, in these sorts of defi-

nitions we find a distinction between heuristic processes and processes that are guaranteed to

produce correct answers or outcomes. I will refer to these latter as guaranteed-correct-outcome

(GCO) procedures.

Consider an example. In The Language of Thought, Jerry Fodor (1975) observes that a

failsafe method of understanding the message of a given utterance is to compute the gram-

matical relations exhibited by the sentence expressed by the utterance. He observes, however,

that although people presumably can infer messages in this way, they demonstrably often do

not. “What apparently happens,” Fodor claims, “is that grammatical relations are computed

only when all else fails. There exist heuristic procedures for sentence recognition which, in

6See Simon et al. (1967) for an informative discussion on the heuristic-algorithm distinction.
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effect, ignore grammatical relations and infer messages directly from lexical content, accept-

ing, thereby, the penalties of fallibility” (pp. 167-168). He asks us to consider sentences with

self-embeddings, such as “The boy the girl the man knew wanted to marry left in a huff”. With

enough time, patience, and insight into its grammatical structure, one is able to work out the

meaning of this sentence: The girl, whom the man knew, wanted to marry the boy who left in

a huff. We might notice, however, that this meaning is not easy to come to. Yet if we compare

“The boy the girl the man knew wanted to marry left in a huff” with the similarly structured

sentence “The boat the sailor the dog bit built sank”, we find the meaning of latter sentence

more transparent. According to Fodor, what seems to be going on is that the message intended

by “The boat the sailor the dog bit built sank” is inferred from background knowledge consid-

erations, such as that boats typically sink (but not dogs or sailors), that sailors typically build

boats (but not dogs), that it is more common to hear about dogs biting (as opposed to sailors),

and that it is more likely that a sailor would be bitten than a boat. This kind of analysis sug-

gests the plausibility of assigning a meaning to a sentence (like the one in question) without

engaging a syntactic structural description.

What Fodor’s remarks illustrate is a distinction between the sorts of mechanical computa-

tions that guarantee right answers (i.e., GCO procedures) from the sorts of shortcut procedures

(i.e., heuristics) that avoid having to undertake those mechanical computations.

In short, the computational load associated with the solution of a class of problems
can sometimes be reduced by opting for problem-solving procedures that work
only most of the time. Reliability is wagered for efficiency in such cases, but
there are usually ways of hedging the bet. Typically, heuristic procedures are tried
first; relatively slower, but relatively algorithmic, procedures are ‘called’ when
the heuristics fail. The way of marshaling the available computational resources
can often provide the optimal trade-off between the speed of computation and the
probability of getting the right results. (pp. 166-167)

This sort of characterization of heuristics is not surprising in light of the fact that there is

typically a risk of suffering negative consequences for cutting corners or taking shortcuts. As

Fodor remarks, “one can often get away with less than strict compliance with such requirements

[that guarantee a correct solution] so long as one is willing to tolerate occasional mistakes” (p.
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166). Yet it is not the intended purpose of heuristics to make mistakes, but rather to offer

a method of solving a problem that achieves computational economy. As Fodor understands

them, heuristics avoid certain computations within the representational or conceptual structures

of cognition (at least with respect to understanding sentences). In later chapters, we shall see

how important it is for heuristics to avoid computations within conceptual structures. The

present point, however, is that heuristics offer a way to cut down on the computations needed

to arrive at a desired outcome. In addition, as intimated by Fodor and as it is often claimed,

heuristics are able to deliver reasonable answers or solutions by exploiting the right information

in the right circumstances.

Acknowledging the benefits afforded by heuristic procedures is very important in under-

standing the nature of heuristics. For we would hesitate to call a procedure that invariably

leads to disaster a heuristic procedure; nor would we want to call a procedure that is irrelevant

to the task at hand a heuristic procedure. Yet such procedures very certainly would not guaran-

tee correct outcomes. Therefore, what heuristics fail to achieve (viz. reliably getting the right

results) should rightly be thought of as a corollary of a definition of “heuristic”, rather than

made to be an essential feature.

Nevertheless, notice from Fodor’s remarks that the benefits offered by heuristics are always

contrasted with associated “penalties” or risks—whatever good heuristics do, they do not al-

ways get things right. In this way, Fodor provides a particularly clear example of the attitude

toward heuristics that typically leads to negatively characterizing them in terms of what they

fail to do, or what they do not achieve. This type of definition can be summed up as follows.

H1 Although heuristics can provide certain benefits, they are procedures that do
not guarantee correct outcomes.

I will discuss how heuristics “can provide certain benefits” in more detail when I offer my

positive characterization below. For now, however, I will focus on the “do not guarantee correct

outcomes” part of this definition. In particular, I shall address the extent to which the claim that

heuristics are procedures that do not guarantee correct outcomes does useful work for us as a
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central part of a definition of heuristics. My argument will be that such a claim, by itself, does

not do the work that we ought to expect from a definition of heuristics, hence affirming the

comment recently made that what heuristics fail to achieve should be understood as a corollary

of our definition rather than as an essential feature.

GCO procedures are essentially formal operations. This is exhibited, for instance, by the

grammatical computations that generate the meaning of sentences. But the paradigm of GCO

procedures are the formal operations of mathematics or logic. For example, applying the rules

of division will guarantee that you will arrive at the correct answer to a given division prob-

lem of arithmetic; constructing truth-tables will guarantee a correct determination of whether

a given set of propositions is consistent; applying the basic axioms of probability theory to a

given chance set-up will guarantee a correct determination of chances or objective probabili-

ties.7 In general, GCO procedures necessitate the right answers, when applied correctly. Again,

in contrast to these GCO procedures, heuristics are supposed to be procedures that efficiently

produce outcomes or answers that may be good enough for one’s purposes, and that may very

well be correct, but will not guarantee that they will be correct. For example, randomly select-

ing a limited subset of a set of propositions and simply looking at its members to see if any

contradicts any other is a heuristic process to check the consistency of the superset of proposi-

tions; another heuristic process is to roughly estimate probabilities based on remembered past

experiences.

GCO procedures exist for problem tasks other than those proposed in logic or mathematics,

as we saw with respect to Fodor’s example. But there are other problem tasks in addition to

these that admit GCO procedures. Suppose your lamp does not light when you switch it on, and

you want to determine whether it needs to be replaced. Here is an algorithm that will guarantee

a correct determination: First, (i) check to see if the lamp is plugged in; if so, then (ii) check to

see if the bulb needs replacing (e.g., by testing it in another lamp that is known to be working);

7I say in each of these examples “a given ...” because certain initial conditions have to be met if the procedure
is to produce a correct outcome: the numbers in the division problem must belong to the set of rational numbers;
one must have the right initial probability assignments in the chance set-up problem.
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if not, then (iii) ensure that the power outlet is working properly; if so, then (iv) infer that the

lamp needs to be replaced. Of course, it might be easier and less time consuming to simply rely

on a heuristic that assumes that the lamp needs replacing if it is plugged in but does not light

when switched on. There are even algorithms for playing tic-tac-toe which guarantee either a

win or draw (Crowley & Siegler, 1993). Yet most people do not know of these GCO tic-tac-

toe algorithms, and use instead certain heuristics, such as “Always start in the centre square”

(Dunbar, 1998).

So far we have considered a small number of contexts in which there exist GCO algo-

rithms, as well as procedures that do not guarantee correct outcomes but may approximate

good outcomes, or at least produce satisfactory outcomes insofar as certain goals are met (e.g.,

computational efficiency); and these latter procedures we are calling “heuristic”. Within these

contexts H1 makes perfect sense. However, these contexts do not represent all possible, or

indeed common, circumstances. Of concern is the extent to which H1 is usefully applicable

within contexts that are of practical interest to cognitive science, namely typical real-world

contexts.

As we have observed, H1 is applicable in the paradigm case when there exists a known,

possible, feasible GCO procedure for a given problem. But H1 is also applicable when there

exists a known, possible GCO procedure that is not feasible, as when the GCO procedure

cannot be practically performed by a human (or even machine) because it is too complex, or

too time-consuming, or too taxing on cognitive (computational) resources. In this situation,

there can very well be procedures that do not guarantee correct outcomes, but can lead to good

or useful outcomes, and we might call such procedures heuristic. H1 can remain applicable

even when there is not a known GCO procedure for a given problem task, so long as there can

exist a GCO procedure in principle. This is the case for more complex tasks such as making a

good move in chess. Chess is a finite game and has a finite number of possible positions, and

there will be in principle a GCO procedure to determine the best move(s) at a given point in a

game. But there are far too many possibilities to compute for there to exist a known algorithm
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that would guarantee the best outcome. Heuristics are therefore the only viable procedures for

chess (Richardson, 1998). Again, these heuristics do not guarantee the best outcome, or even

a good outcome—one may lose the game in the end—but they are believed to generally result

in good outcomes.

Notice, however, that the problems for which H1 is usefully applicable are all well-defined

problems. Well-defined problems are problems that have discrete states and goals that are,

or can be in principle, known and understood. In other words, well-defined problems have

well-defined problem-spaces.8 Chess, tic-tac-toe, and problems in math and logic, all have

well-defined problem-spaces. This feature is especially conducive to generating algorithms

that guarantee correct outcomes. For not only are the goals of these problems understood and

known to be correct outcomes—that is, we know precisely what a correct outcome is—but

one can identify definite and discrete steps by which to navigate the problem space, getting

from one state to the next, so as to ultimately reach the goal state. This is what is meant by

a problem’s having a GCO procedure in principle—if the states and goals of a problem are

well-defined, then there will exist some procedure that will guarantee a correct outcome, even

if this requires exhaustive search of the problem-space.9

Nevertheless, even when we are engaged in solving well-defined problems, it is almost

always the case that the only alternative for us is to use heuristics in the sense of H1. The

reasons are epistemological: cognitive limitations or time constraints prevent us from carrying

out a GCO procedure, or there is just no known correct solution or no known GCO procedure

(notwithstanding that these may exist in principle, which is an ontological issue). Indeed,

the well-defined problems for which there are known GCO procedures are very few as it is

(Richardson, 1998). In this light, then, we can understand heuristics as procedures that do not

8A problem-space is an abstract representation of a problem consisting of discrete states, a goal state, and can
include operators that determine how to get from one state to another. See below for further discussion.

9Of course, the goal must be possible. For example, if in a game of chess there is no possibility for black to
win, then ipso facto there cannot be a correct outcome with respect to black winning the game. In these sorts of
situations, the goal may be shifted from winning the game to, perhaps, forcing a stalemate. If a stalemate is also
not possible, then there very well may not be a procedure that will guarantee a correct outcome for black. Indeed,
it is uncertain what is meant by “correct outcome” in this situation.
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guarantee correct solutions, but it seems to allow too much in. It is sort of like defining terminal

velocity as “A velocity slower than that of light”. Everything of interest with respect to terminal

velocities (i.e., macro-sized objects) travels slower than the speed of light. Similarly, (nearly)

everything of interest with respect to heuristic procedures (i.e., real-world cognition) does not

guarantee correct solutions. Thus, on this reading, we come to an important problem for H1:

the widespread claim that much of human cognition is heuristic appears uninteresting if not

trivially true, since much of our cognition cannot be anything but heuristic. I will call this the

triviality problem.

What makes matters worse, real-world problems are rarely well-defined. Instead, we usu-

ally find ill-defined problems in the real-world, which have undefined or indeterminate states

and/or goals; the problem-spaces for ill-defined problems therefore cannot be completely, or

sometimes even adequately, known, understood, or characterized. Ill-defined problems include

problems such as deciding whether to take a job offer, coming up with a feasible policy to

reduce carbon emissions, and solving a murder case. Because of their very nature, ill-defined

problems preclude the possibility of GCO procedures: The goals of these problems are often

sufficiently undefined such that it is unknown what a “correct” outcome would be, and this ipso

facto makes it impossible to generate any kind of process that would guarantee a correct out-

come. Moreover, even if an ill-defined problem has a sufficiently defined goal, such as finding

the murderer in a murder case, the means by which one would proceed to achieve this goal

would still be uncertain since the mediating states can still remain indeterminate, or we would

be unable to evaluate the steps taken. Solving a murder case thus has an ill-defined solution

space since it is often difficult, if not impossible, to tell whether the work one does on the case

brings one closer to or further from solving the case. It is important to note here that the matter

is not epistemological like the concerns mentioned above of not knowing or not being able to

perform GCO procedures. Rather, the matter here is ontological—there simply does not exist

a GCO for many ill-defined problems.

Since it does not make much sense to speak of correct outcomes for many ill-defined prob-
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lems, much less processes that guarantee correct outcomes, what sense can be made of the

claim made by H1, viz. that heuristics are procedures that do not guarantee a correct solu-

tion? If ill-defined problems do not allow for the evaluation of intermediate steps toward a

goal, and therefore in principle cannot have GCO procedures, then any and all procedures for

ill-defined problems are heuristic by definition. This is just another version of the triviality

problem identified above. The situation would not be so bad if it were not the case that the ma-

jority of real-world problems humans face are ill-defined and characteristically lack certainty.

However, we do not live in a tic-tac-toe world—for most of our problems, it is impossible to

determine what would count as steps toward a correct outcome, and nothing is guaranteed to

produce any given outcome. The strategies we employ when dealing with these real-world, ill-

defined problems will necessarily be heuristic. And, in fact, the situation appears to be worse.

For if there is no way to evaluate intermediate steps toward a goal, then no sense can be made

of heuristics being satisfactory, reasonable, or “good enough” solutions. That is, we would

not know what would make a heuristic solution satisfactory, reasonable, or “good enough” in

ill-defined contexts.

A possibility worth considering is that a deeper functional analysis of heuristics might

have it such that certain heuristics represent ill-defined problems as well-defined ones. That

is, a heuristic process might simplify a complex, ill-defined problem to a manageable and

well-defined problem. If this is the case, then it would make sense to claim that heuristics

are processes that do not guarantee correct outcomes, for they would be working within the

confines of well-defined problems for which there are in principle GCO procedures. This is

certainly a possibility, and many contemporary decision researchers agree that much of human

reasoning involves search and manipulation of problem-spaces (Dunbar, 1998).10 However,

problems with this functional analysis arise when we consider the fact that there are no such

things as correct outcomes, and ipso facto no GCO procedures, for simplifying ill-defined

problems or representing them as well-defined problems. Again, this is a fact about ill-defined

10Such contemporary research is inspired by Herbert Simon who understood heuristic processes for problem-
solving as procedures that reduce the complexity of the problem. I discuss Simon’s work in more detail below.
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problems generally. That is, representing an ill-defined problem as a well-defined problem

is itself an ill-defined problem. Thus, the H1 definition is rendered effectively useless with

respect to this functional analysis since there is no GCO algorithm with which to contrast

heuristic procedures.

I suppose that it may be possible that some independent, non-heuristic process is respon-

sible for representing ill-defined problems as well-defined problems, and then heuristics are

employed within these well-defined problems (hence, maintaining the useful applicability of

H1). But the problem of simplifying ill-defined problems goes deeper. Given the detail and

complexity of ill-defined problems, there will be any number of ways to carve them up into

problem-spaces consisting of discrete states and goals. Consider, for instance, a simple, though

ill-defined, problem of deciding whether to go for a picnic. What states should the problem-

space consist of, and what would be the goal state? Should there only be two states, (i) go for

a picnic and (ii) not go for a picnic? Or should the problem-space consist of (i) go for a picnic,

(ii) not go for a picnic, but go to a restaurant instead, and (iii) not go for a picnic, but stay

in instead? I need not belabour the issue here of how difficult it is to formulate an ill-defined

problem as a well-defined one.11 The point is that the difficulties in representing ill-defined

problems as well-defined problems suggest that there is not a clear-cut case for simplifying

ill-defined problems. This is not to say that we never simplify ill-defined problems; in fact,

we probably do this often with certain circumscribed ill-defined problems. Of course, whether

and to what extent people actually represent ill-defined problems as well-defined problems is

an empirical issue. But unless evidence would show that representing ill-defined problems as

well-defined ones is universal, or nearly so, there is still a large class of problems for which

it makes it trivial to speak of heuristics as processes that do not guarantee correct outcomes.

However, as I want to maintain and as certain researchers demonstrate, heuristics are interest-

ing strategies within this large class of problems. Thus, the issue here is not really the triviality

11This is similar to the what is known as “the problem of small worlds”, introduced by Savage (1954); see also
Shafer (1986). The problem of small worlds has to do with whether expected utility assignments will maintain
the same structure, and therefore dictate the same decisions, upon refinements of a decision-problem.
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problem, but what I will call a range problem—H1 does not apply sensibly to an interesting

range of cases.

The range problem indicates that we must seek a different understanding of heuristics than

what is given by H1. This is not to say, however, that heuristics are not procedures that do not

guarantee correct outcomes. As we shall see, there is a cogent understanding of “heuristic”

from which this follows (i.e., as a corollary). But an adequate and robust characterization of

“heuristic” must offer more than a negative definition with respect to GCO algorithms, and

indeed more than what H1 provides.

2.2.2 Heuristics vs. optimization

There is another negative definition of “heuristic” that is not as explicitly stated in the litera-

ture as H1, but is implicitly suggested by some authors (e.g., Carruthers, 2006a; Fodor, 2008;

Gigerenzer & Goldstein, 1996; Simon, 1957). It is this:

H2 Although heuristics can provide certain benefits, they are procedures that do
not optimize/maximize.

Most of what I said against defining heuristics as H1 can be applied mutatis mutandis to defining

heuristics as H2. But some further remarks are in order.12

The idea that heuristics are to be contradistinguished from procedures that optimize/maximize

(herein simply as optimize) is associated with the rational decision theory that was developed

in the mid-twentieth century by economists and other theorists such as John von Neumann and

Oskar Morgenstern (1944), and L. Jimmie Savage (1954). According to this theory, a rational

agent will optimize, that is find and perform the best act available. The “best” act here tradi-

tionally refers to that which maximizes expected utility. If an agent is faced with a problem for
12It is important to keep in mind here a distinction between optimal strategies and optimization strategies. A

heuristic may very well be an optimal strategy, given certain constraints. That is, a heuristic strategy may be
optimal in the sense that it is the best that a system can do, given certain constraints (cf. Samuels et al., 2002); for
example, maximizing the cost-benefit ratio of a process. An optimization strategy, on the other hand, specifies a
procedure to be followed in order to fully optimize or maximize some unit of desire (typically expected utility; see
below) regardless of constraints. Although a heuristic can arrive at an optimal outcome in the right circumstances,
on the foregoing definition it cannot be an optimization strategy since under different constraints it will not be the
best strategy to adopt.
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which there is a GCO, optimizing will just be carrying out the GCO procedure.13 And this will

be the case even if there is no known GCO procedure (though there exists one in principle) or

it is impossible to perform the GCO procedure. This is because the rational decision theory

idealizes decision problems and agents, and as such real-life human agents are either believed

to strive to act as an ideal agent, or nonetheless placed under normative demands to do so.

What makes defining heuristics as procedures that do not optimize different from defining

them as procedures that do not guarantee correct outcomes—what makes H2 different from

H1—has to do with the procedures from which they are being negatively contradistinguished.

Optimization procedures do not aim at guaranteeing correct outcomes, but at maximizing some

value, traditionally utility. Optimization procedures take into account problems for which there

are in principle no GCOs or GCO procedures, and thereby provide richer decision methods. For

problems that do not afford correct solutions, there may nonetheless be some unit of desire that

one wants to optimize, and so there may be an optimization strategy that can be applied. The

upshot, then, is that if it is only maintained that heuristics are procedures that do not guarantee

correct outcomes (H1), then an optimizing procedure can qualify as heuristic, so long as this is

not a GCO procedure. But this possibility is blocked by H2.

Understanding heuristics to be procedures that do not optimize is a view inspired by Herbert

Simon’s notion of satisficing. Satisficing procedures are procedures that do not aim to meet

the standards of rational decision theory (or any theory of rationality that is governed by the

dictates of logic and probability theory), but instead aim to meet some aspiration level that is

in some sense “good enough” relative to the desires, interests, and goals of the agent. (More on

this below.) As Simon initially made apparent, satisficing procedures reduce problem-spaces

and make decisions or choices without complicated computations. Thus, as procedures that

do not optimize, heuristics are supposed to pick out a more general class of procedures. More

specifically, the class of procedures picked out is supposed to consist of those that generally

conserve time and cognitive resources at the expense of an optimized outcome. As we saw

13This comes close to what Savage (1954) called “The Sure Thing Principle”.
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above, this is typically understood as a good trade-off—foregoing an optimized outcome is not

despaired since what is saved in terms of time and cognitive resources make up for it, and one

typically gets an outcome that is “good enough”. Thus, H2 essentially takes heuristics to be

just satisficing procedures.

It is empirically well-established that humans generally do not optimize in their decision-

making (Gigerenzer & Todd, 1999; Simon, 1956, 1990). Rather, humans are essentially satis-

ficers by nature. There are, of course, evolutionary explanations for this: survival requires that

decisions be made in an efficient and timely manner at the expense of optimizing. But more

than this, optimizing places far too many demands on our computational resources to feasibly

arrive at solutions, even if we are at leisure to devote time and cognition to making a decision.

This point was made by Simon. Depending on the manner in which one tries to optimize, one

might have to carry out a number of calculations such as those involved in subjective expected

utility, multiple regression, and other weighted linear models. Not only are these calculations

often very complex—too complex for the lone person to compute—but they may also be ag-

gregately far too many to perform within reasonable time frames. Consider, for instance, a

problem of buying a car. Optimizing may entail computing expected utility for every possible

consequence of buying any car under consideration. This is quite a cumbersome task that can-

not possibly be completed within a lifetime. One may try to ensure that only a manageably few

calculations are required to be carried out by abstracting away from the details of the problem,

so to speak, and stipulating that only certain consequences are relevant and worth computing

utilities for. However, similar to the problem discussed above with respect to GCO procedures,

it is often difficult to determine which consequences are indeed relevant and to what degree,

and whether the decision based on what few consequences are believed relevant does in fact re-

capitulate in abstracto a decision based on the consideration of all consequences, as the theory

demands.14 What is more, optimizing would require that the costs associated with determining

which consequences are relevant be themselves subject to a cost-benefit analysis. And this is

14This is Savage’s “small worlds” problem. See footnote 11 above.
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just the beginning of an infinite regress of calculations.

There are further reasons why optimization procedures are not generally used by humans.

For example, there are notorious problems having to do with assigning probabilities and utili-

ties to events. Humans do not have the cognitive wherewithal to form precise degrees of belief

(i.e., subjective probabilities) as required to carry out many of the calculations for optimizing.

It is also difficult to assign numerical utilities to objects or events. What is the numerical utility

for buying a car? Or for getting married? Or for having your favourite cereal in the morn-

ing? And this leads to problems of comparisons. Gigerenzer and Todd (1999), for instance,

argue that there are no common grounds—no “common currency”—by which we might judge

and compare many of our objects of desire. They claim that love, friendship, and PhDs, for

example, are “priceless”, and therefore cannot be compared to the value of items for sale in

a shopping mall (Todd & Gigerenzer, 2000). Gigerenzer and Todd therefore throw into doubt

the very idea of expected utilities. Regardless of whether they are right about this, however,

assigning numerical utilities is certainly a cognitively taxing task, if not impossible altogether.

Suffice it to say that humans typically do not employ optimizing strategies in their judg-

ments and decision-making. But if this is the case, then the triviality problem cited against H1

applies to H2—defining heuristics as procedures that do not optimize trivializes the fact that

much of our cognition is guided by heuristics. My general point is that H2, like H1, makes

our general reliance on heuristics uninteresting, since all too often the only alternative is to

use heuristics. To put it another way, H2, like H1, does not provide a contrast class that inter-

estingly distinguishes heuristics from other types of inferential or problem-solving procedures

in most situations. Certainly, there are situations in which such characterizations are usefully

applicable, such as in certain economic or mathematical situations where there are known fea-

sible optimizing strategies (or GCO procedures); heuristics can here be sensibly understood as

procedures that do not optimize (or do not guarantee correct outcomes), but can be beneficial

and lead to good or useful outcomes. However, it is not the norm for there to be optimizing (or

GCO) procedures, and so the decision-problems of mathematics and economics do not repre-
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sent the problems typically confronted in general cognition. And again, since general cognition

is what we are interested in here, we therefore need a more robust understanding of heuristics

for the general case.

2.2.3 Inherent normativity?

The characterizations that I have been considering are negative characterizations. However,

what heuristics are defined not to be are what are (or were) believed to be normative procedures

of reason. Both GCO and optimization procedures are supposed to be prescriptions for how to

reason best, which are believed to ensure that either the correct or optimizing solution would be

arrived at. Thus, characterized as a procedure that does not guarantee a correct outcome or that

does not optimize, as according to H1 and H2 respectively, “heuristic” appears to be inherently

normative.

To be sure, it seems perfectly fine to describe a procedure as heuristic without asserting

anything normative (I will return to this point below). And we can even speak of procedures

that do not guarantee correct outcomes or that do not optimize without asserting anything

normative. Nevertheless, GCO and optimization procedures have a theory of rationality built

in, as they pick out a class of procedures that is normatively appropriate.

GCO or optimization procedures are, of course, ideals. Ideals are not always meant to

be achieved, but can serve simply as things to aim at or aspire to. And, as discussed, there

are many instances where GCO or optimization procedures are not practically possible for

humans (or sometimes even computers). Nevertheless, ideals are still normative, whether in

the capacity of requirements to be fulfilled or in the capacity of things to aspire to. If heuristics

are procedures that do not guarantee a correct outcome or do not optimize, they will neither

fulfill the given normative requirements nor aspire to do so. Thus, H1 and H2 overtly cast

heuristics as normatively inappropriate procedures, notwithstanding that some heuristic will

often be the only alternative.

Contradistinguishing heuristics from GCO or optimization procedures may be a symptom
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of the hangover from taking algorithmic rules to dictate the normatively appropriate way to

reason. Algorithmic rules are proven to necessitate the right answers, when applied correctly.

Moreover, algorithmic rules are meant to be universal in the sense that they are domain-general

and apply to every person in every situation. According to the traditional theory of rationality,

these two features—necessity and universality—are believed to dictate the normativity of rea-

soning procedures (Brown, 1988). It is because algorithmic rules are necessary and universal

that they are traditionally considered to constitute rationality. Heuristics, on the other hand,

neither necessitate right answers nor are universal in the said sense. Instead, the success of

heuristics is variable and depends on a number of contextual factors. Thus, heuristics do not

embody the key features of rationality, and therefore they cannot be normatively appropriate

procedures.

Yet there is something wrong with the idea that “heuristic” is inherently normative. Cer-

tainly there is a normative dimension to heuristics and their deployment. We can, for instance,

evaluate whether a given heuristic should have been used, or whether it was used in the right

way. But “heuristic” is not a normative concept per se. The normative appropriateness of em-

ploying a given heuristic is an issue that may be addressed only in concert with a normative

account of reasoning and decision-making—i.e., a theory of rationality. In the absence of a

theory of rationality, however, we can still discuss and analyze heuristics and their deployment

in a descriptive manner. I therefore take this as motivation to divorce “heuristic” from the

inherent normativity implied by the characterizations of H1 and H2. In effect, I believe that

this is further reason to reject the negative characterizations of heuristics as procedures that do

not guarantee correct outcomes or as procedures that do not optimize, or more generally, as

procedures that do not meet some normative standard. “Heuristic” is not an inherently norma-

tive concept, and need not be characterized negatively. Positively characterizing “heuristic” as

a kind of procedure used in reasoning, judgment, inference, and decision-making will be my

next task.
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2.3 Uses of “heuristic”

What has been discussed so far should not be taken to imply that no one in the literature ever

gives some definition of “heuristic” as they intend to employ the term beyond perfunctory

remarks. Some authors attempt to define what they take “heuristic” to mean, while others

include discussion from which we might infer their intended meaning. These characterizations

differ from those considered so far in that they are positive definitions, unlike the negative

definitions of H1 and H2. There are some key researchers who have offered various positive

characterizations of “heuristic”, from which we can gain an initial grasp of the term. I will

review these here.

Let us begin by briefly considering one example of an attempt at positively defining “heuris-

tic”, which illustrates the difficulty of capturing the nature of heuristics. In a book entitled

Heuristics, Judea Pearl (1984) expounds and discusses several heuristics used in computation

and computer science. Throughout the entire book, however, there are only two brief passages

in which he attempts to characterize heuristics:

This book is about heuristics, popularly known as rules of thumb, educated guesses,
intuitive judgments or simply common sense. In more precise terms, heuristics
stand for strategies using readily accessible though loosely applicable information
to control problem-solving processes in human beings and machine[s]. (p. vii)

Heuristics are criteria, methods, or principles for deciding which among several
alternative courses of action promises to be the most effective in order to achieve
some goal. They represent compromises between two requirements: the need to
make such criteria simple and, at the same time, the desire to see them discriminate
between good and bad choices. (p. 3)

There are a few problems with these characterizations. First, pointing out synonyms provides

little insight if the synonyms themselves are just as vague. Claiming that heuristics are “rules of

thumb, educated guesses, intuitive judgments or simply common sense” gives no clarification

since each of these terms is likewise undefined and unclear (although we will see below how

“rules of thumb” can offer insight into the nature of heuristics when closely analyzed). It is

also unclear what “readily accessible though loosely applicable information” means, or what
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“to control problem-solving processes” entails. Pearl does not comment on these remarks at

any other point in his book. Finally, with respect to the second passage, although heuristics can

sometimes be employed to make decisions “among several alternative courses of action”, there

are certainly heuristics that perform other functions, such as making inferences (examples of

which we shall see below). It therefore seems as if Pearl does not fully or adequately capture

the nature of heuristics. This is made apparent by Pearl’s example of a heuristic that can be

used in common life:

(1) To choose a ripe cantaloupe, press the spot on the candidate cantaloupe where
it was attached to the plant and smell it; if the spot smells like the inside of a
cantaloupe, it’s probably ripe. (p. 3)

In terms of alternative courses of action, however, it would seem that the “most effective”, and

perhaps most “simple”, way of choosing a ripe cantaloupe is to cut it open, and perhaps taste

it. Of course this is not a practical or realistic solution when purchasing a cantaloupe from a

grocery store. Maybe there will be trade-offs and compromises between what is desired and

what is practical, which may very well be a crucial aspect of heuristic strategies, but Pearl does

not mention these; he only mentions the compromise heuristics represent between simplicity

and success.

Pearl’s attempt at defining heuristics illustrates not only the difficulty in capturing the nature

of heuristics, but also a common lack of concern among researchers to adequately characterize

heuristic processes. Many instead rely on intuitive understandings. This may serve us well for

empirical study of the kinds of processes humans engage in, but it will not do for the philo-

sophical project of developing a positive characterization that is coherent and robust enough

to account for a wide range of phenomena, as well as to find its place within the conceptual

structure of cognitive science (see section 2.1 above).

I will now proceed to present other, more influential characterizations through a short semi-

historical account of the meaning of “heuristic”. I trace its meaning by focusing mainly on

four research programs. As we shall see, the way in which “heuristic” is used varies between

programs and researchers, and yet there are some basic connections between them all. After
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expounding these disparate but connected accounts of “heuristic”, I will explain some of the

connections between them as I develop a more precise conception which is meant to apply to

general cognition, and which will figure in the rest of this dissertation.

2.3.1 Processes of discovery: Pólya

The term “heuristic” has its roots in the Greek word heuriskein, which means “to find” or “to

discover” (Moustakas, 1990). Throughout history, however, different meanings and connota-

tions have been attributed to the word. George Pólya (1957) was perhaps the first to attempt to

develop a coherent account of “heuristic”.15 His interest was in the methods and strategies in

solving mathematical problems, although he indicated a wider applicability of and interest in

heuristic16 to include other areas of study such as education, logic, psychology, and philosophy.

In the same vein of the word’s etymology, Pólya claimed that “The aim of heuristic is to study

the methods and rules of discovery and invention” (p. 112). At the same time, however, he

believed that a proper notion of “heuristic” is really concerned with the process of problem-

solving, and so Pólya maintained that heuristic seeks to investigate the psychological processes

of discovery and invention. Pólya therefore defined what he called “modern heuristic” as the

endeavour to understand “the mental operations typically useful in solving problems” (p. 130,

emphasis added).

It is important to notice here what might be considered nowadays to be an idiosyncratic

use of “heuristic”. Pólya employs the term to refer to a branch of study or a kind of research

program, rather than to the (mental) processes or operations themselves that are to be studied;

that is, rather than the means by which problems are solved. This understanding of “heuristic”

is distinct from its common use as an adjective to describe certain kinds of (mental) processes

or operations. To be sure, Pólya spoke of “heuristic reasoning” which is supposed to refer

to merely provisional, though plausible, reasoning, as opposed to rigorous proof that is both

15Though see Pólya’s remarks about Bernard Bolzano (pp. 57-58).
16Notice here Pólya’s special use of the word “heuristic”: he uses the term in the singular to describe a research

program. More on this below.
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certain and final. Yet heuristic reasoning is not what Pólya had in mind when he spoke of

“heuristic” simpliciter. These observations will be useful for the discussion below.

In any event, Pólya devised a number of techniques to aid in problem-solving, many of

which may be characterized in contemporary parlance as heuristics qua means by which prob-

lems are solved. Indeed, many contemporary authors refer to just such techniques when dis-

cussing heuristics (e.g., Michalewicz & Fogel, 2000). Some of Pólya’s techniques include:

(2) Draw a diagram when trying to solve a problem.
(3) If you can’t solve a problem right away, try an indirect proof.
(4) Try to restate the problem in different terms.
(5) Assume you have a solution and work backwards.
(6) Find a related problem that has been solved before, and try to use its result or

method.

2.3.2 Information processing theory: Simon

Interestingly, around the same time Pólya published his account of heuristic, a different but

very influential notion began to emerge. It was then that research in computer programming

was quickly advancing, and a task that occupied many researchers was programming a com-

puter to simulate human intelligence—this was the birth of information-processing theory and

the research program of AI. Of course, optimization strategies such as exhaustive search and

maximizing utility, though theoretically sound, were for the most part impractically burden-

some in terms of time and other computational resources. If the chief interest in AI is actual

rather than in principle or theoretical computing, then it may very well be irrelevant to employ

optimizing strategies, or to investigate whether such strategies even exist (Simon et al., 1967).

Thus, what was needed were strategies that would cut down on the computational burden that

come with optimization strategies, but that would also perform relatively well by finding satis-

factory solutions, although perhaps not providing the best solutions as optimization strategies

do. What was needed, in other words, were heuristic strategies.

Perhaps the most notable of pioneers of early AI is Herbert Simon (although his then-

colleague, Allen Newell, may be as famous). Simon exalted the employment of heuristics in
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computing. He believed that the ability of heuristics to find solutions rapidly with relatively

little computational costs not only made their use indispensable to computer programming, but

made most of them better than optimizing strategies, even when the latter are available and

practicable. In fact, Simon formulated the term “heuristic power” as a relative measure of a

computer program’s capacity to find solutions in “reasonable” computation times (Simon et

al., 1967). More importantly, however, he believed that “we can use this theory [of heuristic

computational problem solving] both to understand human heuristic processes and to simulate

such processes with digital computers” (Simon & Newell, 1958, p. 6). That is, Simon observed

that there are mutual ramifications of practical computing or AI on the one hand, and human

decision-making, or cognition more generally, on the other.

Arguably, the most important contribution Simon made to the study of human decision-

making was his notion of bounded rationality. Simon despaired of the formal model of ra-

tionality of his time which prescribed optimization strategies, including maximizing expected

utility and abiding by the basic axioms of probability. Just as with the demands it puts on com-

putation systems, optimization, as he made clear, requires agents to know more than a human

can ever know (e.g., all the possible states of a problem and possible outcomes) and do more

than a human can ever do (e.g., perform numerous calculations over the sets of possibilities and

outcomes). Bounded rationality, however, takes into account empirical limits on human cogni-

tion, and offers a more plausible and psychologically realistic notion of rationality. According

to Simon (1957), what is fundamental to bounded rationality are special simplifications of com-

plex problems in order to render them realistically solvable by humans. Rather than maximize

or optimize, agents can employ procedures that exploit the simplifications to solve the problem

in a manner that is in some sense “good enough”, or satisficing (pp. 204-205). As the lessons

from computer programming indicate, satisficing procedures are commonly understood to be

heuristics.

Simon endeavoured to clarify the term “heuristic”, since he thought that, as it is commonly

used, it “denotes an intuitive notion usually misunderstood when oversimplified” (Simon et al.,
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1967, p. 10). And yet the notion to which the term refers can be quite complicated (p. 18).

He explicitly rejects the characterization of a heuristic as “a technique that yields improved

overall performance at the expense of failure on some problems”, claiming that “the usage of

‘heuristic’ does not in itself imply any necessity of failure on some problems” (p. 11, emphasis

in original; cf. my remarks in section 2.2.1 of the present chapter). Simon goes on to note that

many heuristics merely adjust the way a problem-space is searched thereby making it easier

to find a solution, or by eliminating possibilities that are guaranteed not to be solutions. He

offers instead the following as a definition: “Any component of a program that contributes to its

heuristic power we may call a heuristic process, or a heuristic” (p. 17), where heuristic power

is as characterized above, viz. the capacity to find solutions within certain time-frames.17

However, it is important to note that, although Simon defines “heuristic” squarely from the

perspective of computation, he expressly intended heuristics to play a central role in discovery

(Kulkarni & Simon, 1988; Langley, Bradshaw, Simon, & Zytgow, 1987; Simon, 1973, 1977).

That is, he did not disavow “heuristic” of its etymological roots. Indeed, since Simon vehe-

mently believed that human psychological processes can be modeled by computers, heuristics

take centre-stage in accounting for how humans discover (scientific) theories or, more gen-

erally, discover solutions to problems. Hence, he comments, “if ‘heuristic’ is to be used as

a noun, it is best employed as a synonym for ‘heuristic process’—a process that aids in the

discovery of a problem solution” (Simon et al., 1967, p. 17). As processes for discovery, the

following are examples of heuristics given by Simon:

(7) If S 1 is your current state, S 2 is your goal state, d a difference between S 1
and S 2, and O an operator that, in past experience, affects differences of the
type to which d belongs, try to apply O to transform S 1. (Simon et al., 1967,
p. 17)

(8) If the problem is to prove that two triangles are equal, and you are given in-
formation about the equality of angles, search for a theorem whose premises
refer to equality of angles and whose conclusion refers to the equality of
triangles. (ibid.)

17More precisely, “A heuristic is an addition, rearrangement, or other modification to a program that yields an
improvement in its heuristic power” (Simon et al., 1967, p. 18). Simon offers this alternative formulation since he
notes that it is usually difficult to identify which parts of a program contribute to its heuristic power. But for our
purposes, the simplified formulation given in the main text will suffice.
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(9) In chess, consider first those moves that remove or protect pieces under at-
tack. (ibid.)

(10) To detect regularities in numerical data, if the values of two numerical terms
increase together, then consider their ratio. (Langley et al., 1987, p. 66)18

2.3.3 Heuristics and biases: Kahneman and Tversky

Simon’s work had a significant influence on psychologists Daniel Kahneman and Amos Tver-

sky (Gilovich & Griffin, 2002; Kahneman, Slovic, & Tversky, 1982b). In the 1970s, Kahneman

and Tversky began studying people’s judgments under uncertainty, and thereby established a

research program that has come to be known as “heuristics and biases”. Though Simon had

rejected the formal model of rationality as psychologically unrealistic due to the computational

demands it imposes, Kahneman and Tversky were interested in the extent to which people fol-

low the elementary rules of probability in their reasoning, and the psychological implications

that follow. Through their research they discovered that people tend to rely on a limited number

of “heuristics that generally govern judgment and inference” (Tversky & Kahneman, 1983, p.

313). Furthermore, they demonstrate that these heuristics are generally “quite useful” (ibid.)

and “sometimes yield reasonable judgments” (Kahneman & Tversky, 1973b, p. 237), notwith-

standing that they can lead to judgments that depart from the basic axioms of probability and

result in systematic, predictable biases.

Although the heuristics and biases program has had considerable influence in contemporary

psychological research, precisely defining the cognitive processes of interest—i.e., precisely

defining “heuristic”—has evaded Kahneman and Tversky, as well as those who follow them.

They do, however, offer brief definitions. In their initial work they claim, “heuristic princi-

ples . . . reduce the complex tasks of assessing probabilities and predicting values to simpler

judgmental operations” (Tversky & Kahneman, 1974, p. 1124). Almost ten years later, they

asserted, “The term judgmental heuristic refers to a strategy—whether deliberate or not—that

relies on a natural assessment to produce an estimation or a prediction” (Tversky & Kahne-

18This heuristic purportedly aided Simon and Newell’s computer program in the “discovery” of Kepler’s Third
Law.
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man, 1983, p. 294). Unsurprisingly, Kahneman and Tversky are not entirely clear on what

they mean by “natural assessment”; they offer only the following: “natural assessments . . . are

routinely carried out as part of the perception of events and the comprehension of messages.

Such natural assessments include computations of similarity and representativeness, attribu-

tions of causality, and evaluations of the availability of associations and exemplars” (Tversky

& Kahneman, 1983, p. 294). Throughout the body of written work produced by the heuris-

tics and biases program, the term “heuristic” is used as a noun referring vaguely to the said

principles or strategies (although the reliance on natural assessments seem to have been largely

neglected; Gilovich & Griffin, 2002).

We might note here three things. First, Kahneman and Tversky’s characterization of heuris-

tics (or heuristic processes; I will be using these terms interchangeably) moves away from

Pólya’s account and from the word’s etymology more generally. It seems Kahneman and Tver-

sky are not strictly interested in the processes of discovery. Rather, they are interested more

specifically in certain specific processes of judgment, inference, and prediction, and a part of

their research program is to specify the conditions under which such processes depart from the

basic axioms of probability theory.19

The second thing to note is that Kahneman and Tversky’s characterization agrees with

Simon’s definition of “heuristic” insofar as both indicate that heuristics simplify complex tasks

to enable simpler operations. And although Kahneman and Tversky are not explicit about

computational implications, simplifying complex tasks to enable simpler operations reduces

computational burden, and this is precisely Simon’s central feature of heuristic processes.

However, the third thing to note is that, unlike Simon, Kahneman and Tversky are not

concerned about heuristics qua computational operations. Instead, the heuristics they are in-

terested in are restricted to humans. Although these heuristics are proclaimed to be cognitive

processes, Kahneman and Tversky make their claims in the absence of a theory of mind, and

19In the words of Gilovich and Griffin (2002), the heuristics and biases research program has two agendas, one
positive and one negative. The positive agenda is to elucidate the processes that people rely on to make intuitive
judgments; the negative agenda is to elucidate the conditions under which intuitive judgments will likely disagree
with the rules of probability.
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are therefore not committed to the position that cognition is computation in the sense of CTM.

Hence, their account of heuristics (and natural assessments) are not, and need not be, specified

as classical computations.

Kahneman and Tversky’s work initiated a deluge of research devoted to investigating the

inferential and judgmental processes employed by humans. Subsequent work in the heuristics

and biases tradition has established the pervasiveness of the heuristics hypothesized by Kahne-

man and Tversky. Indeed, it has been convincingly shown that people generally are guided by

such heuristics regardless of incentive or motivation, and regardless of increased attention and

effort by devoting their full cognitive resources to the task (Gilovich & Griffin, 2002).20 The

three heuristics most studied by Kahneman and Tversky are:

(11) Probabilities are evaluated by the degree to which one thing or event is rep-
resentative of (resembles) another; the higher the representativeness (resem-
blance) the higher the probability estimation. (Representativeness)

(12) The frequency of a class or the probability of an event is assessed according
to the ease with which instances or associations can be brought to mind.
(Availability)

(13) Estimates are made by starting with an initial value (the “anchor”) and mak-
ing adjustments to it; the anchor can be influenced arbitrarily through sugges-
tive techniques. (Anchoring and Adjustment) (Tversky & Kahneman, 1974)

2.3.4 Fast and frugal heuristics: Gigerenzer

Gerd Gigerenzer has also been influenced by Simon’s seminal works, and Gigerenzer also pro-

pounds the ubiquity of heuristics in human cognition. However, Gigerenzer accuses Kahneman

and Tversky of offering “nebulous”, “one-word explanations” to be passed off as heuristics

(Gigerenzer, 1996; Gigerenzer & Todd, 1999). Gigerenzer argues furthermore that Kahneman

and Tversky’s proposed heuristics at once account for everything and nothing: they explain

everything because they are so vague that any one of them “can be fit to almost any empirical

result post hoc” (Gigerenzer & Todd, 1999, p. 28); they explain nothing because Kahneman

20This is not to say that anyone in the heuristics and biases tradition has suggested that people always rely on
heuristics and never abide by the rules of probability. Rather, what has been shown is that, motivation, attention,
effort, etc., can decrease the reliance on heuristics, and thereby decrease biasing effects. But such biasing effects
never completely disappear.
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and Tversky do not specify any underlying cognitive processes.21 In return, Gigerenzer of-

fers a more refined and synthesized account of “heuristic”. He takes his cue from the word’s

etymology as processes for discovery, where “heuristic” refers to “useful, even indispensable

cognitive processes for solving problems that cannot be handled by logic and probability the-

ory” (Gigerenzer & Todd, 1999, p. 25). But Gigerenzer is also inspired by Simon and Newell’s

models of heuristic processes for guiding search through problem-spaces. In this respect, the

term refers to “a useful shortcut, an approximation, or a rule of thumb for guiding search” (p.

26), and of which precise computational models can be made. Building upon these traditions,

Gigerenzer (and his colleagues) established the “fast and frugal heuristics” research program.

Gigerenzer explains that a fast and frugal heuristic is generally a rule according to which an

organism reasons and acts (Gigerenzer, 2004, 2006, 2008b); they are fast and frugal because

they operate quickly and with little information. But such a rule is not a heuristic unless it

embodies two fundamental features: First, heuristics must exploit the evolved capacities of an

organism, such as those of perception or memory (cf. Kahneman and Tversky’s notion of natu-

ral assessments).22 Gigerenzer believes that it is this feature that allows heuristics to be simple,

and that simplicity results in “fast, frugal, transparent, and robust judgments” (Gigerenzer,

2004, p. 64). Second, heuristics must exploit structures of environments.23 What is meant

by structures of environments is the structures of information found in environments. The

idea is that the success of heuristics partially lies in the way information in the environment

is structured, and how heuristics use such structures to their advantage. This might consist

21Kahneman and Tversky have replied by claiming that “This objection misses the point that [our heuristics]
can be assessed experimentally; hence it need not be defined a priori” (Kahneman & Tversky, 1996, p. 585). I
believe that this is an important point, since heuristics are not the kind of thing that should be defined or analyzed a
priori. Rather a more sensible, and interesting, approach is to give an empirically informed account of heuristics—
to see what processes are actually employed in human cognition, and then determining which of them we want to
call heuristic. This is the approach that I attempt below.

22In more recent works, Gigerenzer expresses his belief that heuristics also exploit learned capacities. He
states, for instance, that “a heuristic exploits hard-wired or learned cognitive and motor processes” (2006, p. 121;
2008b, p. 23; my emphasis). This is a more encompassing view, but I believe that it leads to a trivial account of
how heuristics operate. For if a heuristic is conceived to exploit evolved or learned capacities—whether they be
cognitive or motor processes—there would seem to be nothing left to distinguish capacities that heuristics exploit
from those they do not, for it appears as if evolved or learned capacities exhaust the possibilities.

23Gigerenzer (2008a) refers to exploiting evolved or learned capacities and exploiting environmental structures
as embodiment and situatedness, respectively.
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in recognizing how certain information is distributed in the environment, or seeing how cer-

tain information is correlated with other information. Heuristics attuned to such structures will

therefore make good predictions. Exploiting environmental structures contributes to the robust-

ness of heuristics, since different environments can share a similar informational structure, and

a heuristic that can exploit such a structure can therefore be successful in either environment.

The fast and frugal heuristics program takes both descriptive and normative analyses of

heuristics as essential. The program adopts a normative “analysis of heuristic accuracy, speed,

and frugality in real-world environments” (Gigerenzer & Todd, 1999, p. 29). It may be ob-

served that this is similar to, and appears to be an adaptation of, Simon’s (descriptive) notion

of heuristic power. The normative analysis given by the fast and frugal heuristics program

consists in what Gigerenzer calls ecological rationality.24 According to Gigerenzer, ecolog-

ical rationality eschews the standard normative assumption “that formal axioms and rules of

choice can define rational behavior without referring to factors external to choice behavior”

(Gigerenzer, 2000, p. 202). Hence, Gigerenzer attacks the interest of the heuristics and bi-

ases approach in studying how the use of heuristics yields judgments that disagree with the

basic rules of probability and lead to biases. What is of better interest, according to ecological

rationality, is studying the environments in which given heuristics will succeed or fail. What

follows is that one cannot speak of a given heuristic being universally ecologically rational:

“Ecological rationality implies that a heuristic is not good or bad, rational or irrational per se,

but only relative to an environment” (Gigerenzer, 2006, p. 121). Given this characterization,

Gigerenzer argues that once we find the environments in which given heuristics perform well,

employing heuristics constitutes good reasoning and that their use is justified because they

result in adaptively useful outcomes.

For a descriptive analysis, the fast and frugal heuristics program aims to “specify the func-

tion and role of fast and frugal heuristics more precisely than has been done in the past, by

building computational models with specific principles of information search, stopping, and

24The notion of ecological rationality is inspired by the ideas of both Simon and Egon Brunswik.
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decision making” (Gigerenzer & Todd, 1999, p. 29). Such computational modeling makes

transparent the mechanics of heuristics and the ways in which information (in the environ-

ment) is used. This facilitates the investigation of ecological rationality. The computational

modeling is made apparent by looking at the heuristics that Gigerenzer commonly discusses:

(14) (i) Search among alternatives; (ii) stop search when one alternative is recog-
nized; (iii) choose the recognized object. (Recognition Heuristic)

(15) (i) Search among alternatives; (ii) stop search when one alternative scores
higher on some predetermined criterion; (iii) choose the object identified in
step ii. (Take the Best)

(16) Use the cue that discriminated on the most recent problem to choose an ob-
ject; if the cue does not discriminate use the cue that discriminated the time
before last; and so on. (Take the Last)

(17) (i) Fixate your eyes on the moving object; (ii) start running; (iii) adjust your
running speed such that the angle of your gaze remains constant. (Gaze
Heuristic)

The fast and frugal heuristics program represents probably the most earnest attempt to offer

a detailed and precise account of heuristics. However, the extent to which their account is

useful as an appropriate and adequate characterization of “heuristic” will be assessed below.

For now, let us observe that the heuristics of the fast and frugal program are not as general as

the ones Pólya and Kahneman and Tversky introduced, but at the same time they are not as

specific as the ones Simon offered. Rather, the fast and frugal heuristics are domain-specific

in the sense that they are meant to be deployed in certain circumscribed domains. As we shall

later see, this feature has important implications for cognitive architecture.

2.3.5 Other uses

In other areas of the literature, we find different and less developed accounts of heuristics.

Most of these have roots in the manner in which they are characterized by the heuristics and

biases tradition. Nisbett, Krantz, Jepson, and Kunda (1983), for instance, raise some concerns

similar to those raised by Gigerenzer. They accept Kahneman and Tversky’s position that the

employment of heuristics can lead to judgments that depart from the basic rules of probability.

However, they also argue that people often use heuristics that produce intuitions that agree
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with probability theory. Nisbett et al. therefore label the heuristics of the heuristics and biases

tradition “nonstatistical heuristics”, and distinguish them from “statistical heuristics”, which

are “intuitive, rule-of-thumb inferential procedures that resemble formal statistical procedures”

(p. 345). Other than this sentence, however, Nisbett et al. provide no fuller characterization of

statistical heuristics.

Another use of the term “heuristic” worth mentioning is Jonathan St.B.T. Evans’, which

is idiosyncratic. Evans is a pioneer of the contemporary dual-process theory. Dual-process

theory hypothesizes that cognitive processes come in two kinds. On the one hand, some of our

cognition, sometimes called type 1, is unconscious or preconscious, automatic, fast, parallel,

high capacity, and operates with implicit knowledge. On the other hand, some of our cognition,

sometimes called type 2, is conscious, controlled, slow, serial, low capacity, and operates with

explicit knowledge. (For extensive discussion see J. Evans & Frankish, 2009). Evans holds

the view that type 1 processes are “heuristic processes”. What he means by this, however, is

not precisely what anyone who we have discussed so far meant by the term. According to

Evans, heuristic processes “focus our attention on selective aspects of presented information

and rapidly retrieve and apply relevant prior knowledge and belief” (J. Evans, 2006, p. 392;

cf. J. Evans & Over, 1996; J. Evans, 2009). Although such a role can be circumscribed for

some of the characterizations of “heuristic” given above, it would take some work and might

appear unnatural. Unfortunately, Evans leaves the details of such heuristic processes largely

unspecified.

Some researchers who employ the term “heuristic” are not concerned with the higher cog-

nitive processes of thought and reason, but rather with the low-level cognition that underwrites

perception. There is a camp of perceptual psychologists, for instance, who understand and

model visual perception as an inferential process (Braunstein, 1994). The idea is that the eye

is usually presented with visual information that is either incomplete or very complex, and all

but the simplest events require that many dimensions of information be integrated to produce

a complete and coherent scene. Such an integration is too demanding of the human visual sys-
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tem, so it has to make “judgments”, so to speak, about patterns, shapes, and so on. Since visual

perception is thus conceived as judgmental in nature, a line of argument pursued is that certain

operations of the visual system are heuristic in the sense of producing systematic outcomes

that can result in error (e.g., J. Feldman, 1999; Kaiser, 1998).25 Perceptual linguists similarly

invoke heuristics to explain various operations involved in language perception (e.g., Fodor,

Bever, & Garrett, 1974; Frazier & Fodor, 1978; Pericliev, 1990). The same reasoning of the

visual perceptual psychologists applies here. Indeed, all perceptual cognition, according to this

view, involves heuristics in one way or another. However, a deeper account of such heuristic

processes is not generally pursued.

2.4 A positive characterization

Recall that in section 2.2 I argued that the two most common perfunctory characterizations of

“heuristic” are at best trivial or uninteresting, and at worst inapplicable in the face of real-world

problems and the characteristics of actual human cognition. It should not come as news that

there are not too many real-world problems that admit GCO or optimization procedures. In

fact, this is a rather boring truth. But calling strategies “heuristic” just because they do not

generate correct or optimal solutions does not make the situation any more interesting. Since

every problem-solving or inferential procedure is heuristic in real-world contexts, there seems

to be no point at all in invoking the term “heuristic” to refer to these procedures, for any and

all of them just are, simply and plainly, cognitive procedures applied in the real-world. It

thereby becomes trivially true that we rely on heuristics, and it is empirically vacuous to state

as much. These problems are what I have called the range problem and the triviality problem,

25Perceptual psychologists often assume that the perceptual system attempts to maintain veridical representa-
tions of the world; and so those who sit in the perceptual heuristics camp believe that heuristics approximate, as
close as they can, veridicality. However, there is a compelling case for the position that the aim of perception is not
always to provide accurate representations. According to Christopher Viger (2006b), “The aim of perception is
to help guide action via planning and directly responding to a dynamic and often hostile environment; sometimes
that requires accurate representations and . . . sometimes it does not” (p. 275). In cases when our perceptions are
inaccurate, “our perceptual systems [can] make salient important environmental differences, thereby sacrificing
accuracy for usefulness” (p. 279). If this is right, then perceptual heuristics do not necessarily approximate reality
or veridicality, but can serve as economical processes for making important environmental differences salient.
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respectively. Moreover, I have suggested that contradistinguishing heuristics from GCO or

optimizing procedures implies an inherent normativity that should be resisted, and that the

negative characterization of heuristics as procedures that do not guarantee correct outcomes, or

as procedures that do not optimize, should be rejected. If we are to have a robust and usefully

applicable notion of “heuristic”, and a notion that applies to general cognition, we are going to

have to say more about what heuristics are, as opposed to what they are not.

Now that we have surveyed a range of uses of “heuristic”, we are in a position to charac-

terize more precisely the nature of the concept. There are certainly many other instances than

what I have given here where “heuristic” is invoked to describe some aspect of cognition. But I

believe that this initial exposition gives a sufficient feel for the various and disparate ways that

the term has been and is employed.

Before we get started, let us briefly look at some of the heuristics to which we have been

introduced. If we examine some of them, we find that it can be very difficult to identify common

characteristics. Consider for instance

(4) Try to restate the problem in different terms,

and

(14) (i) Search among alternatives; (ii) stop search when one alternative is recognized;
(iii) choose the recognized object.

(4) commands someone to do something rather vague and uncertain—how or in what other

terms is one to restate the problem? And even after one has done as (4) commands, it is still

uncertain whether one will have a favourable outcome, or indeed whether one will be able to

solve the problem at all in such other terms. On the other hand, (14) lays out what is to be

done in definite and discrete steps—no doubt an artefact of its being a computational model.

Moreover, a definite outcome is guaranteed by (14), so long as one comes across an alternative

that is recognized. And whereas (4) can be applied to just about any problem whatsoever, (14)
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can be applied only when the problem consists in choosing an object among alternatives. Thus,

these examples of heuristics do not appear to be of a piece. Even considering Gigerenzer’s

heuristics on their own, they do not seem to pick out a natural kind—(14)-(16) appear to be

cognitive heuristics while (17) appears to be a heuristic for perception and motor function. It

therefore remains to be seen what properties, if any, are shared by the given examples that

make them heuristics.

The remainder of this chapter will be devoted to drawing out some fundamental similari-

ties and differences among the various accounts of heuristics we have thus far considered. In

undertaking this project, I will make a number of distinctions. These distinctions will serve

to classify different kinds of heuristics. They will also serve to hone in on a cluster of proper-

ties from which we might establish a sensible and robust characterization of “heuristic”, and

thereby better understand the cognitive processes that are of concern to this dissertation.

2.4.1 Some distinctions

2.4.1.1 Stimulus-response vs. heuristics

The first distinction I will draw is between stimulus-response behaviour and heuristic-produced

behaviour.26 By stimulus-response behaviour I do not intend to refer to the behaviourist idea

that takes the mind to be a black box to remain unanalyzed. Rather, I mean to refer to some

unspecified theory that takes a stimulus to be the sole cause, in a course-grained way, of a

response. By heuristic-produced behaviour I mean behaviour (including cognitive behaviour)

that is brought about or caused by the operation of some heuristic. For example, consider any

of the proposed heuristics mentioned above, such as:

26It may also be worthwhile to distinguish between stimulus-response (SR) and stimulus-stimulus (SS) theories
of classical conditioning. According to SR, classical conditioning occurs via association and without conceptu-
alization. According to SS, conditioning involves a conceptualization of the object of association. On the SS
model, Pavolv’s dog salivates because the bell evokes the concept food. On the SR model, no such conceptualiza-
tion occurs—salivating is simply associated with the ringing of the bell. Whether the SR or SS theory is correct
is still debated. I suspect that both may be true, depending on the context and organism in question. To avoid
complications, however, my remarks can be understood to refer to the SR theory.
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(9) In chess, consider first those moves that remove or protect pieces under attack.

(11) Probabilities are evaluated by the degree to which one thing or event is
representative of (resembles) another; the higher the representativeness
(resemblance) the higher the probability estimation.

These heuristics are not mere stimulus-response operations. Rather, they are relatively more

complex operations involving conceptual information. In contrast, stimulus-response behaviour

does not implicate any conceptual information, since the stimulus, not anything having to do

with concepts, is supposed to be the cause of the response. As a paradigm example, we might

take a case of shuttering upon hearing an unexpected loud noise—the loud noise is not concep-

tualized, and thus concepts have no role in producing the shutter response; it is simply a brute

reaction or reflex.

The distinction between heuristic-produced and stimulus-response behaviour may seem

obvious. It is an important distinction nonetheless, especially given some recent work of

Gigerenzer’s. Gigerenzer (2007, 2008c) has speculated that some nonhuman animal behaviour

can be understood in terms of heuristics. According to Hutchinson and Gigerenzer (2005),

behavioural biologists have studied “rules of thumb” since the middle of the twentieth cen-

tury. Rules of thumb describe some animal behaviour through simple rules which appear to be

largely innate. So, for instance, the manner in which the wasp Polistes dominulus constructs

its nest dictates that there are a possible 155 different hexagonal arrangements. However, only

18 arrangements are ever observed. And the 18 arrangements appear to follow a rule of thumb

“in which the wasp places each cell at the site where the sum of the ages of the existing walls

is greatest” (p. 103). Similarly, if there are two light sources in a copepod’s environment,

it will follow “a trajectory as if it were pulled toward each source with a force proportional

to source intensity
distance2 ” (ibid.). Yet behavioural biologists explain this seemingly complex behaviour

by a simple rule of thumb that says that the copepod “adjusts its orientation so as to max-

imise the amount of light falling on [its] flat eye” (ibid.). Hutchinson and Gigerenzer claim

that such rules of thumb “correspond roughly” (p. 98) to heuristics, though Gigerenzer (2007,

2008c) appears to make the stronger claim that “rule of thumb” is synonymous with “heuristic”.
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Gigerenzer (2007) goes on to explain that many other animal behaviours can be understood as

being the result of following rules of thumb or heuristics.27

However, given the distinction made here between stimulus-response and heuristic-produced

behaviour, Gigerenzer’s belief that such animal behaviours are the result of following heuristics

may be misguided. This certainly appears to be the case with respect to the copepod example—

it is more likely that copepods are guided by stimulus-response mechanisms rather than heuris-

tics; it is doubtful that they have the wherewithal to possess or develop any concepts.28 It

seems, rather, that stimulus-response behaviour is best characterized as merely satisfying a

rule, or conforming behaviour to a rule. As Gigerenzer’s examples illustrate, satisfying a rule

may give the appearance that the behaviour is produced by a heuristic, but such stimulus-

response behaviours do not involve involve a rule as a causal ingredient. We might say that

merely satisfying a rule is not sufficient for heuristic-produced behaviour. (More on satisfying

rules below.)

To avoid mere rule-satisfying behaviour as being considered heuristic-produced behaviour,

I will offer the following constraint on what heuristics are supposed to be:

C: Heuristics (in some way) utilize conceptual information.29

I do not wish to put any stronger constraints on what heuristics are supposed to be at the mo-

ment. Nevertheless, with this weak constraint we can rule out stimulus-response behaviour as

being heuristic-produced insofar as the former is an instance of merely satisfying a rule, where

rule-satisfying behaviour does not implicate the involvement of any conceptual information.

As we shall see presently, however, condition C has a bigger role to play in developing a robust

characterization of heuristics.
27For example, Gigerenzer believes that birds of paradise mate selection behaviour can be explained as the

females following the heuristic Look over a sample of males, and go for the one with the longest tail; Gigeren-
zer also claims that aggressor-assessment of deer stags follow a pattern of sequential reasoning, which can be
described by a heuristic to the effect of Use deepness of roar to estimate the size of rival first; use appearance
afterward.

28Many of Gigerenzer’s other assertions about animals following heuristics (see previous footnote) are likewise
thrown into doubt, for the behaviour in question is probably the result of stimulus-response.

29I hedge by saying “in some way” because, as we shall see in chapter 4, heuristics do not directly utilize
conceptual information but metainformation embodied by relations within and between conceptual content.
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2.4.1.2 Computational vs. cognitive heuristics

Some may object to condition C, stating that it is not necessary that heuristics utilize conceptual

information. Many heuristics developed by computer scientists, for instance, operate within

systems that (arguably) do not possess, and (arguably) are not capable of possessing, concepts.

A case in point are heuristics, with varying complexities, that facilitate economical search

within decision-trees. Nevertheless, such heuristics are not the same kind of heuristics that

are of interest to this dissertation. Let me therefore draw a further distinction between what

I will call computational heuristics and cognitive heuristics. It is the latter that concerns this

dissertation.

Although cognitive heuristics may very well be computational in nature insofar as CTM

holds, the way I am using the term “computational” here is to refer simply to non-conceptual

processes that do not invoke a conceptual cognitive architecture. It is an open matter whether

and to what extent conceptual, non-heuristic cognitive processes involve computational heuris-

tics. However, cognitive heuristics, as I propose to understand them, are processes that utilize

conceptual information. Thus, condition C holds for cognitive heuristics but not computational

heuristics. To maintain generality, we might claim that heuristics involve relatively complex

integrations of information. But since cognitive heuristics are the interest of this dissertation, I

will keep the formulation of the condition given by C; it will have a role to play in the following

chapters as I advance my thesis on how cognitive heuristics work.

2.4.1.3 Perceptual vs. cognitive heuristics

Another important distinction is between perceptual heuristics and cognitive heuristics. As

mentioned above, perceptual psychologists who subscribe to the perceptual heuristics approach

to vision or speech perception believe the human perceptual system to be too deficient to fully

compute perceptual information coming in from the environment. And so, it is claimed, the

human perceptual system relies on heuristics to make approximations. An important aspect

of this view is that perception is understood to be computational in nature. However, what
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perceptual heuristics compute over is not conceptual information, but perceptual information.

Thus, in a way, perceptual heuristics are akin to computational heuristics insofar as both are

concerned with non-cognitive—that is, non-conceptual—computation. At least this is the fea-

ture that is important for present purposes. It is also important to note that perceptual heuristics

and cognitive heuristics are instantiated within two different, functionally distinct systems, the

perceptual system and the conceptual system respectively.

An example of a visual perceptual heuristic is:

(18) If a repetitive texture gradually and uniformly changes scale, then interpret
the scale change as a depth change. (J. Feldman, 1999, p. 215)

Although such perceptual heuristics are often expressed in conceptual terms, they are computa-

tional and non-conceptual in operation. And, as I had discussed with respect to computational

heuristics, condition C does not hold.

In a certain sense, Gigerenzer’s Gaze Heuristic,

(17) (i) Fixate your eyes on the moving object; (ii) start running; (iii) adjust your
running speed such that the angle of your gaze remains constant,

is not so much a cognitive heuristic as it is a perceptual heuristic. We might characterize the

Gaze Heuristic more precisely as a percept-motor heuristic, since it also involves online adjust-

ments to bodily motion. In any case, as a heuristic for object tracking, no conceptualization

is required. So, at the very least, we can safely assert that the Gaze Heuristic is not a cogni-

tive heuristic. Given the interests of this dissertation, this particular heuristic, along with other

perceptual and percept-motor heuristics, will not be a subject of inquiry and will be left to one

side.

2.4.1.4 Methodological vs. inferential heuristics

Finally, I make a distinction between what I will call methodological heuristics and inferential

heuristics. This distinction falls within the category of cognitive heuristics. We saw that the
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etymological understanding of the term “heuristic” has to do with methods of discovery. It

was in this sense that Pólya employed the term to refer to the endeavour to study the strategies

and processes typically useful for solving problems. Using the term as a noun, heuristics in

this tradition are methodological devices for learning and problem-solving. It is in this sense

that the use of models and analogy are heuristic devices to help us learn or understand some-

thing about our world, and the techniques offered by Pólya, such as those given in (2)-(6), are

heuristic aids in solving problems. This is what I intend to refer to by methodological heuris-

tics. Methodological heuristics are what concern philosophers of science who are interested in

creative thought, the logic of discovery, and the construction and improvement of theories in

science (e.g., Lakatos, 1963-64; Popper, 1959).

However, a different meaning of “heuristic” emerged in the psychology literature, inspired

(perhaps christened?) by the work of Kahneman and Tversky. As I had described above, the

heuristics studied by Kahneman and Tversky (and others such as Gigerenzer, and Simon to

some extent) are not precisely the methods of discovery and invention intimated by the term’s

etymology. The important distinction to recognize here is between the respective domains of

use, and their respective functions in our cognitive lives. As tools or devices for discovery

and problem-solving, methodological heuristics are aids to learning and understanding. In

contrast, the heuristics that are of interest to Kahneman and Tversky (and other psychologists)

are principles that guide judgment and inference. Thus, these latter are what I call inferential

heuristics. Inferential heuristics are not about learning or understanding per se, but serve to

facilitate judgments, inferences, and decision-making.

In a certain sense, inferential heuristics may be understood as special cases of methodolog-

ical heuristics. This is suggested by Simon’s remarks given above regarding using the term

“heuristic” as a noun; in this sense, inferential heuristics aid in the discovery of a solution

to a problem by providing the appropriate judgments and inferences. Nevertheless, inferen-

tial heuristics remain distinct in kind from methodological heuristics insofar as either serves

distinct cognitive functions.
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Moreover, we can distinguish inferential heuristics from methodological heuristics by mak-

ing some generalizations. Inferential heuristics are often epistemically opaque—people often

employ these heuristics without knowing that they do so, and without knowing the nature of

these heuristics (that is, absent of a psychologist informing one of such things). Methodological

heuristics, on the other hand, are generally epistemically transparent—these methods are more

or less easily identified; we often consciously and deliberately employ them; their usefulness

is usually known; and, because of this, an individual is able to compare and manipulate them

(and all this without a psychologist informing one of such things). Moreover, methodologi-

cal heuristics are typically cultivated from experience and therefore vary between individuals,

whereas inferential heuristics can be to some extent immune to experience and very common

among everyone, and some may even be innate.30 For example,

(6) Find a related problem that has been solved before, and try to use its result or
method,

is a technique that one acquires by working through many problems and drawing abstract

principles, whereas

(11) Probabilities are evaluated by the degree to which one thing or event is
representative of (resembles) another; the higher the representativeness
(resemblance) the higher the probability estimation.

and

(12) The frequency of a class or the probability of an event is assessed according to the
ease with which instances or associations can be brought to mind.

are pervasive, as those in the heuristics and biases tradition have shown, and are not cultivated

or developed through experience.

30I use the qualifiers “often” and “generally” and “typically” because there will undoubtedly be exceptions.
The exceptions, I suppose, can contribute to our understanding of the natures of methodological and inferential
heuristics.
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Since methodological and inferential heuristics are both kinds of cognitive heuristics, con-

dition C applies to both. The epistemic opaqueness of inferential heuristics and the epistemic

transparency of methodological heuristics may be owed to the kind of process each heuristic is

and the kinds of information each operates over. In terms of dual-processes theory (Wason &

Evans, 1975; J. Evans & Over, 1996; Frankish & Evans, 2009), it may be said that inferential

heuristics are type 1 processes, and that methodological heuristics are type 2 processes. But

this is just speculation.

Alternatively, this might be cashed out in terms of what representational information fig-

ures into the operations of either type of process. As strategies that help us to understand

or learn something about our world, methodological heuristics must involve deep conceptual

processing. At the very least, the problems that methodological heuristics are recruited to

solve (learning about or understanding our world) are problems that appear to require the use

and manipulation of conceptual content. This may be a factor in what makes us consciously

aware of such problems, and allows us to consciously and deliberately apply methodological

heuristics in solving them. On the other hand, inferential heuristics may not have to engage

in deep conceptual processing to guide inference and judgment, at least not to the same extent

as methodological heuristics. In chapter 4, we shall see that, according to my account of how

heuristics work in cognition, it is a feature of inferential heuristics that they do not operate over

conceptual content but over conceptual relations. I will briefly return to this matter below, but

I save substantial discussion for chapter 4. For now, I will simply speculate that not generally

engaging and manipulating conceptual content may contribute to the epistemic opaqueness of

inferential heuristics. Admittedly, these are empirical issues that can be confirmed or falsified

with the appropriate evidence.

This is not to say that inferential heuristics cannot be instantiated in higher-order cognition.

For instance, it is possible that one can learn and consciously employ the Availability heuristic,

or Take the Best. Moreover, it may not always be clear whether a given heuristic falls in the

methodological or inference category. That there are fuzzy cases, however, does not bear nega-
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tively on the methodological-inferential distinction drawn here. Indeed, fuzzy cases should not

come as a surprise since it is not uncommon for us to learn something about the world while we

make inferences, nor is it uncommon that the very act of making a judgment solves a problem.

Nevertheless, the functional distinction between methodological and inferential heuristics can

be maintained so long as the functional role of the heuristic can be determined.31

To sum up, heuristics are to be distinguished from stimulus-response behaviour. Moreover,

there are many kinds of heuristics, including (though perhaps not exhausted by) computational,

perceptual, and cognitive. And cognitive heuristics can be subdivided into methodological

heuristics and inferential heuristics. This is represented, with examples, in Figure 2.1. (The

branch representing cognitive heuristics is highlighted since these will be the main focus from

here on in.)

2.4.2 Characterizing cognitive heuristics

Now that I have distinguished between different kinds of heuristics and disambiguated the term,

I will sketch a characterization of the cognitive heuristics that are of interest to this dissertation,

and, as I believe, to philosophy and cognitive science generally. Although my concern will be

for cognitive heuristics in general, the characterization I will give will be most applicable to

inferential heuristics. This will become apparent quite quickly, and at the end the characteriza-

tion I offer is exclusive to inferential heuristics. However, as I proceed I will comment on how

the characterization of inferential heuristics I develop relates to methodological heuristics, as

well as to computational and perceptual heuristics. In the remainder of this section, I will refer

31A question may arise here regarding whether the dual-process theory can allow for such fuzzy cases, since
type 1 and type 2 processes are disparate processes. However, as I hope is obvious by now, the methodological-
inferential distinction is a distinction primarily of function, whereas type 1 and type 2 processes are best conceived
in terms of being distinct cognitive types or kinds (Samuels, 2009). Understood in this way, a heuristic which is
fuzzy with respect to its being methodological or inferential can be either a type 1 or type 2 process depending on
what kinds of cognitive system(s) is (are) instantiating it. It also follows that it is possible for a methodological
heuristic to be a type 1 process that is unconscious, automatic, etc. This should not be too surprising since
enough practice at honing a skill generally results in a lot of behaviours that are unconscious, automatic, etc. (i.e.,
best characterized as type 1), and I do not see why some of these behaviours should not engage methodological
heuristics.
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to cognitive heuristics simply by “heuristics” unless otherwise specified.

2.4.2.1 Heuristics as rules of thumb

As might be obvious from the remarks at the beginning of this chapter, heuristics are almost

invariably characterized as “rules of thumb”. So common is this characterization that one may

even take “rule of thumb” to be synonymous with “heuristic” (as we saw Gigerenzer to do).

Though I do not want to commit to wholly endorsing this synonymity (see below), such a rule-

of-thumb-definition illuminates several central qualities of heuristics. One is that heuristics

are rules of some sort. Notice however that as rules, heuristics need not (and perhaps should

not) be understood to be normative.32 Rather, as rules, heuristics are procedures that can be

specified and applied in a given situation. That is, “rule”, as it is being used here, refers not to a

prescriptive guide for conduct, but to a procedure that (non-prescriptively) regulates or governs

some process, or describes a method for performing some operation.33

It would be useful here to make some distinctions with respect to the roles rules can play

in governing action or behaviour. It is common to differentiate between satisfying a rule and

following a rule (cf. Searle, 1980; Wittgenstein, 1953, §§185-242). To satisfy a rule is simply

to behave in such a way that fits the description of the rule—to merely conform behaviour

to the rule. It is in this sense that the motion of the planets satisfy the rules embodied by

classical physics. On the other hand, following a rule implies a causal link between the rule

and some behaviour, and moreover that the rule is an intentional object in cognition. As Fodor

(2008) puts it, “following [a rule] R requires that one’s behavior have a certain kind of etiology;

roughly, that one’s intention that one’s behavior conform with R explains (or partly explains)

why it does conform to R” (pp. 37-38). Thus, merely satisfying a rule is not sufficient for

following the rule.

32Kahneman and Tversky oppose heuristics to rules (see e.g., their 1982, 1996). But they are contrasting
normative rules with heuristics, the latter which I take here to be characterized as descriptive rules.

33Of course, there are normative matters with respect to the application of certain heuristics in certain situations.
These are matters in which Gigerenzer and his followers are intensely engaged. However, to address them, one
must appeal to certain independent normative principles that inform us of the (in)appropriateness of the (ab)use of
the (descriptive) heuristic rules in question. Gigerenzer is generally uninterested in specifying such independently
justified normative principles. But this is a different issue that must be considered some other time.
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Our concern with respect to cognitive heuristics is not so much about behaviour as it is

about reasoning or thinking (just “reasoning” for short).34 Let us therefore say that to satisfy a

rule in reasoning is to reason in such a way that merely conforms to or fits a description of the

rule, whereas to follow a rule in reasoning implies a causal role for the rule in reasoning by its

being cognitively represented. I suppose that in both these ways a rule can (non-prescriptively)

regulate, govern, or describe a reasoning process.

We saw above that stimulus-response behaviour is best characterized as satisfying a rule;

and since rule-satisfying behaviour does not implicate the involvement of any conceptual in-

formation, stimulus-response behaviour is distinguished from heuristic-produced behaviour. In

terms recently stated, merely satisfying a rule is not sufficient for heuristic-produced behaviour.

I believe we can likewise observe that satisfying a rule in reasoning is not sufficient for heuris-

tic reasoning, though not because satisfying a rule in reasoning does not involve conceptual

information (indeed, I am not sure how much sense can be made of nonconceptual reasoning).

Rather, satisfying a rule in reasoning is not sufficient for heuristic reasoning because some

heuristic must have a causal role in heuristic reasoning processes, otherwise we would not be

able to say that the reasoning process was in fact heuristic. To paraphrase Fodor, heuristic

reasoning requires that it have a certain kind of etiology. Nevertheless, I do not think that

heuristics are necessarily rules that are followed in reasoning, for I do not think that heuris-

tics are necessarily represented in cognition. Fodor (1975, 2000, 2008) argues that reasoning

requires representing the rules according to which one reasons.35 But this does not seem to

be a necessary requirement of reasoning, especially with respect to heuristics. As we saw,

inferential heuristics are often epistemically opaque, and they are pretty much automatic and

to a certain extent impervious to improvement. Moreover, Simon emphasizes that inferential

34Reasoning might be construed as a special case of behaviour—cognitive behaviour, as it were—in which case
there is not much substance to this distinction. But the point to the present discussion will be preserved either
way.

35More specifically, Fodor believes that acting (intentional acting, that is, as opposed to reflex or thrashing
about) requires planning, which requires deciding on a plan, which requires representing plans; on the other
hand, he believes that belief fixation requires hypothesis formation and confirmation, which requires representing
hypotheses.
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heuristics are computationally cheap procedures, and assuming that representing uses com-

putational resources, inferential heuristics would be less computationally cheap if they were

required to be represented and consulted before they were employed. In any case, I see no

reason why heuristics (generally) must be intentional objects in cognition. It seems entirely

plausible that they can be procedures that are programmed into cognition, but are not consulted

nor represented when employed; or perhaps they are built into the cognitive architecture of the

reasoner as a sort of primitive process. It is certainly not impossible for computational pro-

cedures to be executed without being represented; even Fodor (2008, p. 37) admits that there

must be at least some rules that are not represented in computations, e.g., those that instruct a

Turing machine to move along the tape. Thus, my claim is that heuristics are plausible can-

didates to be unrepresented procedures in cognition, and hence that heuristics are employed,

having a causal role in reasoning, but without being followed.

In light of these considerations, let me make a further distinction between, on the one hand,

satisfying a rule and following a rule, and on the other hand, acting in accordance with a rule.

Acting in accordance with a rule is sometimes meant in the same sense as satisfying a rule, but I

will propose a special way to understand it here. By acting in accordance with a rule, I propose

to mean that a rule is guiding one’s behaviour and that there is a causal link between the rule

and the behaviour—in Fodor’s terms, the rule is implicated in the etiology of the behaviour

that accords with the rule—but the rule is not an intentional object in cognition. In terms

of reasoning, reasoning in accordance with a rule means that the rule has a causal role in the

reasoning process, but is not represented. Notice that in this way a rule still (non-prescriptively)

regulates, governs, or describes a reasoning process.

My suggestion, then, is that heuristics can be rules that one reasons in accordance with in

the sense I just outlined. (Henceforth, whenever I speak of reasoning in accordance with a rule,

I mean it in my special sense.) For heuristics certainly have a causal role in reasoning, but

it does not appear that they must be intentional objects in cognition. I am inclined to believe

that inferential heuristics generally are rules that one reasons in accordance with, whereas
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methodological heuristics are usually (though perhaps not always) followed. Whether this is

true, however, does not bear on the present point, which is that heuristics (generally) do not

have to be represented when employed. Let us therefore observe that:

H3 Heuristics are cognitive procedures that can be expressed as rules that one
reasons in accordance with.

H3 will serve as our initial, basic understanding of heuristics. However, to keep things simple,

I will omit expressly stating that heuristics can be expressed as rules that one reasons in accor-

dance with. Throughout the remainder of the discussion, whenever I state that heuristics are

cognitive procedures in all subsequent definitions, this should be taken as shorthand for all that

is expressed by H3.

Another quality of heuristics illuminated by the rule-of-thumb-definition is that a rule of

thumb is so called because a thumb can be used as a device for roughly estimating measure-

ments. We might take this to imply that heuristics are imprecise cognitive tools. But this is too

broad of a claim. For there are many imprecise inferential procedures that we would hesitate to

call heuristic. For instance, procedures that are irrelevant to the task at hand, or that invariantly

result in disaster, are (in some sense) imprecise, but such procedures are by no means heuristic

(cf. discussion in section 2.2.1 above). Moreover, Gigerenzer has shown that heuristics can

sometimes outperform complex operations on certain decision-tasks. For example, in choos-

ing which of two cities is larger, Gigerenzer and Goldstein (1996, 1999) show that (14), the

Recognition heuristic, is more accurate than weighted linear models and multiple regression.

Such results throw into doubt the claim that heuristics are imprecise.

If we are to maintain the analogy between heuristic and rule of thumb, perhaps it is better

that we focus on the fact that rules of thumb provide rough estimations, or in other words,

approximations. Hence, we might say that:

H4 Heuristics are cognitive procedures that provide approximations.

Understanding heuristics as providing approximations helps our characterization in a number

of ways. First, it does justice to the evidence that heuristics can sometimes result in good
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inferences, since approximation techniques can sometimes hit the mark, and also since what

is considered “good” can very well be close to what is ideal. But this is also the sense in

which computational heuristics are generally understood in computer programming and AI

research—heuristics approximate some presumed normative ideal (such as a correct or an op-

timized outcome), and some heuristics are considered better than others if they result in better

approximations (Horgan & Tienson, 1998). Furthermore, H4 is roughly the sense in which

perceptual heuristics are conceived as providing approximations.

Moreover, although approximations are deficient in the sense that they do not meet some

standard, understanding heuristics as providing approximations offers a positive account of

what heuristics can do rather than just stating what they cannot or do not do (as for instance

the H1 and H2 definitions provide). This speaks to the suggestion that heuristics are useful

devices for inference and deliberation. But if a procedure fails to approximate entirely—if it

produces random results, or results that are completely off the mark—it is utterly useless, and

thus should not be considered heuristic.

Nevertheless, “approximates” is a two-place predicate. If heuristics provide approxima-

tions, then they must approximate something. This suggests that there must be some norm to

which heuristics approximate. I have already discussed the norms of guaranteeing correct out-

comes and optimization, and rejected the characterization of “heuristic” as contradistinguished

from these norms. There are heated debates over what norms should be or are approximated by

heuristics, which subsequently spur the “rationality wars” (Samuels et al., 2002). But perhaps

it is inaccurate to say that heuristics provide approximations. For as I have argued, although

there are problems for which there are, or in principle can be, norms to which heuristics can

provide approximations, there exists an entire class of problems for which it is difficult to iden-

tify what is or should be approximated. As outlined above, the problems that readily admit

norms are the well-defined problems exemplified by probability and logic, while the problems

for which norms are hard to identify are the ill-defined problems typified by most real-life sit-

uations, such as choosing whether to buy a Mac or PC. To what would heuristics approximate
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with respect to ill-defined problems?

Rather than further belabour the issue, a natural way around it is to invoke Simon’s no-

tion of satisficing. Simon originally conceived of satisficing to refer to computational search

processes—a program’s search is stopped once a certain, flexible goal is met, i.e., satisfied. The

term has since been co-opted to apply to more general (computational) cognitive procedures

(e.g., Carruthers, 2006c; Samuels, 2005). Understood in contemporary terms, a satisficing pro-

cedure is one that sets an aspiration level and attempts to meet this goal. Rather than rigidly

attempting to meet some theoretical ideal, the aspiration level is in some sense “good enough”

relative to the desires, interests, and goals of the agent. It is possible for a satisficing proce-

dure to set its aspiration level commensurate with an ideal, if one exists. However, the point

of satisficing is that the bar is flexibly positioned according to the goals and desires of the

satisficer.

Understanding heuristics as procedures that do not aspire to meet some ideal implies that

heuristics are essentially satisficing procedures. Consider two examples of inferential heuris-

tics. The first is Gigerenzer’s Take the Last,

(16) Use the cue that discriminated on the most recent problem to choose an object; if
the cue does not discriminate use the cue that discriminated the time before last;
and so on.

This may not appear at first sight to be a satisficing procedure. However, if we take determining

a choice method to be an initial goal in a problem of choice, a certain aspiration level might be

set with respect to this goal, and using the method that was used to solve the previous problem

would satisfice. Or consider Kahneman and Tversky’s Availability heuristic,

(12) The frequency of a class or the probability of an event is assessed according to the
ease with which instances or associations can be brought to mind.

Again, this may not appear to be a satisficing procedure, but upon closer examination we see

that this heuristic opts not to determine the actual frequency or probability of an event via com-

plex calculations, but instead sets an aspiration level relative to the ease with which instances



Chapter 2. Characterizing “Heuristic” 65

come to mind; thus, availability of instances is a “good enough” indicator of frequency.

Methodological heuristics do not appear on the surface to be readily amenable to being

characterized as satisficing procedures. For example, it is difficult to see how (2)-(6) are in fact

satisficing strategies:

(2) Draw a diagram when trying to solve a problem.
(3) If you can’t solve a problem right away, try an indirect proof.
(4) Try to restate the problem in different terms.
(5) Assume you have a solution and work backwards.
(6) Find a related problem that has been solved before, and try to use its result or

method.

However, methodological heuristics are strategies that aim to learn or understand things in the

world, not by reverting to some standard operations such as formal proofs or deductive reason-

ing, but by using flexible, defeasible procedures. Once this is acknowledged, methodological

heuristics begin to look like strategies arising from a need to satisfice. Pólya makes such a

point:

We shall attain complete certainty when we shall have obtained the complete solu-
tion, but before obtaining certainty we must often be satisfied with a more or less
plausible guess. We may need the provisional before we attain the final. We need
heuristic reasoning when we construct a strict proof as we need scaffolding when
we erect a building. (Pólya, 1957, p. 113)

Hence, methodological heuristics appear to be satisficing procedures that are often indispens-

able to attaining complete and certain solutions.

Notice that satisficing does not require or imply established norms. Satisficing therefore

makes perfect sense with respect to ill-defined problems, whose states and goals are often not

adequately known or understood, and therefore whose norms are generally unspecified. At

the same time, satisficing procedures can be applied to well-defined problems, and they can

be normatively assessed according to the established norms in those situations. Understanding

heuristics as satisficing procedures also recovers the notions of computational and perceptual

heuristics. For a procedure that approximates is essentially one that satisfices, though a proce-

dure that satisfices does not necessarily approximate. In addition, by appealing to satisficing



Chapter 2. Characterizing “Heuristic” 66

we are able to account for special cases of heuristics. Some influential accounts claim that

heuristics may not produce an outcome at all (e.g., Gigerenzer, 2001; Richardson, 1998; cf.

Simon, 1957). An example of the latter may be a procedure that instructs an agent to give up

on a problem if it is not solved within a certain time-frame. This kind of special case can-

not be sensibly said to approximate anything. Yet a satisficing strategy may naturally have

built-in instructions to capitulate if the set aspiration level is not met in conjunction with some

independent parameter.

Thus, understanding heuristics to satisfice rather than to provide approximations gives us

a more robust notion. And, in fact, satisficing appears to be absolutely essential to heuristic

processing. Let us therefore amend our characterization:

H5 Heuristics are cognitive procedures that satisfice.

There are further essential features of heuristics that the rule-of-thumb-definition illustrates.

For what a rule of thumb lacks in precision is made up for by its convenience and reliability.

A thumb is not as accurate for measurement as markings on a rigid stick, but it is readily

accessible, easily deployed, and dependable. The same can be said of heuristics. A heuristic

is dependable because it can be counted on to produce a satisficing solution. This is in part

why heuristics are powerful inference devices, and may in part explain why heuristics are so

ubiquitous in human reasoning and inference (Gigerenzer, 2000). Yet it is not by chance or

happenstance that a heuristic succeeds or fails. Rather, heuristics process specific kinds of

information in predictable ways. This accounts for why they work so well in certain domains,

but fail miserably in others. According to some researchers, such as Gigerenzer, heuristics

are attuned to specific domains that exhibit stable informational structures, and this is what

enables a heuristic to be successful in that domain. However, if the heuristic is applied in

another domain in which the same informational structures do not obtain, then the heuristic

will fail, and biases will ensue (Gigerenzer, 2000, 2006).36

36Evolutionary stories can be told here about how heuristics get attuned to one domain or another. Gigerenzer
(2000) provides such an evolutionary account. One can also interpolate Sperber’s (1994, 1996) evolutionary
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Heuristics are readily accessible because little cognitive resources are required to engage

them. We rarely, if ever, have to invest much time and processing in thinking over whether we

will employ one inferential heuristic or another (or some other procedure). On the contrary,

the empirical evidence shows that inferential heuristics are typically available for use with-

out the need for reflection. In fact, many psychologists agree that some inferential heuristics

are hardwired mechanisms that are essentially automatic.37 (This corroborates my position

that heuristics are cognitive procedures that can be expressed as rules that one reasons in ac-

cordance with, as given by H3.) In a similar vein, heuristics are also easily deployed. This

means that comparatively little cognitive resources are needed in their processing. This is done

by processing only readily available or easily accessible information (in the environment or

within the mind). Many researchers—Gigerenzer in particular—take this to mean that heuris-

tics only process very little information. But as we shall see in later chapters, many heuristics

are informationally demanding processes, though no less easily deployed. For now, however,

note that the importance of heuristics being readily accessible and easily deployed resides in

allowing other cognitive resources—including time—to be spared, not only with respect to

processing, but also with respect to search (among information as well as procedure alterna-

tives). This enables swift, on-the-fly inferences, and frees up precious cognitive resources for

other tasks—virtues upon which survival generally depends. Thus, we have it that:

H6 Heuristics are cognitive procedures that satisfice, and that require little cogni-
tive resources for their recruitment and execution.

Notice, however, that H6 appears to preclude methodological heuristics. This is the point at

which the present characterization of heuristic processes departs with methodological heuris-

tics. Indeed, we often take our time in deciding which, if any, methodological heuristic to use

in a given case of problem-solving. Moreover, methodological heuristics can require much

cognitive resources to be recruited and executed, and as such their deployment may not be so

account of the etymology of representations—his distinction between actual domains and proper domains in
particular—to apply to the origins and functions of heuristics (see e.g., Samuels et al., 2002).

37This appears to be why Wason and Evans (1975) contrast heuristic reasoning with analytic reasoning.
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easy. The reason for this, it seems, is that methodological heuristics demand that much more

conceptual information be integrated than what is demanded of inferential heuristics. As I

suggested above, inferential heuristics do not involve deep conceptual processing, at least to

the same extent as methodological heuristics. And it may be the case that the extent to which

a heuristic engages conceptual information has to do with its respective function in cognition,

and subsequently the kinds of information operated over. This is not to say that methodological

heuristics always require excessive amounts of cognitive resources. As one develops certain

cognitive skills, such as problem-solving skills, one would surely hone the ability to call upon

and apply methodological heuristics with relative ease, and perhaps even automatically and

unconsciously.38 Nor is this to say that inferential heuristics will always require little cogni-

tive resources. Some inferential heuristic strategies might consume quite a bit of cognitive

resources and time. Nevertheless, it stands to reason that, in general, methodological heuris-

tics will require more cognitive resources in their deployment and processing than inferential

heuristics, since the former generally involve processing and integrating conceptual content.

But again, these are empirical matters. I am content with focusing on inferential heuristics

that require little cognitive resources for their deployment, leaving these further issues to be

explored on some other occasion.39

38Perhaps this would be owed to repetition and practice creating and developing new representations, or repre-
senting old representations in new and different ways; and inferential heuristics operating over these new repre-
sentations take over what methodological heuristics had once achieved. But this is just a thought in passing.

39A natural inclination might be to assume that inferential heuristics are the proper operations of mental mod-
ules, whereas methodological heuristics operate within central cognition. But I think this would be wrong. Al-
though it is likely that modules do not (cannot?) employ methodological heuristics (perhaps for reasons having to
do with the modules’ automaticity, shallow inputs-outputs, and speed; Fodor, 1983), it seems perfectly reasonable
that central cognition can and does employ inferential heuristics for given problems. In fact, the cognitive archi-
tecture that I develop in coming chapters corroborate this point. Notice, however, that whether and to what extent
modules employ methodological heuristics and central cognition employs inferential heuristics depends on what
we mean by “module”. Those who endorse the massive modularity thesis (i.e., the thesis that the mind is entirely,
or nearly entirely, composed of individuated modules) do not subscribe to Fodor’s characterization of modules.
And if those such as Sperber (1994, 2005) and Carruthers (2006b, 2006a) are right about the architecture of the
mind, then modules in some sense can and do employ methodological heuristics, even if it takes collections of
modules to pull it off. I will be making some remarks about modularity in the next chapter. However, a full
assessment of modularity of mind and massive modularity is beyond the scope of this dissertation.
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2.4.2.2 Beyond rules of thumb: exploiting information

Before being satisfied with our working definition of heuristics developed thus far, let us revisit

and emphasize a key issue that has been pervasive in much of the discussion. Despite the illu-

mination that the rule-of-thumb definition offers, heuristics are more than just rules of thumb.

The nature of heuristics qua cognitive processes involves the utilization of conceptual infor-

mation. Granted I have suggested that inferential heuristics do not process conceptual content;

nonetheless, what they do process has everything to do with concepts. Inferential heuristics

may not process conceptual content, but they do utilize conceptual information. I already men-

tioned that I will argue in chapter 4 that inferential heuristics operate over relations between

concepts. Utilizing conceptual information is precisely what makes cognitive heuristics cogni-

tive. This is provided by condition C, as presented above. A rule of thumb per se, on the other

hand, is merely a static, rough unit of measure, and no conceptual information is implicated in

its employment. In this vein, rules of thumb do not involve the type of information processing

that heuristics do.

To put the point another way, when one employs a heuristic, as I am characterizing it here,

it tells us something about one’s concepts—particularly about the content of one’s concepts

and the structure within which one’s concepts reside. When one employs (15) Take the Best,

for instance, certain beliefs are implied about the cue upon which the choice in question was

made. At the very least, we can infer that the said cue was believed to be the “best” upon

which to make the choice in question; but that the cue is believed to be the “best” implies

certain things about the conceptual content of the cue (as possessed by the chooser), as well as

certain things about how the cue fits within the chooser’s conceptual structure. Similarly, when

one employs (11) the Representativeness heuristic, certain beliefs are implied about what one

believes about and how one conceptualizes the objects or events under evaluation, and how

the concepts involved in the evaluation fit within one’s conceptual structure. We will see more

detail on this matter as we continue through this dissertation. The point, however, is that one’s

conceptual wherewithal has a significant role in employing heuristics.
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When one employs a rule of thumb, on the other hand, one’s conceptual wherewithal may

not play much of a role at all, and therefore the use of a rule of thumb may tell us nothing

about one’s concepts (their content or conceptual structure). “When constructing a truth tree,

decompose those formulas that use stacking rules before those that branch”; (1) “To choose a

ripe cantaloupe, press the spot on the candidate cantaloupe where it was attached to the plant

and smell it; if the spot smells like the inside of a cantaloupe, it’s probably ripe”; “Start in the

centre square when beginning a game of tic-tac-toe”; “Measure twice, cut once”. These are all

rules that can be applied willy-nilly with very little requisite conceptual content or conceptual

connections between the information processed. For example, we can imagine someone with

little experience with sentential logic being presented with the truth tree rule, say in a lecture,

and told to follow it (more on following presently). However, that this person is able to follow

the rule tells us nothing interesting about her beliefs or concepts—she is just doing what she

is instructed to do. It is in this sense that the person would be employing the rule as a rule

of thumb rather than a heuristic. It is important to understand that what distinguishes rules of

thumb from heuristics, as I am claiming here, is the manner in which the rule engages one’s

conceptual wherewithal, and not the rule itself. In other words, the distinction has to do not

with the procedure but with the information structure over which the procedure operates.

A distinction between rules of thumb and heuristics can also be found with respect to the

basic understanding of heuristics provided by H3, namely that heuristics can be expressed as

rules that one reasons in accordance with. Let us recall here the distinction I made earlier

between following a rule in reason and reasoning in accordance with a rule. Following a

rule in reason implies a causal link between the rule and some behaviour, and that the rule

is an intentional object in cognition; reasoning in accordance with a rule likewise implies a

causal link between the rule and some behaviour, but the rule does not likewise have to be an

intentional object in cognition. Upon reflection, we can now see that, whereas heuristics do not

have to be represented, rules of thumb usually are; that is, whereas heuristics are rules that one
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reasons in accordance with, rules of thumb are typically rules that are followed.40

I therefore resist simply equating heuristics with rules of thumb. The basis for this is ulti-

mately that heuristics require richer representational content and conceptual information over

which to operate; that is, heuristics exploit informational structures, and they are successful

because they do so. This is similar to the idea present in Gigerenzer’s conception of heuristics,

as presented above, although as we shall see in the next chapter, my understanding is richer and

goes beyond Gigerenzer’s.41 In any event, let us now draw the characterization of heuristics

that the discussion has led us to:

H7 Heuristics are cognitive procedures that satisfice, and that require little cogni-
tive resources for their recruitment and execution; they operate by exploiting
informational structures.

Following my comments above with respect to H6, the present characterization of “heuris-

tic” should be understood to refer only to inferential heuristics. It captures what seems to be

important features of heuristics as they are discussed in the philosophical and cognitive science

literatures, while at the same time being precise enough to pick out a specific kind of cognitive

process. The characterization may therefore be used to help us understand a broad but distinct

range of phenomena, and thereby make sense of certain psychological theories of reasoning,

inference, and decision-making. We might thus stand to gain a clearer picture of how the mind

works. Heuristics are supposed to be ubiquitous in human cognition, and so understanding the

nature of heuristic processes significantly contributes to understanding the nature of the mind

in general.

The present characterization also enables us to see the respects in which the disparate con-

ceptions of heuristics given by different researchers and authors overlap, as well as come apart.

40On this account, it is possible that a rule starts out as a represented rule of thumb, and with enough experience
the rule turns into a heuristic as one’s conceptual wherewithal plays more of a role when using the rule. This I
believe to be plausible especially with respect to methodological heuristics. Cf. footnote 38 above.

41Although more detail on the differences between my view and Gigerenzer’s will come out in the next chapter,
let us here simply note that Gigerenzer does not make the distinctions I do between kinds of heuristics, as evinced
by his confounding what I had called stimulus-response and heuristic-produced behaviour (see above). Further
and importantly, Gigerenzer does not develop an understanding of heuristics as exploiting conceptual structures
as I am presently doing.
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For example, as was indicated above, Gigerenzer’s use of the term “heuristic” to refer to (what

I am calling) stimulus-response “rules of thumb” of animals is precluded by the present char-

acterization. Moreover, Gigerenzer often cites an algorithmic decision-tree as constituting a

heuristic (Gigerenzer & Todd, 1999; Gigerenzer, 2001, 2007, 2008a, 2008b). But according to

the proposed characterization, algorithmic decision-trees are not really heuristic since their de-

ployment does not exploit informational structures embodied by representations or concepts in

an interesting way. Rather, such decision-trees are simply rote algorithms (albeit perhaps sim-

plified compared to full decision trees). Other supposed heuristics will also fall by the wayside

accordingly. In addition, the proposed characterization helps us to understand more clearly

whether and to what extent the examples of heuristics given above from Simon, Kahneman

and Tversky, Gigerenzer, Pearl, and others refer to the same concept. Some heuristics, such

as those proposed by Pólya, will be seen to be essentially methodological devices to provide

insight, and are of a different species than the inferential heuristics Kahneman and Tversky

researched.

2.5 Concluding remarks

Let us briefly review what has been done so far. We started with a vague understanding of

what “heuristic” means and what heuristics are. With the motivation of clarifying the notion

of “heuristic” in order to advance research and investigations in philosophy and cognitive sci-

ence, I proceeded to consider two perfunctory accounts: (H1) that heuristics are procedures

that do not guarantee correct outcomes, and (H2) that heuristics are operations that do not max-

imize/optimize. I argued that these perfunctory accounts are unsatisfactory, since they either

fail to sensibly apply to a range of important cases of practical cognition, or they trivialize inter-

esting features of cognition. In this way, these negative definitions are not useful for the kinds

of phenomena that we are interested in. I then considered four influential, positive accounts

of heuristics, and by drawing a number of distinctions between different kinds of heuristics, I

narrowed in on a cluster of notions to do the work needed of them; the rule-of-thumb analogy
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proved most helpful for this purpose. The end result was a working characterization of infer-

ential heuristics: (H7) Heuristics are cognitive procedures that satisfice, and that require little

cognitive resources for their recruitment and execution; they operate by exploiting informa-

tional structures. I believe this account is useful and interesting for investigating how the mind

works, and moreover that it clarifies some of the uses of the term “heuristic” in the relevant

literatures.

This chapter also serves to motivate further philosophical investigation into the nature of

cognitive heuristics, and what it is about the mind that enables heuristics to be “fast and fru-

gal”. One matter in particular demands further attention, namely the nature of the informational

structures that heuristics exploit. As indicated above, Gigerenzer (2000, 2004, 2006) shares a

similar view; he contends that heuristics exploit informational structures in the environment.

However, Gigerenzer neglects to sufficiently describe such informational structures. I have not

sufficiently described the structures that I believe heuristics exploit either. We might observe,

nonetheless, that on the present account the informational structures do not reside in the envi-

ronment, but are cognitive structures. An investigation into the cognitive structures exploited

by heuristics can yield insight not only into how heuristics work and why they can be fast and

frugal, but also into more fundamental issues concerning the architecture of cognition.

In the next chapter I will explore more fully the idea that heuristics exploit informational

structures. More specifically, I will offer an account of the kinds of cognitive structures that

heuristics exploit, and argue that they are in fact rich structures that are highly organized in

specific ways. I will develop this idea within the purview of a special class of problems related

to heuristics, namely problems of relevance.
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Now that we have a working definition of heuristics,1 we are in a position to illustrate the

work it does for us. The present chapter will do this by first considering the sorts of prob-

lems that many philosophers believe heuristics solve, namely what can be broadly described as

“problems of relevance” (Samuels, 2005, forthcoming). As we shall see, however, Fodor (e.g.,

2000) argues that heuristics do not in fact solve problems of relevance. In order to appreciate

this controversy and what is at stake, we must get a firm grasp of the role heuristics are pur-

ported to play (or fail to play) in cognition. And in order to do this, we need to gain a better

understanding of how heuristics work and the structures they operate over.

I will begin this chapter, in section 1, by discussing the problems of relevance I am referring

to. As I explain below, problems of relevance are more commonly collectively referred to as

the frame problem. The frame problem is a special problem for cognitive systems of circum-

scribing (read: framing) the information to be considered in their processing. But the frame

problem actually constitutes a set of closely related problems for computational cognition. I

will expound various aspects of the frame problem, labeling them as I go, and show how they

generalize in terms of relevance. Philosophically significant implications follow from compu-

tational and epistemological dimensions of the frame problem. The computational aspect will

be what guides the present chapter; the epistemological aspect will be a topic to be discussed

in the final chapter.

Expounding the problems of relevance will set the stage for me to advance a general archi-

tecture of cognition. The cognitive architecture that I put forth in section 2 will be of so-called

central systems, paradigmatically responsible for general reasoning. A widely agreed upon

feature of central systems is that they allow for the free exchange of information (this is ac-

tually partly how relevance problems arise in the first place). This is usually taken to imply

that central systems are not dedicated to computing specific information belonging to specific

domains—that is, they are not believed to be domain-specific, but domain-general. However,

some theorists—mainly evolutionary psychologists—argue that central cognition is best con-

1Henceforth, I will simply use “heuristics” to refer to inferential cognitive heuristics, unless otherwise speci-
fied.
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ceived as a collection of a great many domain-specific mechanisms, or “modules”, since (so the

argument goes) a domain-general device cannot solve the specialized problems that humans

are naturally very good at solving (e.g., predicting the intentions of others). Nevertheless,

borrowing from Richard Samuels (1998, 2000), I will argue that central cognition is indeed

domain-general, but that central systems are able to draw on specialized bodies of knowledge.

In section 3, I will explain more fully what I take these specialized bodies of knowledge to

be. Samuels (2000) recognizes that it is possible for humans to possess innate, domain-specific,

non-computational modules over which a domain-general, computational, central system op-

erates.2 My view comes close to Samuels’. However, I will argue that such non-computational

modules are better conceived as what I call “k-systems”. K-systems, as I will explain, are

highly organized, informationally rich bodies of knowledge; the information within a k-system

exhibits specific relations, and the k-systems themselves bear specific relations to one another.

This view is not intended to be understood as wholly original, but we shall see that my proposal

is novel with respect to how I envision heuristics to interact with such systems of knowledge.

Section 4 will be devoted to expounding the properties of k-systems in more detail. It will

begin to be evident how heuristics work by exploiting k-systems. I will also show how my

theory is similar to the views advanced by Gigerenzer (2000) and Kim Sterelny (2004, 2006),

but I will also identify important respects in which my view is different from each of these.

The idea of heuristics exploiting k-systems will pave the way for the next chapter in which

I provide a more specific account of what k-systems are in order to advance a more specific

account of how heuristics work. If it turns out that the assumptions about cognitive architec-

ture which underlie my account of heuristics help in solving, or otherwise circumventing, the

frame problem (or problems of relevance), that is reason to suppose that those assumptions are

plausible.

2In anticipation, non-computational modules are not the types of modules that Fodor (1983) envisioned, al-
though he more recently acknowledged that one can conceive of non-computational modules (Fodor, 2000).
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3.1 Heuristics and relevance problems

A longstanding philosophical issue related to the purported use of heuristics in human cogni-

tion has to do with determining the relevant information to consider for a given task. Deter-

mining what information is relevant to a task is not as simple as it may appear. One problem

is that no one has yet given a satisfactory account of what relevance is. This is a problem that

plagues any account of relevance-determination, and fully addressing it is beyond the scope of

this dissertation. I will therefore rely on an undefended intuitive account of relevance, as most

authors do, but I will have some more to say on the topic in the concluding chapter of this dis-

sertation. Nevertheless, even if we possessed a refined account of relevance, determinations of

relevance are generally not computationally easy. This is because many of the problems faced

by humans can (in principle) require that generous amounts of information be surveyed. This

is where heuristics come into play—heuristics appear to be prime candidates for alleviating the

computational burden of relevance determinations. Questions that demand answers, then, are:

Do heuristics actually solve the problem of determining relevance? And if so, how do they do

it?

The problem of determining what information is relevant to a given cognitive task has its

roots in the frame problem. However, specifying what the frame problem is is a difficult task

(cf. Dennett, 1984). As it is generally understood nowadays, the frame problem actually con-

stitutes a set of closely related problems for computational cognition. Over the years, different

authors have emphasized different aspects of the frame problem. Fodor’s (1983, 1987, 2000)

interpretation is perhaps the most popular in philosophical circles; and it has generated quite

a bit of controversy, as he declares that the frame problem is a central and insurmountable

problem for computational cognitive science. Yet Fodor’s account of the frame problem is not

always entirely clear, since he tends to gloss over some of the subtle dimensions of the problem.

To get a better idea of what the frame problem is, how it gives rise to more general problems

of relevance, how deep these problems run, and the potential role for heuristics, I will expound

various aspects of the frame problem and explain their philosophical significance to begin the
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chapter. A further aspect of the frame problem will be revealed toward the end of this chapter.

3.1.1 The many guises of the frame problem

The frame problem was first introduced by John McCarthy and Pat Hayes (1969) as a problem

faced by early logic-based AI. This was a problem of how to represent, in a logically suc-

cinct way, the ways in which properties of objects do not change when acted upon (Shanahan,

2009). For any given action, there will be many properties of many objects that remain con-

stant throughout and after the execution of the action. When moving a ball from one location

to another, for instance, the ball’s colour does not change, nor does its shape or its size; other

objects in the room do not change; the fact that 2 + 2 = 4 does not change; and so on. If a

cognitive system is to maintain a veridical belief-set3 about the ball (and the world in general),

determinations of which properties change with which actions will have to be coded into its

program. In logic-based AI, this is done by coding what are called “frame axioms”, which

are sentence-like representations that specify a frame of reference for the action in question

(Dennett, 1984; Viger, 2006a). But the number of frame axioms can become quite cumber-

some very quickly since there will in general be (number of properties) × (number of actions)

frame axioms that would have to be written into the program (Shanahan, 2009). Obviously, the

more properties or actions to account for, the more cumbersome this will be. Thus, the problem

for logic-based AI is how to most compactly represent the non-effects of actions. As such, it is

often referred to as a problem of representation. Let us call this the AI frame problem:

AI frame problem The problem of how to appropriately and succinctly represent
in a system’s program the fact that most properties are unaffected by given
actions.

The main obstacle to overcoming the AI frame problem is the monotonicity of classical

logic. As a monotonic logic, classical logic does not allow for different conclusions to be

drawn with the addition of new premises. AI researchers have since developed a number of

3It is obviously too demanding of any system to maintain a completely veridical belief-set. What is required,
instead, is a belief-set that is suitably veridical, or reasonably accurate (cf. Samuels, forthcoming).
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nonmonotonic logics to remedy the situation. According to Shanahan (2009), the introduc-

tion of nonmonotonic logics adequately solves the AI frame problem, notwithstanding certain

technical problems.4 Whether Shanahan is correct is perhaps debatable (see e.g., Fodor, 1987,

2000), but I will not adjudicate his claim here. For the original AI frame problem and its pur-

ported solutions are not of concern to this dissertation or to philosophy more generally. Rather,

what is of philosophical interest are the philosophical and computational concerns born out of

the AI frame problem, to which I now turn.

Philosophers have interpreted the AI frame problem as a general problem of how a cogni-

tive system updates its beliefs if it is to maintain (suitably) veridical beliefs about the world. As

Fodor observes, “Despite its provenance in speculative robotology, the frame problem doesn’t

really have anything in particular to do with action. After all, one’s standing cognitive com-

mitments must rationally accommodate each new state of affairs, whether or not it is a state

of affairs that is consequent upon one’s own behavior” (1987, p. 27). This interpretation of

the frame problem has an obvious connection to the AI frame problem. Upon the arrival of

new information, a cognitive system will have to update its beliefs. In moving a ball from one

location to another, for instance, a cognitive system will have to update its belief regarding the

position of the ball, as well as the ball’s new spatial relations with respect to other objects in

the room. But there are arbitrarily many other beliefs that it will not have to update, such as the

colour of the ball, the sizes of the other objects in the room, the relative spatial relations of the

unmoved objects, the ambient temperature in the room, that 2+2 = 4, and so on. The problem,

then, is determining which of any of the system’s beliefs is to be affected in belief-update. Such

a determination cannot be made a priori. For instance, are the beliefs about the relative spatial

relations of the other objects in the room affected? That depends: was something knocked over

in the process of moving the ball? Unlike the original representational problem of logic-based

4One technical problem that is often cited is the “Yale Shooting Problem”. In this scenario, a gun is loaded at
time t, and shooting the gun at Fred at t + 1 is expected to kill Fred. However, the formalization of nonmonotonic
logics cannot uniquely determine whether Fred is dead. This is because the logic proves that Fred indeed dies, but
the logic also proves that the gun becomes (mysteriously) unloaded and Fred lives. Yet the formalism has no way
to determine which proof to keep.
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AI, this problem is computational in nature (McDermott, 1987)—it concerns the processes a

cognitive system employs as it updates its beliefs. Let us call this problem the update problem

(cf. Samuels, forthcoming):

Update problem The problem of determining which of any of the system’s be-
liefs is to be affected in belief-update.

This interpretation of the frame problem can be generalized as a problem of relevance—

that is, a problem of determining what is relevant to the task at hand. This is a deep problem

especially for human reasoning since central systems—the cognitive systems that are paradig-

matically responsible for general reasoning and decision-making—admittedly allow for free

exchange of information, any of which can bear on their operations. Thus, central systems are

what is often referred to as holistic (or, in Fodor’s (1983) terminology, isotropic). This is to

say that, given an appropriate set of background beliefs, any representation in principle can be

relevant to any other. Who won tonight’s football game is prima facie irrelevant to whether

there is beer in your friend’s fridge. But if you believe that your friend’s favourite football

team played tonight, and that your friend usually overindulges in beer consumption whenever

his favourite team wins, then your belief about who won tonight’s game actually is relevant to

your belief about beer in your friend’s fridge. Indeed, an itch on your left hand can be relevant

to your belief about whether you will get a job promotion, if you carry an appropriate set of

(superstitious) background beliefs. Again, there is seemingly no way a priori to circumscribe

the subset of representations that are relevant in a given occasion of reasoning or inference. I

will refer to this construal of the frame problem as the generalized relevance problem:

Generalized relevance problem The problem of determining, from all the infor-
mation that can in principle bear, what is relevant to the cognitive task at
hand.

It is perplexing for cognitive science that humans have an astonishing ability for knowing

(with reasonable levels of success) what is relevant in much of their reasoning and fixating

thereon without having to spend much time deciding what is and is not relevant, or wasting
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time cogitating on irrelevant details. In terms of the generalized-relevance guise of the frame

problem, we generally know quite easily what pieces of information bear on—or lie within the

frame of—our reasoning tasks. The problem is understanding how we do it.

It is important to be clear, in light of these observations about human performance, what the

generalized relevance problem is and what it is not. The problem is not how a cognitive system

can possibly determine, from all the information that can in principle bear, everything that

is relevant to the task at hand. Humans typically do not consider everything that is relevant,

and it is normally too cognitively demanding (of human or machine) to do so. Not only is

this demonstrably the case (witness the frequency of our errors, or of surprise), but it is often

impossible to consider everything that is relevant to the task at hand. Suppose for instance that

the number of hairs on Caesar’s head on March 15, 44bce is relevant to the extent to which the

current state of the economy will improve over the next five years. Although the former piece

of information can in principle be relevant to the latter, it is impossible to know the number

of hairs on Caesar’s head on March 15, 44bce; and so it would be impossible to consider

everything that is relevant to estimating the extent to which the current state of the economy

will improve over the next five years.

The generalized relevance problem is, rather, a problem of how a cognitive system can

make determinations of what is relevant to a given task with reasonable levels of success.

The problem is for real-world cognitive systems—cognitive systems that are less-than-perfect,

and that suffer from real constraints in terms of time and cognitive resources. Therefore, the

generalized relevance problem suggests a methodological problem for a cognitive system of

making reasonably accurate determinations of relevance efficiently and in a timely fashion;

and not determining everything that is relevant to the task at hand, but enough to get the job

done. This means, among other things, that there is minimal waste of time and cognitive

resources considering what is irrelevant. The latter observation might appear to be a mundane

point, but as we shall see presently it reveals an additional deep epistemological problem.

The methodological problem has to do with the computational burden put on a system in
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determining the set of representations to be considered for a given cognitive task. Since rele-

vance cannot be determined a priori, and since any representation held by a cognitive system

can in principle be relevant to any other (provided an appropriate set of representations or

background beliefs), determining which representations to actually consider can be computa-

tionally intractable. If a system has a sufficiently small set of beliefs to begin with, relevance

determinations can be performed without running into major computational problems: the sys-

tem may simply consider all representations. But once we consider a cognitive system with

sufficiently many and/or complex beliefs—as is the case with humans, who have a wealth of

beliefs and stores of other complex representations—assessing every representation quickly

becomes infeasible. For such a strategy would entail a vast amount of computations, occupy-

ing scarce cognitive resources and taking an unreasonable amount of time. Indeed, assessments

of relevance of individual representations are computationally taxing enough, but assessments

of relevance between representations exponentially adds to the complexity (Samuels, 2005).

What is needed are computationally tractable methods to pick out, in a timely fashion, which

representations are to be brought to bear on a given cognitive task (cf. Shanahan, 2009). Let

us call this the computational relevance problem.

The computational relevance problem The problem of how a cognitive system
tractably delimits (i.e., frames) what gets considered in a given cognitive task.

It is important to notice that the computational relevance problem would not be solved or

circumvented if a cognitive system were merely to employ a method to differentiate between a

relevant representation and an irrelevant one, and then subsequently ignore the representations

that fall into the latter category. This is a divide-and-conquer strategy in which the dividing

part is too computationally taxing. For not only can such a strategy possibly entail considering

each representation held by the system, but seeing whether a given representation is relevant

means considering the representation and drawing implications. Even if this strategy does not

entail considering each of our held representations, we do not have the time to consider many

representations and their implications with respect to the task at hand. In other words, the



Chapter 3. Beginning to Understand How HeuristicsWork 83

system would be performing quite a lot of computations to see whether a given representation

is relevant and therefore should be brought to bear. Of course, most beliefs and other repre-

sentations a system holds will be irrelevant to the cognitive task at hand, and this would then

translate to wasting quite a lot of resources on considering what is irrelevant, and performing

computations by drawing conclusions that do not need to be drawn. This is what Fodor (1987)

aptly referred to as “Hamlet’s problem: How to tell when to stop thinking” (p. 26).

The computational relevance problem is therefore a problem of how a cognitive system

can ignore most of what it knows (Dennett, 1984). More precisely, the problem qua relevance

problem is how a system ignores what is irrelevant. This brings us to the other dimension of

the generalized relevance problem hinted at above. The problem here has to do with how a

cognitive system considers only what is (mostly) relevant. This is what I take to be the “new,

deep epistemological problem” that Dennett (1984, p. 130) spoke of. Again, since relevance

cannot be determined a priori, and since any representation held by an agent can in principle be

relevant to its task (provided an appropriate set of background beliefs), how does a cognitive

system know what is relevant? I will refer to this problem as the epistemological relevance

problem.

The epistemological relevance problem The problem of how a cognitive system
considers only what is (mostly) relevant, or equivalently, how a cognitive
system knows what is relevant.

It is important to note that this epistemological problem5 does not have to do so much with the

computational costs of delimiting what gets considered in a given cognitive task (although this

remains an important aspect) as it has to do with considering the right things.6

5What I am calling here the epistemological relevance problem does not coincide with what Shanahan (2009)
calls the epistemological frame problem. According to Shanahan, “The epistemological problem is this: How is
it possible for holistic, open-ended, context-sensitive relevance to be captured by a set of propositional, language-
like representations of the sort used in classical AI?”. It appears that what Shanahan has in mind for the episte-
mological problem is something closer to the AI frame problem, but for humans in determining relevance.

6We might understand the distinction between the computational and epistemological relevance problems, as
I presented them here, as in some respects corresponding to the distinction I made in chapter 2 between computa-
tional and cognitive heuristics (see section 2.4.1).
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3.1.2 The heuristic solution

Many philosophers and cognitive scientists have posed the question: How do we solve the

frame problem? However, this question is rarely, if ever, posed within the context of demarcat-

ing the various aspects of the frame problem outlined here. The question, “How do we solve

the frame problem?”, might not even be meaningful without specifying which guise of the

frame problem is being referred to. It does appear as if humans somehow manage to solve all

aspects of the frame problem, and as we shall see some philosophers believe that heuristics are

the operative solution in human cognition. But we might want to ask whether heuristics really

offer a tenable solution to the frame problem, and indeed which, if any, guises of the frame

problem humans actually solve despite appearances.

By way of addressing these concerns, I will now introduce the heuristic solution to the

frame problem as a response to worries emphatically advanced by Fodor concerning a plausible

theory of central cognition. My intention will then be to show that the heuristic solution, as

advanced as a response to Fodor, applies only to the computational relevance problem, ignoring

the epistemological problem. In chapter 6, I take up the question of whether heuristics do in

fact circumvent the epistemological problem. For ease of exposition, I will use “relevance

problems” to refer to all guises of the frame problem here expounded, save for what I have

called the AI frame problem; as mentioned, the AI frame problem will not be of concern to this

dissertation.

Fodor (1983, 1987, 2000) argues that only a suitably informationally encapsulated system

can avoid relevance problems. Roughly stated, informational encapsulation refers to a property

of a cognitive system that can draw on only a highly restricted database of information in the

course of its processing. There is some debate on how to interpret informational encapsulation

and what is entailed by it.7 However, for our purposes let us understand it thus: A cognitive

system is encapsulated to the extent that, of all the information held by other systems that is

relevant to its processing, only a strictly delimited portion is available to it. The peripheral

7For further discussion see Carruthers (2006a, 2006c); Samuels (2005, 2006); Sperber and Wilson (1996).
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(a) 

(b) 

Figure 3.1: The Müller-Lyer Illusion. (a) appears shorter than (b), although the lines are the
same length; and (a) continues to appear shorter than (b) despite knowing that the lines are of
equal length. The visual system is therefore said to be encapsulated with respect to the belief
that the lines are of equal length.

(as opposed to central) cognitive systems dedicated to linguistic and perceptual processing are

paradigm cases of encapsulated systems. A common example is the Müller-Lyer illusion (see

Figure 3.1): the belief that the two lines are actually equivalent is relevant to determining their

relative lengths, but the visual system is encapsulated with respect to this information; it has

access to only a highly restricted or proprietary database (of visual information) in the course

of its processing.

Relevance problems do not arise for sufficiently informationally encapsulated systems,

since there would be a sufficiently small amount of information over which to compute. To

be more precise, encapsulated systems avoid relevance problems in two subtly distinct ways:

Not only does the small amount of information contained in the system’s database constitute

all the information that the system can consider, thus considerably reducing the number of

computations needed for information search, but that small amount of information ipso facto

constitutes the one and only set of background information against which relevance is deter-

mined. The more encapsulated a system is, the more tractable its computations will be, and the



Chapter 3. Beginning to Understand How HeuristicsWork 86

less that relevance problems will be problems.8

Nevertheless, Fodor stresses that central cognition cannot be encapsulated given its holistic

character and the wealth of complex beliefs and other representations it has access to. Central

processing thus appears squarely faced with relevance problems. In addition, Fodor asserts

that central cognition is, what he calls, “global”. There has been some misconceptions in the

literature about what Fodor is referring to, but the basic idea is this: Computations are, by def-

inition, operations over local, context-insensitive properties, i.e., the syntax of the items being

computed. In other words, it is only local properties that are causal determinants in compu-

tations. Fodor points out, however, that there are properties that central cognition assesses,

such as relevance, simplicity, and conservativism. Unlike the local properties of syntax, these

are extra-syntactic, global properties of representations in relation to (what can be very large)

contexts, requiring in the limit that entire belief systems be assessed.9 The result is intractable

cognition. According to Fodor, there can be no computational account of how central cogni-

tion is sensitive to global properties, since only syntax is supposed to be a causal determinant

in computations. He therefore concludes that CTM is not a viable theory for cental cogni-

tion. And since he claims that CTM is the only plausible theory of mind, Fodor is therefore

pessimistic about the prospects of a cognitive science for central cognition. Hence:

‘Fodor’s First Law of the Nonexistence of Cognitive Science’ . . . : the more global
(e.g., the more isotropic [holisitc]) a cognitive process is, the less anybody under-
stands it. Very global processes, like analogical reasoning, aren’t understood at all.
(Fodor, 1983, p. 107)

As Fodor (2000) later makes clear, we can add assessments of relevance to the “very global

8Of course, this does not mean that the system’s database will necessarily contain everything that is relevant
to its tasks. And so it is possible that an encapsulated system can still have a problem with respect to considering
what is relevant. But this poses a relevance problem of a different sort, which I will not be discussing here. In
addition, even if an encapsulated system had access to all relevant information (but not only what is relevant), the
system might still face the epistemological relevance problem if its database was not organized in such a way that
would facilitate determinations of relevance, or that would enable the the system to consider only what is relevant.
See the discussion toward the end of this chapter on what I call the representational frame problem. Nevertheless,
at the very least, a suitably encapsulated system will avoid the computational problem of tractably delimiting what
gets considered in its tasks.

9Fodor (2000) argues that this implies that entire theories are the units of cognition. See Samuels (forthcoming)
for arguments against this view.



Chapter 3. Beginning to Understand How HeuristicsWork 87

processes” he has in mind.

In response, however, certain philosophers argue that Fodor overstates what tractable com-

putation requires. Samuels (2005, forthcoming) and Carruthers (2006a, 2006c), for instance,

both claim that, although encapsulation will ensure computational tractability, tractability does

not necessarily require encapsulation.10 Rather, they argue that all that tractable computation

requires is that computations be suitably frugal, in the sense of simply putting limits on the

amount of information used or processed. A frugal process may therefore have every bit of

information at its disposal, and hence be unencapsulated, but considers only a tractable amount

according to certain parameters (e.g., the number of computations needed to gather the infor-

mation).

Frugal computational processes can, of course, be realized by “techniques that often, though

not invariably, identify a substantial subset of those representations that are relevant to the task

at hand” (Samuels, forthcoming), namely heuristics. The idea, then, is that by employing

heuristics a system can avoid computationally taxing assessments of relevance, and they do

this by instantiating suitable search and stopping rules that effectively limit the amount of in-

formation surveyed in its computations, but that still bring to bear an appropriate subset of

information on the system’s tasks. This escapes the need to invoke encapsulation in explaining

computational tractability. For a system can very well be unencapsulated, where any informa-

tion can be brought to bear on a system’s computations, but the use of heuristics will ensure

that only a small (and hopefully relevant) amount of this information will in fact be brought

to bear in its processing.11 Hence, for these theorists heuristics ensure that central cognition is

computational and unencapsulated, but yet operates in a tractable way.12

10See also Sperber and Wilson (1996).
11Carruthers actually believes that we may still speak of systems as informationally encapsulated if we construe

encapsulation as a property that simply restricts informational access in processing. In this way, Carruthers
believes that encapsulation can mean just that most information simply will not be considered in a system’s
computations—a notion he calls “wide encapsulation”. However, Samuels (2006) criticizes Carruthers’ view,
claiming that “not only is it [wide encapsulation] different from what most theorists mean by ‘encapsulation,’
but it’s simply what you get by denying exhaustive search; and since virtually no one thinks exhaustive search
is characteristic of human cognition, the present kind of ‘encapsulation’ is neither distinctive nor interesting” (p.
45).

12We might think of it like this: To determine everything that is relevant to the task at hand, the powerset of the
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Recently, Fodor (2008) exclaims that resorting to heuristic procedures to circumvent rel-

evance problems “is among the most characteristic ways that cognitive scientists have of not

recognizing how serious the issues are that the isotropy [holism] of relevance raises for a theory

of the cognitive mind” (p. 116). By referring to what has come to be known as the “sleeping

dog” strategy (McDermott, 1987),13 he goes on to argue that the appeal to heuristics begs the

question it is supposed to answer. Specifically, Fodor claims that the sleeping dog strategy takes

for granted some principle that individuates situations; but the task of individuating situations

presupposes that determinations of relevance have already been made (i.e., regarding what is

relevant to circumscribing a situation). However, Fodor not only ignores possible heuristics

that may not beg the relevance problem, but he fails to consider non-question-begging pos-

sibilities to individuate situations. It is possible, for example, that a heuristic can identify a

situation as a certain type given a small set of cues, and this identification procedure can be

completely based on local considerations. There is of course an accompanying risk of the

heuristic being wrong in identifying a given situation, but (as was made evident in the previous

chapter) heuristics provide no guarantees.

In an earlier work, Fodor (2000) gives a different, though equally bad, argument against

heuristic solutions to relevance problems. In short, his argument is this: In deciding which

heuristic to use for a given cognitive task, there is a meta-problem of deciding how to decide

which heuristic to use. According to Fodor, not only is this the beginning of an infinite regress,

but the meta-problem of deciding how to decide is faced with the relevance problems associ-

ated with holism and global inference just as the first problem is. However, here again Fodor

fails to consider the possibility of heuristics being cued by a small set of abstract features of the

problem (cf. Gigerenzer & Goldstein, 1999). This is not a failsafe plan and it will sometimes

available information would have to be computed for relevance. (If S is the set under consideration, the powerset
is the set of all subsets of S including S itself (and the empty set, though this does not matter much for present
purposes).) For an unencapsulated system with lots of information, this is an intractable task. Frugal processes,
on the other hand, would consider only a small number of different subsets of the available information, hence
remaining tractable.

13Roughly, the sleeping dog strategy is a rule to the effect of: Do not alter (update) a representation unless
there is explicit indication of change, according to the dictum “let sleeping dogs lie”.
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misfire, but it would work nonetheless without invoking any regress. Or indeed, if we use my

characterization of heuristics as cognitive procedures that can be expressed as rules that one

reasons in accordance with (as given by H3 in the previous chapter), heuristics need not be rep-

resented in cognition, but rather can be primitive processes, perhaps built into the architecture

of cognition. And if this is the case, then there may not be any deciding which heuristic to use,

and ipso facto no deciding how to decide which heuristic to use.

Thus, despite Fodor’s worries, heuristics may very well play a crucial role in achieving fru-

gality in cognition, as is certainly the case for our AI counterparts. At the very least, heuristics

appear to circumvent the problem of delimiting the amount of information a system considers

in its processing—heuristics can simply pick out an appropriately limited set of representations

from the total set possessed by an agent according to certain parameters,14 and the system can

make use of them accordingly. There will be no guarantees that all and only relevant representa-

tions will be picked out (Samuels, 2005, forthcoming), but again, such follows from the nature

of heuristics. Presumably, heuristics will somehow be attuned, via the specified parameters, to

picking out mostly relevant representations, but there will be times when what is considered

will happen to be irrelevant. Humans are fallible, so we should not expect perfection in their

cognition. At any rate, it appears as if heuristics do indeed avoid relevance problems.

However, appearances can deceive, and we must therefore look at the details of these

claims. To see if heuristics do in fact circumvent relevance problems, let us take a closer

look at what is being proposed in response to Fodor’s worries about a computational theory of

central cognition.

In specifying the heuristics that make cognition tractable, Carruthers (2006a, 2006c) draws

on the work of Gigerenzer and his collaborators (e.g., Gigerenzer et al., 1999). Carruthers

appears to take Gigerenzer’s analysis of fast and frugal heuristics as suggestive of the general

processes that we might expect to find in human cognition to enable suitably frugal computa-

tions.15 However, the domains of inference for which most of Gigerenzer’s heuristics perform

14We will see some of these parameters below when I discuss in more detail how heuristics work.
15To be sure, Gigerenzer likewise believes that the majority of human inference and decision-making involves
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best are not general enough to support the claim that the said heuristics are commonly em-

ployed for most human cognitive tasks. The tasks for which Gigerenzer’s heuristics are best

suited are decision tasks of choice between two alternatives, or of some value to be estimated

among alternatives, and wherein the cognizer has limited familiarity of the alternatives. These

tasks constitute only a small subset of the cognitive tasks humans commonly face (cf. Sterelny,

2003, p. 208). Even for those instances when we have to make choices or estimate values, we

are not always forced to choose among pairs of alternatives—we are often faced with many

options. Moreover, when we are faced with tasks of choice or value-estimation, we are usually

confronted with things we not only recognize but that we are very familiar with. Indeed, many

of our choices demand an intimate acquaintance with the alternatives (cf. Sterelny, 2003,

2006). It therefore seems as if Gigerenzer’s proposed heuristics have only a limited role in

our reasoning. This is in stark contrast to Gigerenzer and Todd’s (1999) assertion that their

research on heuristics is the study of “the way that real people make the majority of their infer-

ences and decisions” (p. 15, my emphasis). This also undermines Carruthers’ suggestion that

Gigerenzer’s fast and frugal heuristics can provide tractable processes for cognition tout court.

Samuels (2005, forthcoming), on the other hand, does not specify any heuristics that he

thinks can ensure computational frugality in determining what representations get considered

in a given cognitive task. He rests his arguments instead on an intuitive, though vague, appeal

to web-search-engine-like heuristic or approximation techniques (Samuels, forthcoming; cf.

Shanahan, 2009). The prospect of web-search-engine-like heuristics initially looks promising

to deliver the desired frugality since actual web search engines are able to search through

billions of websites in fractions of a second. Yet it is not entirely clear from Samuels’ account

exactly what role such heuristics would play in relevance determinations in human cognition.

To be sure, web-search-engine-like heuristics can certainly search and retrieve information

quickly, efficiently, and frugally, but these heuristics per se do not determine the relevance of

heuristics (Gigerenzer & Todd, 1999; see also Gigerenzer, 2007). But Gigerenzer’s analysis extends to reasoning
and inference qua central cognition, whereas Carruthers, in arguing for the massive modularity thesis (Sperber,
1994), suggests that Gigerenzer-style heuristics can be deployed by the various modules that purportedly compose
central cognition. More on modularity below.
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the information it retrieves. This is made apparent by Samuels’ (correct) assertion that the

representations that a heuristic will bring to bear on a given task will not be invariably relevant.

To put the point more directly, web-search-engine-like heuristics may very well circumvent

the computational relevance problem, but this solution does not address the epistemological

relevance problem (cf. Shanahan, 2009).16

Certainly, one can point to the advances in AI, computer programming, and other real-world

computational applications, and proclaim that there are real instances where a program success-

fully deployed heuristics without having to go through computationally taxing processing to

determine relevance beforehand (much like how web search engines are real-world examples

of success). However, this observation fails to acknowledge the fact that the AI researchers and

computer programmers have already determined the relevance of certain information to certain

tasks, and that they design heuristics to operate according to those determinations. This is what

I take Fodor’s (1987) point to be: In describing the frame problem as a problem of formalizing

computationally relevant facts from irrelevant ones—and hence delimiting the candidates for

belief-updating when certain events occur—Fodor asserts,

The programmer decides, case by case, which properties get specified in the data
base; but the decision is unsystematic and unprincipled. . . . [T]here appears to be
no disciplined way to justify the exclusion [of properties that cause a system to
update indefinitely many facts about the world,] and no way to implement it that
doesn’t involve excluding indefinitely many computationally relevant concepts as
well. (Fodor, 1987, p. 33)

The question is not: How do AI and computer programs determine what information is rele-

vant? We already know the answer to this, namely such information is programmed into them.

The question is rather: How did the AI researchers and computer programmers determine what

information is relevant to what tasks in the first place? In the absence of an answer to this ques-

tion, the epistemological problem remains. (And this is not to mention Fodor’s worry about

excluding indefinitely many computationally relevant concepts when implementing a program,

16We shall see in the next chapter, however, that there is an interesting theory of web search engine strategies
expounded by Andy Clark (2002) that can play a role in addressing the epistemological relevance problem. This
role will be made clear once we understand the cognitive architecture I develop in this chapter and the next.
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which is a problem that also remains unaddressed.)

Both Samuels (2005) and Carruthers (2006a) also appeal to the notion of satisficing to

explain how human cognition can be computationally tractable. However, such an appeal is

empty as it stands. For satisficing is really a substitution for a stopping rule for search among

alternatives—a rule that instructs search to stop once a certain goal is reached (see e.g., Simon,

1979). But relevance determinations involve more than just search. Even if we generalize the

notion of satisficing (which seems to be the case in many discussions in cognitive science) to a

procedure that arrives at solutions that are not optimal but are in some sense “good enough”—

processing (e.g., evaluation) continues until some specified aspiration level is reached—the

very process that satisfices remains unaccounted for. That is, asserting that a system satisfices

says nothing of how the goals or aspiration levels are specified, nor of how it is determined

when these goals or levels are reached; and these are the very problems of relevance under

consideration. Certainly, heuristics can satisfice, but it is a further question how they make

relevance determinations in their processing. On this Samuels and Carruthers are silent.

Fodor rightly points out that (what I am calling here) the epistemological relevance problem

“goes as deep as the analysis of rationality” (1987, p. 27). We can see why—namely, because

the demands to be satisfied in determining what is relevant just are the demands of rational-

ity. To repeat, humans appear to be largely rational—in Fodor’s words, “witness our not all

being dead” (2008, p. 116)—and determining what is relevant is part and parcel of rationality.

Samuels (2005, forthcoming) demurs at Fodor’s suggestion that the totality of one’s beliefs

must be consulted in determining relevance, since this is the “only guaranteed way” (Fodor,

2000, p. 36) of classically computing a global property like relevance. As Samuels remarks,

guarantees are beside the point. Why suppose that we always successfully compute
the global properties on which abduction depends? Presumably we do not. And
one very plausible suggestion is that we fail to do so when the cognitive demands
required are just too great. In particular, for all that is known, we may well fail un-
der precisely those circumstances that the classical view would predict—namely,
when too much of a belief system needs to be consulted in order to compute the
simplicity or conservativism of a given belief. (Samuels, 2005, p. 119)

Samuels is right that guarantees are beside the point (cf. Shanahan, 2009; Sperber & Wilson,
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1996), and that we often fail in determining relevance. Nevertheless, we are still left to explain

our successes in determining what is relevant to our cognitive tasks. And, again, our successes

are not few. To paraphrase Fodor,17 the moral is not that the heuristic solution to the frame

problem—or to relevance problems more generally—is wrong; it is that the heuristic solution

is empty unless we have, together with the heuristic strategy (or strategies), some idea of what is

to count as relevant. Thus, despite the fact that heuristics can probably avoid the computational

relevance problem, we are still faced with the epistemological relevance problem.

Let us briefly pause to see where we have gotten to. We have been discussing what heuris-

tics are supposed to do for us in cognition. The part of cognition that is of concern is central

cognition, since this is where problems of relevance arise. We saw that philosophers such as

Samuels and Carruthers believe that heuristics offer a solution to problems of relevance.18 I

argued, however, that heuristics do not offer the kind of solution that Samuels and Carruthers

think; specifically, given the distinctions of the kinds of relevance problems I described above,

heuristics do not offer a complete solution to relevance problems, as they fail to solve or cir-

cumvent the epistemological problem.

We also saw that Fodor believes that heuristics fail as a solution to relevance problems

in central cognition. Yet Fodor’s rejection of the heuristic solution is not motivated by the

concerns I gave. Rather, Fodor believes that typical tasks in central cognition require global

assessments of information, requiring in the limit consideration of one’s entire set of beliefs,

and this is something that heuristics cannot do. If Fodor is right, then it is hopeless to look to

heuristics as a solution to relevance problems in central cognition. Nevertheless, not only do I

think that the demands of global assessment that Fodor believes is placed on central cognition

are too lofty (I am not sure if anyone except for Fodor believes that central cognition is global

in his sense; cf. Samuels, forthcoming), but, despite my arguments against Samuels’ and

17“The moral is not that the sleeping-dog strategy is wrong; it is that the sleeping-dog strategy is empty unless
we have, together with the strategy, some idea of what is to count as a fact for the purposes at hand” (Fodor, 1987,
p. 31).

18Notwithstanding that Carruthers believes that central cognition is massively modular (see below).
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Carruthers’ suppositions about the work heuristics do for us, I believe that heuristics actually

help in circumventing the epistemological worries associated with relevance problems. To

see how this is so, we will have to gain a better understanding of the role heuristics play in

cognition, and this means investigating more thoroughly how heuristics work and the structures

they operate over.

In the next section, I will discuss the architecture of cognition in order to develop a view

of central cognition which facilitates heuristic processes. The section that follows will be

devoted to elaborating the kinds of cognitive structures that heuristics operate over (or exploit,

as suggested in the previous chapter). In the final chapter of this dissertation I will attempt to

address the epistemological relevance problem. I will argue that humans do not actually solve

the epistemological relevance problem, and therefore the heuristic solution is empty. However,

I will also show that the theory of cognition and how heuristics work that I advance in this

chapter and the next suggests its own means of alleviating us of the epistemological worries.

3.2 Toward a general architecture

Heuristics are specified reasoning patterns, or, as explicated in the previous chapter, cognitive

procedures. Some believe that heuristics are executed by specialized cognitive mechanisms,

conceived as “modules” of the mind (e.g., Gigerenzer, 2000; Carruthers, 2006a). There are

many ways that one can characterize a module, but there are two core features that are generally

believed to facilitate fast and frugal reasoning (Samuels, 2005): domain-specificity and infor-

mational encapsulation.19 These two properties were those (among others) that Fodor (1983)

had originally used to define the input-output modules that appear to subserve our peripheral

systems (paradigmatically, those responsible for visual and language processing). We have

already discussed the role that informational encapsulation would play in facilitating fast and

frugal reasoning, and in avoiding the computational and epistemological worries in cognition

19There is substantial debate over what constitutes a module and how to best characterize such properties. I
want to avoid this debate, however. So I will rely on a relaxed understanding that entails at least that a module is
a relatively autonomous component of the mind.
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generally. Encapsulation is supposed to confine the amount of information that can be surveyed

to a highly restricted proprietary database. In consequence, there is little computational burden

associated with information search, and the information possessed by the proprietary database

constitutes the one and only background against which relevance is determined.

Nevertheless, a defining characteristic of central systems is that they do not exhibit modular

encapsulation. For it also may be recalled that a widely recognized feature of central systems

is that they allow for the free exchange of information.20 For example, when he discovered

the chemical structure of benzene, Kekulé credited a dream he had of a snake biting its own

tail (Hempel, 1966, pp. 15-16). Thus, for Kekulé—and for anyone, really—his dream of a

snake bore in novel and important ways on his theorizing about chemical structures. All of us

can understand this; in fact, we all can envision a snake biting its own tail and acknowledge

its resemblance to a ring that is benzene’s structure. The purported feature of our general

reasoning that allows us to understand how images of snakes bear on chemical structures—

two disparate representations, and a priori not obviously relevant to each other—is that any

conceptual piece of information we hold in our head can bear on any other. But if general

reasoning is subserved by modular encapsulated mechanisms, then it would seem, prima facie

at least, and contrary to fact, that some conceptual information cannot be brought to bear on

others.

Of course, this is not a decisive case against the possibility of encapsulated modular central

systems. But it shows that there is room to doubt the plausibility of the thesis. This in turn

casts doubt on the hypothesis that heuristics are executed by encapsulated modules in central

cognition—if central cognition is not modular, then ipso facto modules would not be the struc-

tures that are executing heuristics in central cognition.21 Yet, if heuristics are not executed by

mental modules, then there is no indication that heuristics are informationally encapsulated

20This is a feature acknowledged by those who deny central systems modularity (e.g., Fodor, 1983, 2000;
Samuels, 2000, 2006) as well as those who advocate for it (e.g., Carruthers, 2006a; Sperber, 1994).

21The present discussion is about the role of heuristics in central cognition. Though it is an interesting question
what role(s) heuristics have in peripheral systems, this is not a matter that will be addressed in this dissertation.
Therefore, whenever I speak of heuristics, I should be understood as referring to them as operations or procedures
in central cognition only.
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processes. In turn, if heuristic processes are not encapsulated, one might wonder how they can

perform rapidly and frugally, and avoid the computational relevance problem. An appeal to

heuristics would be circular; so without encapsulation it appears that we are left with the task

of explaining how they work the way they do.

The solution might come by way of the other aforementioned feature of modules that is

supposed to enable quick and frugal cognition, namely domain-specificity. Before we con-

tinue, it is important to note that there are two ways to understand domain-specificity, one

in terms of the function a mechanism computes and the other in terms of the range of rep-

resentations a mechanism takes as input (Samuels, 2005; Carruthers, 2006a). On the former

understanding, a cognitive mechanism’s domain is the task it is dedicated to performing, and

on the latter the domain is the type of content or class of representations that it takes as in-

put. Hence, these two senses of cognitive domain are often called function- or task-domain,

and content- or input-domain, respectively. However, as we continue on, it will become ap-

parent that my argument does not hang on which interpretation is adopted, although it will

be more amenable to the content/input reading.22 Nevertheless, it is important at this point

that the notion of domain-specificity does not get confused with informational encapsulation

or with frugality. Domain-specificity is about restrictions on what a system computes or what

representations can serve as input to a system, depending on the interpretation. In other words,

domain-specificity is about the subject matter computed or the kinds of representations the

system can compute. In contrast, informational encapsulation has to do with access—what

information a system has access to. A system might be informationally encapsulated, but the

information that it has access to might span many domains (which would mean that the sys-

tem can compute either different domain functions or representations that belong to different

domains). On the other hand, a system might be domain-specific, but have access to quite a lot

of information (regardless of domain), and thus be unencapsulated. Finally, let us remind our-

22Carruthers (2006a, p. 6, n4) suggests that the content/input reading may be tied to a function/task reading,
insofar as an evolutionary story can be told about how the representations that a cognitive mechanism (or module)
computes (constituting its content-/input-domain) are the ones that it was designed to process (constituting its
function-/task-domain) (cf. Sperber, 1994).
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selves that frugality is just a general notion of providing limits on the information processed in

a system’s computations. Frugality can be achieved by informational encapsulation or domain-

specificity (or indeed, as we saw, by heuristics, which may not be encapsulated (at least for the

case of central cognition) but may be domain-specific; more on this presently).

Returning to the matter at hand, within the framework of CTM, the potential benefits of

domain-specificity and its role in cognition become especially apparent:

if a mechanism is sufficiently domain specific, then it becomes possible to utilize
a potent strategy for reducing computational load, namely, to build into the mech-
anism substantial amounts of information about the domain in which it operates.
This might be done in a variety of ways. . . . But however this information gets en-
coded, the key point is that a domain-specific mechanism can be informationally
rich and, as a result, capable of rapidly and efficiently deploying those strategies
and options most relevant to the domain in which it operates. (Samuels, 2005, p.
111)

A domain-specific mechanism can thus be understood as an “expert system” (with respect to

its domain), and can thereby be frugal in its computations.

Some researchers believe that humans possess a wide variety of domain-specific mecha-

nisms, such as a “theory of mind” module which is dedicated to reasoning about the mental

states and behaviour of people (e.g., Baron-Cohen, 1995). This module is understood to be

domain-specific because the class of representations that it can process is restricted to a distinct

kind—namely, intentional mental states. The purported theory of mind module can draw rich

inferences about the beliefs, desires, and intentions of people without being computationally

expensive by having a lot of information about intentional mental states built into the mech-

anism. The suggestion, then, is that heuristics can likewise be fast and frugal, not by being

encapsulated, but by operating according to built-in information about the respective domains

in which they operate.23

23Many evolutionary psychologists, such as Cosmides and Tooby (1992), Sperber (1994, 1996), and Baron-
Cohen (1995), do not follow Fodor’s characterization of modules. They reject the supposition that informational
encapsulation is a core feature, and insist only that domain-specificity is essential to modularity. Thus, what is
being suggested here with respect to how heuristics operate is consistent with such a conception of modularity.
In other words, on the evolutionary psychology conception of modules, heuristics may very well be executed
by modules. I will add, however, that I think that a conception of module that does not include informational
encapsulation as a central feature is uninteresting. But I will not argue the point here (though see the following
footnote).
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However, we are faced with an ambiguity with respect to the kind of system that is domain-

specific. This is because domain-specificity can be a property of either a computational system

or a system of representations. The distinction between these two types of cognitive systems

is made by Fodor (1983, 2000), and is acutely emphasized by Samuels (1998, 2000). A com-

putational (cognitive) system is a (classical) device which takes symbols (or representations)

as input and manipulates them according to formally specifiable rules to generate outputs,

which may either be symbolic (or representational) or action-producing. These computational

systems—or “computational modules”—may be presumed to be domain-specific insofar as

they are capable of carrying out only a restricted class of computations or computing only a spe-

cific range of representations (depending on how one reads domain-specificity). On the other

hand, a system of mental representations is simply a stored body of knowledge or, more gener-

ally, information which may be accessed by other cognitive systems. These systems of mental

representations are individuated according to the specific (content) domains to which each is

dedicated. They are typically thought to be innate, but need not be. Nevertheless, such systems

encode various kinds of information about their respective domains. Both Fodor and Samuels

refer to such systems as “Chomskian modules”, so named because of Chomsky’s hypothesis

of innate Universal Grammar; however, other proposed innate domain-specific knowledge be-

sides that of language, such as theory of mind, or so-called “folk physics” or “folk biology”,

qualify as Chomskian modules as well.

What is important to notice is that

computational modules are a very different kind of mental structure from Chom-
skian modules. . . . In a sense, [Chomskian modules] are ‘inert’. They only eventu-
ate in behaviour when manipulated by various cognitive mechanisms. By contrast,
computational modules are . . . mechanisms that manipulate representations. Com-
putational modules and Chomskian modules are thus importantly different with
respect to the functional roles that they play in our cognitive economy. (Samuels,
2000, p. 19)

It should be clear that, although Chomskian modules and computational modules alike can be

characterized as domain-specific, Chomskian modules cannot be characterized as information-

ally encapsulated. For it is only a module qua mechanism that can properly be encapsulated; it
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makes no sense to claim that a system of mental representations has constraints on the amount

of information it can access, since such a system does not access, or indeed do, anything. (We

might think of Chomskian modules instead as encapsulated information.)

Samuels makes a further observation worth mentioning. He reports that computational

modules can coexist with Chomskian modules. And indeed, a natural way of conceiving the op-

erations of the mind is that the proprietary databases to which access to information is restricted

for computational modules are just Chomskian modules. Nevertheless, this does not have to be

the case. As Samuels emphasizes, Chomskian modules do not entail computational modules.

He goes on to argue instead that we may very well possess a variety of Chomskian modules

without possessing any domain-specific computational mechanisms at all. Indeed, he contends

that it is possible that the “domain-specific knowledge [of Chomskian modules] is only utilised

by domain-general, and hence non-modular, computational mechanisms” (Samuels, 2000, p.

19).

Let us return now to heuristics. Heuristics are certainly computational insofar as CTM

holds. But if heuristics indeed operate according to built-in information about the respective

domains in which they operate, the question is whether such information is built into an in-

stantiating computational module or an accessed Chomskian module. It seems that there is

nothing particular about the nature of heuristics that entails computational modules. For, mir-

roring Samuels’ argument, it is possible that heuristics are instantiated by a domain-general

computational mechanism which draws on domain-specific bodies of knowledge or informa-

tion (i.e., Chomskian modules). This would permit heuristic procedures to be applied across

many domains (i.e., they would be domain-general), and yet still operate quickly and frugally.

Carruthers (2006a, 2006c), in advancing a massive modularity hypothesis (i.e., the thesis

that the mind is entirely, or nearly entirely, composed of individuated modules), argues for the

possibility of multiple copies of the same type of heuristic instantiated by different modules. If

this is right, then there can exist a number of different domain-specific computational modules,

each dedicated to different tasks and carrying out a restricted class of computations or operating
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over a specific class of representations, but each employing its own heuristic of the same type.

However, this possibility rests on an independent assumption about the architecture of central

cognition—that it is massively modular. As explained above, however, the thesis that central

cognition is subserved by a number of distinct computational modules is implausible.24 Thus,

in the absence of evidence to the contrary, there is no reason to reject the domain-general view

of central systems and the execution of heuristics given here.

This is not to say that heuristics are not domain-specific independent of the mechanism that

instantiates them. However, the heuristics that are of interest here—i.e., cognitive (inferential)

heuristics—appear to be domain-general. For instance, Gigerenzer’s Take the Best or Recog-

nition heuristic, or Kahneman and Tversky’s Representativeness or Availability heuristic, can

operate over many different ranges of representations. That is, such heuristics themselves do

not specify any content. It is not the case that Take the Best says

(i) Search among alternative cities; (ii) stop search when one city scores on whether
it has a university; (iii) choose the city identified in step ii;

or that Availability says

The probability of a plane crashing is assessed according to the ease with which
instances or occurrences can be brought to mind.

Rather, cognitive (inferential) heuristics are general procedures of inference that can be applied

across many different domains—they can be employed in contexts of choosing which car to

buy inasmuch as in contexts of deciding which city is larger; or in contexts of estimating the

probability of plane crashes inasmuch as estimating the frequency of spousal abuse. In fact,

the domain-generality of heuristics is what leads Gigerenzer to assert that the heuristics he

24The notion of “module” adopted by evolutionary psychologists suggests that the possibility that central cog-
nition is subserved by a number of unencapsulated, domain-specific mechanisms (see previous footnote); in which
case, Carruthers’ argument would go through. However, I agree with Fodor that “it’s informational encapsulation,
however achieved, that’s at the heart of modularity” (Fodor, 2000, p. 63). I therefore view any modularity thesis
that foregoes informational encapsulation as a central property as no modularity thesis at all. In addition, there are
a number of authors who argue that empirical evidence suggests the implausibility of modular central cognition
(Prinz, 2006; Samuels, 1998, 2000, 2006; Sterelny, 2003; for a conceptual argument against central systems being
subserved by a number of domain-specific mechanisms, see Aspeitia, Eraña, & Stainton, 2010).
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studies are robust: they can be effectively applied to a variety of different (sometimes new and

novel) situations and environments (Gigerenzer & Todd, 1999; Gigerenzer, 2004, 2006). At

the same time, however, on the function/task reading of domain-specificity, these heuristics

may be construed as domain-specific.

It is important to be clear about the scope of the claim. The claim being made is about

the architecture of central cognition. This says nothing about the extent to which the mind

in general is modular. Considerable empirical evidence supports the claim that there are a

number of modular mental systems, which are both encapsulated and domain-specific, but

these are most likely restricted to the peripheral systems (Fodor, 1983; Samuels, 2000, 2006).

Furthermore, this says nothing about whether computational modules use certain heuristics in

their processing. By all lights, it appears that peripheral modules do indeed utilize heuristics,

such as perceptual heuristics as explicated in the previous chapter.

The claim being made here is that the use of heuristics in general reasoning does not entail a

modular view of central cognition, and thus there is no apparent need to invoke domain-specific

computational modules in explaining the use of heuristics and how they generally work. In-

stead, it is possible to characterize heuristics as cognitive procedures that are instantiated by a

domain-general computational system, but operate with specialized bodies of domain-specific

information (i.e., Chomskian modules). Once again, this is not a decisive argument against

the possibility that heuristics are executed by computational modules in central cognition. But

unless there is empirical evidence to the contrary, rejecting the domain-general view of central

systems and heuristics is unmotivated.

3.3 Informationally rich structures: k-systems

If the above picture is correct, and heuristics are deployed by a domain-general computational

mechanism in central cognition, two further questions arise: What is the nature of the rep-

resentational modules heuristics exploit? and How does the suggested architecture facilitate

heuristic reasoning? It is not obvious from the surface how heuristics work, since they are
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essentially simple algorithms; there is nothing in the heuristics themselves that specifies how

they make use of informationally rich structures of representations. I will address these issues

in turn in the present section and the next.

Let us begin by scrutinizing what Chomskian modules are and their role in the proposed ar-

chitecture. Chomskian modules are essentially systems of mental representations. But Samuels

(1998) and Fodor (1983, 2000) specify certain other features. One is that Chomskian modules

are supposed to be bodies of mentally represented knowledge. Of course, there are differ-

ent sorts of knowledge, declarative (or propositional) and procedural being most commonly

distinguished. But the kind of knowledge that Samuels and Fodor are referring to is truth-

evaluable knowledge. This implies, at least, that the representations of interest have proposi-

tional content. The importance of this is evident vis-à-vis CTM: Computations are transfor-

mations of representations which respect semantical relations, such as implication and logical

consequence; and, in Fodor’s words, “It is . . . a point of definition that such semantic relations

hold only among the sorts of things to which propositional content can be ascribed” (Fodor,

1983, p. 5).

Another feature of Chomskian modules, according to Samuels, is that they encode various

kinds of information about their domain. This, as we saw, is how Chomskian modules are

informationally rich. But I think we can add to this that the information encoded in a Chom-

skian module is encoded in a highly organized fashion. A domain-general mechanism can

take advantage of generous amounts of domain-specific information encoded in a Chomskian

module, and thereby enable quick and frugal cognition. But if the information is structured or

organized in specific ways, it would enable quicker and more frugal cognition. Contrariwise,

if such information is not structured or organized in specific ways, it would retard the speed

and efficiency of search and processing. Characteristic human performance on many cognitive

tasks suggests that the structures heuristics exploit are distinctly organized to produce robust

reasoning and inference patterns.

Moreover, it would seem that Chomskian modules must not only have a specific internal
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structure, but also bear specific intra-system relations, which would further facilitate fast and

frugal reasoning. Reasoning within one domain, such as “folk psychology”, often bears in a

number of ways on other domains, such as “folk biology”. For example, in deciding what

intentions to ascribe an organism, one must make inferences about the kind of organism to

which one is ascribing intentions. Without such connections between bodies of knowledge, we

would not be able to make the rich inferences we characteristically do. I will return to these

issues concerning informational organization below.

Samuels introduces a further feature in response to the possibility of counting any domain-

specific collection of truth-evaluable representations as Chomskian modules: “We do not want,

for example, to treat a child’s beliefs about toy dinosaurs as a module” (Samuels, 2000, p. 18).

Thus, Samuels asserts that Chomskian modules are innate. Along with Fodor, Samuels under-

stands Chomskian modules to be the very kind of system that Chomsky’s Universal Grammar

is supposed to be (hence the namesake), and Chomsky’s Universal Grammar is supposed to be

inter alia innate. However, I do not see why heuristics, or any domain-general operation for

that matter, must be conceived to exploit only innate domain-specific systems of knowledge. It

is quite conceivable that there is at least some acquired knowledge contained within many of

our domain-specific systems of knowledge.25 Furthermore, there is no principled reason why

there cannot be entire systems of acquired information that is stored and organized in a fashion

similar to innate domain-specific knowledge, and exploited by domain-general systems just as

innate systems are.

Certainly, the way something like Universal Grammar is supposed to get unpacked during

childhood development and early language learning cannot be emulated by acquired bodies of

knowledge. However, the architecture suggested above and its operations are not about cog-

25“Acquired” should be read as “acquired in consequence of experience”, thus contrasting “innate”. Learning is
sufficient for acquiring, but it is not necessary. One can be hit on the head and thereby acquire beliefs, though these
are not learned beliefs. We might hesitate calling non-learned acquired beliefs knowledge, since such acquired
beliefs may not meet a criterion of justification. However, I want to avoid speaking of learned knowledge to
avoid issues concerning what constitutes learning. Fodor (2008), for instance, believes that learning consists in “a
rational process like inductive inference” (p. 145). Yet I do not want to suggest here that the systems of knowledge
to which I am referring in the text are learned in this way. In fact, I do not want to commit to any particular account
of learning.
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nitive development, but about cognitive deployment. The discussion that took place there, as

well as the discussion provided by Samuels (1998, 2000), concerns how the mind can do what

it does given a domain-general architecture of central cognition. Nothing was said, nor need

be said, about the poverty of stimulus with respect to how we know the grammar of language,

or conceptions of (folk) psychology, or (folk) biology, or whatever. Thus, it seems perfectly

acceptable within the foregoing cognitive architecture that a domain-general computational

device can utilize informationally rich, acquired domain-specific systems of knowledge. If

this is right, then I believe it is necessary to forego the Chomskian namesake to refer to such

informationally rich representational structures.

In addition to dropping the innateness requirement, I propose to jettison the domain-specificity

requirement. This is not as bold of a move as it may appear. It seems that what is really do-

ing the work in facilitating fast and frugal cognition is not the domain-specificity per se of a

system of representations, but the kinds of information encoded in these systems and the man-

ner in which it is encoded. For, to partially echo what was said above, it is possible that one

can have an unorganized system of lots of domain-specific information, but it will be doubtful

that a domain-general computational mechanism would exhibit the same speed and efficiency

operating over this unorganized body of knowledge as it would operating over a highly struc-

tured system. Moreover, it is possible that one can have a domain-specific body of knowledge

that is quite impoverished; and although a domain-general device would likely be able to op-

erate quickly and frugally over such a system, owing primarily to the little information that

ever gets considered, the inferences made would not be as robust and accurate as those made

by operations over richer systems.26 That a system of information is dedicated to a specific

domain no doubt contributes to the extent to which the system is organized, since there are

natural relations among items of information within a domain. However, domain-specificity

per se does not seem to be necessary for a body of knowledge to be structured and organized

in ways conducive to fast and frugal exploitation by a domain-general computational mecha-

26Notwithstanding that accuracy is not a general feature of heuristics, as illustrated by the work of Kahneman
and Tversky.
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nism. To be sure, it is conceivable that someone has an exceeding amount of knowledge about

the French Revolution, and thereby has built a non-domain-specific system of representations

on this topic, which is highly organized and informationally rich.27 When drawing inferences

about or relating to the French Revolution (via her domain-general reasoning mechanism), this

person would almost certainly carry them out quickly and frugally (and probably robustly and

accurately too).

To summarize, a domain-general computational mechanism can deploy suitable strategies

(such as heuristics) to enable quick and frugal cognition by exploiting informationally rich

systems of representations, or truth-evaluable knowledge. These latter systems encode various

kinds of information in a highly organized fashion; not only is there internal organization,

but there is also intra-system organization that exhibits specific relations between systems.

But unlike Chomskian modules, these systems have to be neither innate nor domain-specific.

Instead, they can be acquired and/or non-domain-specific, so long as they possess the requisite

structure and organization. This should not be taken to mean that the systems of representations

under consideration can be domain-general. A domain-general collection of representations

would not bear the kinds of organization and relations that I take to be characteristic of such

informationally rich systems. Working memory may be a domain-general system capable of

storing any kind of representation, but it may store, at the same time, completely unrelated

representations. For a system of representations to be non-domain-specific, on the other hand,

simply means that it fails to pick out a proper domain as cognitive scientists usually understand

the term (which is closely related to natural kinds).

I already suggested dropping the Chomskian namesake to refer to such non-domain-specific

systems. But since domain-specificity is considered by most, if not all, theorists to be essential

to modularity, it appears that “module” must also be omitted. Hence, for lack of a better name,

I will call these informationally rich systems of representations presently under consideration

27Few cognitive scientists, if any, would consider the French Revolution as a proper domain, since the class of
representations that belong to such a topic do not pick out anything resembling a natural kind. I do not want to
enter into any debate over what constitutes a domain. The reader who is dissatisfied with this can substitute any
non-domain-specific example. See Hirschfeld and Gelman (1994) for debates on what constitutes a domain.
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k-systems (where “k” stands for knowledge). We shall see in the next chapter that the knowl-

edge that k-systems are supposed to embody does not necessarily have to be truth-evaluable.

Indeed, as I will argue, perceptual information can be, and often is, included within the systems

of representations over which a domain-general computational device can operate. For now,

however, it will do no harm to assume that such knowledge is truth-evaluable, but it should be

kept in mind that this is only part of the story.

K-systems are what heuristics partially owe their speed and efficiency to, but k-systems are

also what heuristics owe their robustness and potency to. To be sure, heuristics are robust and

potent strategies insofar as they can be applied in a vast number of contexts while producing

satisficing inferences. The way I suggest that heuristics can perform like this is by being sen-

sitive to specific parameters that are built into k-systems. For example, a k-system for chess

might contain numerous parameters for openings, endgames, the pieces and their positions on

the board, etc. Depending on what the task at hand is, certain representations will be thereby

more readily available and more easily brought to bear than others. And indeed, the parameters

may affect how the present game is represented. Other k-systems that exhibit similar parame-

ters will be amenable to the same heuristics and strategies deployed by the central system for

chess—for example, k-systems for other chess-like games, or even for activities such as bat-

tle or sports that bear certain relations to chess. The parameters possessed by k-systems thus

control the flow of information, but more importantly, they partly constrain the operations per-

formed by the domain-general computational device. More specifically, I claim that k-systems

have control parameters that partly constrain how the information possessed by the system can

be manipulated; in terms of what is of interest here, the control parameters partly constrain the

way heuristics operate, or equivalently, what heuristics are brought to bear. These parameters

embedded in k-systems are either acquired or innate, depending on the nature of the k-system

in question.28

28We might note a similarity to Marvin Minsky’s (1975) notion of frames (not to be confused with the frames
of the frame problem, though there is a relation). In Minsky’s words, “A frame is a data-structure for representing
a stereotyped situation, like being in a certain kind of living room, or going to a child’s birthday party. Attached
to each frame are several kinds of information. Some of this information is about how to use the frame. Some
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Cognitive tasks will also have certain structures of their own. For instance, a task of decid-

ing between two alternatives will have a specific structure that enables comparisons between

the two alternatives on a number of dimensions, and the consideration of relevant representa-

tions and other information. Such a decision structure will be different from the structure of,

say, estimating the probability of an event, which might enable the recall of past occurrences

and perhaps other knowledge about probability and frequencies. Moreover, the content under

consideration will influence the structure of the task. For a decision of choosing which car to

buy will not share the exact structure with a decision of which move to make in chess, or with a

decision of whether to accept a job offer. My suggestion is that the structures of cognitive tasks

will help in cuing the activation of particular k-systems. Thus, it is in conjunction with the

informational structure of the task that the control parameters of the activated k-systems con-

strain what heuristics are deployed; in the right conditions, the informational structure of the

task and the activated k-systems’ control parameters determine what heuristics are deployed.29

In this way, a domain-general device can deploy suitable task-specific heuristics without being

task- or domain-specific itself. This is a lot like how a Universal Turing Machine can simulate

any specific Turing machine given the appropriate input. Thus, the claim here is that heuristics

are powerful inference strategies in the same way that Universal Turing Machines are powerful

computing devices.

There will be instances, however, when k-systems will lack the appropriate control param-

eters. This can occur especially with impoverished k-systems. Yet this does not mean that the

k-systems in question will lack control parameters altogether, although this can be the case.

When a k-system lacks the appropriate control parameters, the speed, efficiency, and/or accu-

is about what one can expect to happen next. Some is about what to do if these expectations are not confirmed”
(p. 211). The view I am advancing, however, is different from Minsky’s frames (or the related notion of scripts).
K-systems are not to be understood in terms of stereotypes or paradigms, and not in terms of “situations” either.
As we shall see in the next chapter, k-systems are to be conceived as concepts. Moreover, the function of frames
(or scripts) in cognition is supposed to be quite extensive, having a role in the processes of vision and imagery,
linguistic and other kinds of understanding, and memory storage and recall. On the other hand, I am not making
such lofty suggestions here, as I am confining my account of k-systems to facilitating heuristic processes (though
future work might extend this to include other aspects of cognition).

29This is another possible way to avoid Fodor’s (2000) worry about an ensuing infinite regress when employing
heuristics, as outlined above.
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racy of inferences are negatively affected. In such instances, heuristics may be deployed based

on the structure of the problem alone, or default heuristics may be deployed, or no heuristics

will be deployed at all. In some of these instances, I believe, we witness the mistakes and

biases that Kahneman and Tversky (and their followers) emphasized and researched. In fact, I

believe that such mistakes and biases result from impoverished k-systems generally, in terms

of the kinds, amount, accuracy, and organization of information. But I will save discussion on

this issue for chapter 5.

In sum, k-systems influence the kinds of computations that operate over them in central

cognition via the information contained in the k-system along with the relations within or be-

tween them. What is entailed is that the operations of heuristics exploit ordered and structured

systems of knowledge.

Let us now switch gears and consider a more general view of how heuristics exploit infor-

mationally rich structures and of the role of k-systems in cognition. This will be my task in

the next section. In the chapters to follow I will return to the matters of what kind of entity

k-systems are, and how heuristics exploit them.

3.4 Exploiting informational richness

So far I have expounded a general cognitive architecture for central systems, and discussed

how such an architecture can facilitate heuristics or heuristic reasoning. What I have been

describing is consistent with the characterization of “heuristic” presented at the end of the

previous chapter, viz.

H7 Heuristics are cognitive procedures that satisfice, and that require little cogni-
tive resources for their recruitment and execution; they operate by exploiting
informational structures.

I will now discuss in more detail the role of k-systems in cognition, and more specifically

how heuristics can harness the informational richness of k-systems. I will argue that a lot of

information does indeed bear on many of our cognitive tasks, but by the end of this section
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it will become clear how heuristics remain frugal in their processing. This sounds paradoxi-

cal, but as we shall see, frugality in information-processing can be realized in the appropriate

management of the information that bears on cognitive tasks.

3.4.1 High information load cognition

Let us consider a common problem that someone may face. Alice is deciding what to do on

Saturday night. There are a number of viable options: go to a movie, stay in to watch a movie,

go out to a pub, go out dancing, go out for dinner, dinner and dancing, dinner and a movie,

stay in for dinner, stay in for dinner and go out for a movie, etc. Alice’s choice will be guided

by her multiple beliefs, desires, and preferences, as well as by a number of external factors:

What is playing at the local movie theatre? Is there any particular movie she has been wanting

to see? Is there any movie that she can rent that she has been wanting to see? Does she want

to stay in? What did she do last Saturday night? What are her friends doing? Does she want

to be with her friends? Which friends? If Alice does in fact want to spend Saturday night

with her friends, she must participate in coordination problems: Would they all be happy to go

dancing? Would some rather go to a movie while others would rather stay in for dinner? Are

there any friends with which Alice prefers to spend time over others? Will she want to go out to

a movie with Bob, even though he has an annoying habit of talking throughout a film? Will she

want to invite Carol, even though she suspects that Carol will invite Ted, whom Alice dislikes?

Alice might have to consider her financial situation: Can she, and does she want to, spend the

money to go out for dinner and a movie? Do her friends? Alice will also have to consider her

other obligations: Does she have to be somewhere important early Sunday morning? This will

bear on how late she would want to stay out; whether she would rather have a quiet night in;

etc. Much more can certainly be added here for Alice to take into consideration, but the point

should be clear that a lot of information must be used in making typical, everyday decisions

such as these. Indeed, they are problems of the ill-defined variety discussed in the previous

chapter, so it is no wonder why navigating through them can be a complex thing to do.
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Gigerenzer would have us believe that such a decision can be made on one reason. For

instance, he suggests that Darwin may have decided to marry based on one reason (namely,

having a constant companion), despite the fact that Darwin had written out a list of reasons

for why he should or should not marry, so as to help him in his decision process (Gigerenzer

& Todd, 1999). Gigerenzer observes that Darwin’s pro/con list contained incommensurable

items. How does one, for instance, compare “having a constant companion” to “if many chil-

dren forced to gain one’s bread”? Such incommensurability is why Gigerenzer claims that

a one-reason decision-strategy is needed—a strategy that would forego the effort of attempt-

ing to convert all the reasons into some common commensurable scale. Likewise, Gigerenzer

would likely claim that the multiple issues that Alice must consider are incommensurable, and

thus so too would her situation call for a one-reason decision-strategy. One-reason decision-

making ensures that reasoning is frugal. (Cf. the discussion regarding problems of comparing

incommensurability in the previous chapter (section 2.2.2).)

Nevertheless, I believe that Gigerenzer is overlooking the potential of human cognition

when dealing with issues or problems that are cognitively demanding, such as those faced

by Alice and Darwin alike. And in so doing, Gigerenzer is making the converse error that he

accuses standard statistical models and theories of rationality of committing, namely of making

too many simplifying assumptions about the problems to which they are applied. Gigerenzer

and Todd (1999) assert that “the way information is structured in real-world environments

often does not follow convenient simplifying assumptions” (p. 19). The converse error that I

accuse Gigerenzer of making (and to some extent his colleagues as well) is making simplifying

assumptions about human cognition. In a way that paraphrases Gigerenzer and Todd, human

cognition often does not follow convenient simplifying assumptions, and it would be folly

to presume so. For as Alice’s situation demonstrates, generous amounts of information are

in fact brought to bear on many of our decisions and inferences. Therefore, we should not

make simplifying assumptions about the way humans reason, but instead look to model human

cognition in a way that accounts for how humans manage such informational complexity.
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To see what I mean, let us consider an argument recently put forward by Kim Sterelny

(2004, 2006). Sterelny claims that the majority of real-world problems have a high informa-

tion load—they are informationally demanding, requiring significant amounts of information.

Sterelny believes that problems that bear a high information load, as complex as they are, are

typical rather than extraordinary, especially in a social world:

Human decision-making often has a high informational load, for we depend on
knowledge-intensive methods of extracting resources from our worlds. . . . [H]uman
social worlds are complex, demanding, and only partly cooperative. They are com-
plexly structured: divided by gender, status, occupation, generation. They are op-
erationally complex: much human action requires coordination with others. And
they are complex in their resource demands: successful human life requires access
to a large range of goods, not just a few. (Sterelny, 2006, p. 221)

Yet humans are impeccable at handling these high-cognitive-load problems in a quick and

frugal way. The question then is: How do we manage to do it? This is, of course, an incarnation

of the frame problem discussed above.

Sterelny argues that our uncanny ability to respond successfully to problems with high

information loads can reside in modules—i.e., informationally encapsulated, domain-specific

computational mechanisms. But such a solution is restricted to problems that are predictable

and occur in a stable environment over evolutionary time. Thus, while Sterelny concedes

that we likely possess innate modules dedicated to certain capacities, such as visual percep-

tion, language, and perhaps even folk physics, he goes on to claim that “human environments

are heterogeneous in space and time, and as a consequence there are many high-cognitive-

load problems that we face whose informational requirements are not stable over evolutionary

time” (p. 218), as described in the passage above. This means that it would be difficult for

natural selection to have equipped humans with specialized mechanisms to determine relevant

information for the unstable, heterogeneous problems typical of human life.

Nevertheless, Sterelny believes that humans deal with high-cognitive-load problems by re-

lying on a distinctively human evolved strategy: epistemic niche construction. Epistemic niche

construction is evident in humans’ propensity to develop epistemic technology.30 Humans epis-
30Sterelny is actually picking up and responding to the ideas of Clark (1999, 2002b; Clark & Chalmers, 1998),
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temically engineer their environments “in ways that circumvent the cognitive limits of individ-

uals on their own” (p. 229). This is a special form of niche construction: it is informational,

which consists in either the transformation of the informational structures of the problems that

are to be solved, or the creation of “cognitive tools” to “enhance the capabilities of our naked

brains. . . . To take the simplest of examples, the practice of marking a trail while walking in the

bush converts a difficult memory problem into a simple perceptual problem” (Sterelny, 2006,

p. 225; see also Sterelny, 2003, 2004).31 Sterelny further points out that epistemic niche con-

struction can consist in the use of epistemic technology to store and organize information in

our environment. External representations, such as pictures or words, are obvious examples.

But, perhaps more interestingly, artifacts can encode other kinds of information, such as their

function; or they can act as exemplars or templates, and in this way carry information about

how to make others like it (cf. Mithen, 2000; Dennett, 1991). In short, “we alter our envi-

ronment to ease memory burdens. We store information in the environment; we recode it; and

we exploit our social organization through a division of intellectual labour” (Sterelny, 2006, p.

230).

Sterelny concludes that “Good decisions require access to, and use of, generous amounts

of information” (p. 233), and therefore much of human decision-making really carries high

information loads. Even the use of epistemic technology is informationally demanding, ac-

cording to Sterelny. (I will return to this point presently.) However, instead of speculating

about innate cognitive mechanisms to assist us in our high-cognitive-load problem-solving and

decision-making, he claims that most of our cognitive abilities are the products of learning how

to exploit the right kinds of information in the right ways. This requires structured learning,

or “scaffolding”, to mitigate informational burdens, and to allow us to harness what is realized

by epistemic technology. Thus, according to Sterelny, human competencies that many evolu-

tionary psychologists (such as Gigerenzer and Carruthers) believe to be the products of innate

Dennett (2000, 1993), and Mithen (2000). I am choosing to focus on Sterelny’s position in particular because he
attends to some of the central points relevant to this dissertation in a more direct fashion than Clark, Dennett, and
Mithen.

31Similar ideas are found in Dennett (2000).
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mechanisms can be the result of perceptual preadaptation to relevant features of the natural en-

vironment (inherited from innate perceptual tuning to certain objective features of the world),

plus structured training to be sensitive to such features by a community or culture (i.e., so-

cial learning); social learning will direct a learning-individual’s attention to the relevant salient

features in the environment (through, for example, cultural representations such as pictures or

words), thereby further entrenching their respective roles in cognition.

It is interesting to note a certain parallel between Sterelny’s position and Gigerenzer’s un-

derstanding of how heuristics work, as outlined in the previous chapter. Gigerenzer appears to

recognize that humans are informational niche constructors, though he does not use such terms.

For example, he advocates for changing the way information is externally represented (such as

probabilistic information) in order to facilitate correct or better inferences and judgments (e.g.,

Gigerenzer, 1991, 1996). Further, with respect to his notion of ecological rationality, Gigeren-

zer asserts, “From an ecological view, environmental structures . . . directly influence cogni-

tion and can be designed to improve it” (Gigerenzer, 2006, p. 128). In another, more recent

work, he speaks of “design[ing] human environments” (Gigerenzer, 2008c, p. 27) to support

better decisions (cf. Gigerenzer, 2010). Nevertheless, not only are Gigerenzer’s discussions

on the actual phenomenon of informational niche construction too brief and underdeveloped

for what the topic deserves, he fails to appreciate the resulting informational richness of such

designed environmental structures. Yet his fundamental features of heuristics—that they (i) ex-

ploit evolved capacities, and (ii) exploit informational structures in the environment—appear

to correspond to ideas advanced by Sterelny. In particular, the exploitation of evolved capac-

ities appears to correspond to what Sterelny believes are perceptual preadaptations to relevant

features of the environment, which are requisites for many human competencies. Furthermore,

according to Sterelny, humans use these perceptual preadaptations to exploit informational

niches and epistemic technology, which are really just special kinds of informational structures

in the environment. This is to say that, on Sterelny’s account, some of the environmental struc-

tures that Gigerenzer talks about are human-engineered materials and niches for the purposes
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of exploitation.

It should be noted, however, that Gigerenzer refers to naturally occurring informational

structures in the environment, and how heuristics are mechanisms adapted to specific envi-

ronments. Although epistemic technology is, by definition, human-made and therefore not

naturally occurring, Sterelny’s broader story about the evolution of cognition is compatible

with Gigerenzer’s, so long as the environmental structures in question are stable enough to

invite specialized adaptations. In sum, Gigerenzer believes that heuristics work very well for

us—they are ecologically rational—just because they exploit environmental structures, and

Sterelny gives an account of precisely how this is done for a certain range of environmental

structures, namely through epistemic technology along with structured learning which finely

tunes our awareness to these structures and our skills to exploit them.

This is not to say that Sterelny’s position is continuous with Gigerenzer’s. For Gigerenzer

believes that the ubiquity of heuristics makes much human decision-making informationally

cheap, whereas Sterelny’s point is that this is not so. As we shall see, my view agrees with

Sterelny’s. If Sterelny is correct in that much of human cognition bears a high information

load, then contrary to the common conception about the nature of heuristics, they actually

draw on and use a great deal of information. However, I will argue that heuristics are still

computationally frugal despite the high information loads. This is one respect in which my

view is importantly different from both Sterelny’s and Gigerenzer’s—whereas Gigerenzer is

too optimistic with respect to the amount of information heuristics process, Sterelny does not

see heuristics as providing computational frugality. Moreover, both Sterelny and Gigeren-

zer emphasize the information in the environment that is exploited by humans—information

manifested in epistemic technology for Sterelny, and information embodied by “environmen-

tal structures” for Gigerenzer. I claim, on the other hand, that the informational structures

that humans exploit are in the head—specifically, information embodied by k-systems.32 We

32Sterelny (2004) emphasizes the elaboration of mental representation as a result of the development and use of
epistemic technology. In the next chapter we will see that my view is along the same lines. However, we will also
see that my view goes several steps further than Sterelny’s in that I develop a thesis about the cognitive structures
that embody our mental representations (what I am here calling k-systems), and I argue that the informational
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shall see more of this presently. But this does not mean that my view is incompatible with

Gigerenzer’s or Sterelny’s. Rather, I understand my view to complement theirs. To see this,

first note that Sterelny’s account is not so much about how humans exploit informationally rich

structures as it is about how humans create ways to store and organize information. Sterelny

certainly advocates for the role of special cognitive preadaptations (i.e., modules) and struc-

tured learning in honing our abilities to exploit epistemic technology. However, he is silent on

the underlying mechanisms by which we harness such informationally rich structures. On the

other hand, as recently pointed out, Gigerenzer believes that simple heuristics altogether avoid

the need to utilize significant amounts of information in decision-making. In these respects,

then, my account offers additions to Sterelny’s and Gigerenzer’s views, and thereby suggests a

more comprehensive understanding of human cognition.

Let us return to the central topic of this section. If we are to have any hope in exploiting the

informationally rich structures manifested in epistemic technology or environmental structures

in the ways that we in fact do, we had better have the appropriate cognitive wherewithal to do so

in the first place. What this partly entails is that we had better have the cognitive wherewithal to

conceptualize epistemic technology as things that we can exploit in very specific ways. A fish

trap is an epistemic technology that inter alia encodes information about its function (Sterelny,

2006; cf. Mithen, 2000). But if one cannot recognize the fish trap as a fish trap, then one cannot

exploit its function (or at least, one could only do so by accident). Instead, one may only be able

to exploit it qua some decorative artefact, rather than as a specific tool for a specific purpose.

To recognize and conceptualize a fish trap as a fish trap, one needs to have specific knowledge

about fishes, traps, hunting, bodies of water, and so on. In other words, one needs to have a

specific k-system (or a set of k-systems) from which to draw in cognition. In yet more general

terms, how we exploit epistemic technology is via the k-systems we possess.

This view is Dretskean in an important sense. In developing his information-theoretic epis-

temology, Fred Dretske commented that there is “a relativization of the information contained

organization of these structures is what enables heuristic processes. Also see below.
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in a signal because how much information a signal contains, and hence what information it

carries, depends on what the potential receiver already knows about the various possibilities

that exist at the source” (Dretske, 1981, p. 79). Although we might not know (or even cannot

know) absolute measures associated with the amount of information generated by an event or

carried by a signal, Dretske believes that comparisons can be made, “in particular comparisons

between the amount of information generated by the occurrence of an event and the amount of

information a signal carries about that event. . . . For example, if I tell you that Denny lives on

Adams Street in Madison, Wisconsin, I give you more information than if I tell you, simply,

that he lives in Madison, Wisconsin” (p. 54). With respect to the epistemological account I am

suggesting, we might consider epistemic technology as sources of information, and, of course,

the k-systems a person possesses determine what one knows about the source. Thus, what a

person can learn from epistemic technology depends on what one already knows about it. If I

give you a fish trap, and you know it as a fish trap (i.e., you can conceptualize it as a fish trap),

then you can get more information from it (to manipulate, for heuristics to exploit) than if you

do not know it as a fish trap.

What I am suggesting, then, is that, contra Sterelny and Gigerenzer, heuristics do not exploit

environmental structures directly. Rather, heuristics exploit k-systems within which substantial

amounts of information about the environmental structures in question are built, and this is how

we manage high-information-load cognition. That is, the information embodied by k-systems,

along with the extant relations within and between k-systems, are what enable heuristics to op-

erate as they do; without the information and relations within and among k-systems, heuristics

certainly would not be as powerful and robust as they in fact are. Epistemic technology and

other environmental structures certainly can store and organize information, and thus exist as

informationally rich structures, but cognitive exploitation occurs via what is known about the

objects or events in concert with the problem(s) in question. We will get a better idea of how

this works in the next chapter.
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3.4.2 Exploiting k-systems, but still frugal

Before concluding this section, I will return to the issue of frugality with respect to heuris-

tics. Notwithstanding that little cognitive resources are required to deploy heuristics, it appears

that the foregoing account suggests that heuristics can entail the processing of quite a lot of

information, since heuristics operate over informationally rich k-systems, and since heuristics

operate in high-information-load cognition. All sorts of information and assumptions can bear

in a variety of ways in much of our reasoning. We already saw this with respect to central

cognition, and we discussed its implications with respect to incurring relevance problems. But

on the foregoing account of central cognitive systems, it seems not only that a lot of informa-

tion can bear on a given cognitive task, but a lot of information does bear. If so, this would

run against what most researchers (most notably Gigerenzer and his colleagues) believe of the

nature of heuristics—i.e., that heuristics are frugal processes, requiring little information in

their processing—as well as against what is generally believed to be necessary to avoid com-

putational relevance problems—i.e., that the computational burdens associated with relevance

assessments can be relieved only if little information is processed, as outlined above.

It is instructive to consider here Dennett’s (1984) account of the frame problem. He offers

as an example a mundane task of making a midnight snack (complete with beverage):

Now of course I couldn’t do this without knowing a good deal—about bread,
spreading mayonnaise, opening the fridge, the friction and inertia that will keep
the turkey between the bread slices and the bread on the plate as I carry the plate
over to the table beside my easy chair. I also need to know about how to get the
beer out of the bottle into the glass. Thanks to my previous accumulation of ex-
perience in the world, fortunately, I am equipped with all this worldly knowledge.
. . . Such utterly banal facts escape our notice as we act and plan. (Dennett, 1984,
p. 134)

Dennett continues:

my midnight-snack-making behaviour is multifariously sensitive to current and
background information about the situation. The only way it could be so sensitive
. . . is for it to examine, or test for, the information in question. The information
manipulation may be unconscious and swift, and it need not (it better not) consist
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of hundreds or thousands of seriatim testing procedures, but it must occur some-
how, and its benefits must appear in time to help me as I commit myself to action.
(Dennett, 1984, p. 138)

[The frame] problem concerns how to represent (so it can be used) all that hard-
won empirical information . . . . Even if you have excellent knowledge (and not
mere belief) about the changing world, how can this knowledge be represented
so that it can be efficaciously brought to bear? . . . A walking encyclopedia will
walk over a cliff, for all its knowledge of cliffs and the effects of gravity, unless
it is designed in such a fashion that it can find the right bits of knowledge at the
right times, so it can plan its engagements with the real world. (Dennett, 1984, pp.
140-1)

In this light, the frame problem can be understood as the problem of how cognition achieves

the informational organization, and enables access to the relevant information, that seems to be

required for human-like cognitive performance. Interestingly, this idea was intimated by Fodor

(1975) in The Language of Thought, though his purposes for broaching the issue were slightly

different (though related). He there commented that “a fundamental and pervasive feature of

higher cognitive processes [is] the intelligent management of internal representations” (p. 164,

emphasis in original). In light of these considerations, we have yet a further aspect of the frame

problem—what I will call the representational frame problem:

The representational frame problem The problem of how a cognitive system
embodies the informational organization, and enables access to the relevant
information, that seems to be required for human-like cognitive performance.

I am claiming that k-systems are precisely the cognitive structures that exhibit the requisite

informational organization—that appropriately represent knowledge—to ensure access to the

right information for given cognitive tasks. And heuristics exploit such informational organi-

zation in their operations, effecting fast, on-the-fly cognition with reasonable levels of success.

At the same time, despite the exploitation of generous amounts of information, nothing

of what I have said implies that heuristics are not frugal. Frugality is (in a certain sense)

the essence of computational tractability, without which the computational relevance problem

threatens. Moreover, on the characterization given in the previous chapter, heuristics by their

very nature satisfice. And this entails that most information will not get considered in their
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processing; that is, satisficing and frugality go hand-in-hand. How, then, can heuristics’ fru-

gality be reconciled with their being informationally taxing? The answer, I believe, lies in the

way information is organized and encoded in informational structures, such as k-systems and

epistemic technologies. It is these epistemic structures that shoulder the informational burden,

not the heuristics themselves. On my account of the architecture of central cognition, highly

organized epistemic structures (or systems) bear dense relations among its constituents, and

in addition, there are specific relations between epistemic structures. This is to say that the

architecture of k-systems themselves affect information flow. When one part of a structure is

utilized by a heuristic, there will be implications for other constituent parts (or other systems),

depending on the organization of the structure and the nature of the relations among its parts,

or to other systems. This might mean that other items of knowledge are activated (to a greater

or lesser extent) when a heuristic exploits one (or more) items in a given k-system.

For example, Gigerenzer’s Take the Best heuristic is a simple algorithm that produces a

decision solely based on a single discriminating cue.

(15) (i) Search among alternatives; (ii) stop search when one alternative scores higher
on some predetermined criterion; (iii) choose the object identified in step ii.

The specifics of Take the Best was presented at the end of the previous chapter, where I argued

that heuristics are more than mere rules of thumb. But let us here remind ourselves of the

details of the heuristic as I draw implications for its frugality. Take the Best assumes that an

individual has a subjectively ranked order of cues stored in her memory which are believed to

discriminate between objects, and which are sequentially searched to make predictions.33 The

highest ranked cue which discriminates is believed to be “the best”, and the object which has

a positive value with respect to this best cue is chosen or assumed to score higher on some

criterion.34 The idea behind this heuristic is something like the following: Suppose you had to

33I suppose that one can produce cue rankings on the fly, as the situation arises. However, according to Gigeren-
zer, we must have predetermined cue rankings stored in memory (Gigerenzer & Goldstein, 1996, 1999). For
further discussion see chapter 5 (section 5.2.2).

34Take the Best is supposed to apply only when there are two alternatives, but I believe that the heuristic can be
generalized to apply to situations in which there are more than two alternatives.
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choose which of a pair of cities is larger; you believe that having a university is the best cue

which discriminates on the criterion of relative city size; you know that one of the pair of cities

has a university and that the other does not. Using Take the Best, you would infer that the city

with the university is the larger of the two. But note that significant amounts of information are

probably built into the very belief that a cue discriminates. That having a university is a good

predictor of relative city size may presume, for instance, that one understands what a university

is; its function in society; how it houses a number of faculty, staff, and students; perhaps the

relative social classes of members of a community typical of such faculty, staff, and students;

maybe the ways in which having a university relates to the economy of a city; and probably

much more. Indeed, it is the presumption of this information that can make one believe that

having a university is a good predictor of relative city size, and enables one to recognize and

understand the cue as a (discriminating) cue. On my account, all this information can very

well constitute a dense web, but it would be embedded and organized within the k-systems

of an individual. The important point is this implies that when one uses a heuristic like Take

the Best, which operates according to a single cue to discriminate, one is actually (implicitly)

relying on much more information than is revealed by the heuristic’s surface simplicity.

Here are two more examples in a little less detail. Simon’s chess heuristic (9) and Kah-

neman and Tversky’s Recognition heuristic (11) each uses a small number of factors in its

operation.

(9) In chess, consider first those moves that remove or protect pieces under attack.

(11) Probabilities are evaluated by the degree to which one thing or event is
representative of (resembles) another; the higher the representativeness
(resemblance) the higher the probability estimation.

Similar to Take the Best, the Representativeness heuristic operates according to resemblance,

which is just one cue. Yet judging resemblance is not such a simple process. Rather, it is an

informationally demanding task, involving the extrapolation of relevant features from items

in perception and/or memory. Whether Dick’s description is judged to resemble an engineer
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rather than a lawyer requires that one understand what each of these occupations are, what

members of each occupations are typically like, why members of each occupation are typically

like their stereotype, and so on.35 On the other hand, (9) considers whether any of one’s own

chess pieces is threatened, and the feasibility of the moves that would remove the threats, if

any. At any given point in a typical chess match, the number of pieces under threat of capture

is small (usually no more than three). And the potential moves to remove or protect the piece

are also typically relatively few. However, the heuristic must rely on other information if it is

to operate at all, such as what moves each piece can legally make (and really, all, or most, of

the rules of the game). Since chess is a finite, well-defined game, the amount of information

that (9) invokes and relies upon, despite how simple it appears on the surface, may not be as

much as the Representativeness heuristic or Take the Best, but the point holds just the same.

It is in this way that I believe heuristics exploit informationally rich k-systems, but remain

frugal in their computations. In fact, we might say that it is because heuristics exploit k-systems

that they can be frugal, since it is the informational richness that is bearing the cognitive load.

If this is right, then I believe we have the beginnings of a plausible model of how heuristics

operate in central cognition.

3.5 Concluding remarks

To recap, we began by considering the frame problem and saw that there are many aspects to it.

This chapter was guided by the computational relevance problem, and more specifically with

the appeal to heuristics to circumvent the problem. I showed that such an appeal to heuristics

has implications for cognitive architecture.

Philosophers such as Samuels (2005, forthcoming) and Carruthers (2006a, 2006c) believe

that heuristics solve the frame problem, whereas Fodor argues that they do not. I argued that

heuristics do not offer the kind of solution that Samuels and Carruthers think; specifically,

heuristics fail to circumvent the epistemological relevance problem. However, despite these
35In chapter 5, I will be giving a fuller description of the Dick example, and an analysis in light of the thesis of

this dissertation.
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arguments, I want to maintain that heuristics actually have a significant role in circumventing

such epistemological worries (though, of course, not in the way that Samuels and Carruthers

suggest). So I went on to gain a better understanding of the role heuristics have in cognition,

which meant investigating more thoroughly how heuristics work and the structures they operate

over.

Some authors believe that tractable cognition requires domain-specific computational mech-

anisms, and thus heuristics must be domain-specific. A domain-specific mechanism is sup-

posed to have built into it a significant amount of information about the domain in which

it operates so as to render it informationally rich, capable of quickly deploying strategies to

(re)solve the problems with which it is faced. Nevertheless, following Samuels (2000, 2005),

I argued that central cognition can be a domain-general computational system that draws on a

variety of specialized bodies of knowledge. Samuels and Fodor (2000) construe such domain-

specific bodies of knowledge as Chomskian modules, which are innate and domain-specific.

But I argued that such specialized bodies of knowledge need be neither innate nor domain-

specific. These k-systems, as I call them, are simply highly organized and structured systems

of knowledge.

We saw that Sterelny (2003, 2006) believes that humans tend to increase their cognitive

powers by informational niche construction, and creating and utilizing epistemic technology.

Thus, Sterelny offers a plausible account of how informationally rich bodies of knowledge can

be constructed, developed, and possessed by humans, as well as how such informational rich-

ness can be instilled and stored in the environment for humans to, perhaps heuristically, draw

on and exploit. In contrast to Sterelny (and Gigerenzer), however, I claimed that heuristics do

not exploit information in the environment directly, but the information about the environment

embodied by the appropriate k-systems in our heads.

Finally, I argued that, although heuristics carry a high informational load, they remain

frugal in their operations or computations by exploiting informationally rich k-systems. In

short, exploiting k-systems is ultimately what allows heuristics to be fast and frugal, as k-
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systems bear much of the information load in cognition. This view is consistent with the

characterization of “heuristic” I developed in the previous chapter.

In the next chapter I will provide a more specific picture of k-systems and of how heuristics

exploit their informational richness. I will claim that what I have been referring to as k-systems

are in fact concepts. And after developing a specific theory of concepts, I will explain in more

detail how heuristics work.



Chapter 4

Concepts, Heuristics, and Relevance

124
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Now that I have described a general architecture of cognition, it is time to provide a more de-

tailed account of the cognitive structures I have been calling k-systems. The account I will give

will show that concepts are the cognitive structures that fulfill the role of k-systems explained

in the previous chapter. The basic idea is that our concepts embody the kind of informational

structure that k-systems are supposed to have; and as such, concepts guide our reasoning and

inference, and they have a special role to play with respect to facilitating the operations of

heuristics in particular.

There are many theories of concepts. The theory that I will adapt is Lawrence Barsalou’s

(1999, 2003, 2005, 2008b, 2009; Barsalou, Simmons, Barbey, & Wilson, 2003). Barsalou’s

account of concepts is unlike many of the leading philosophical accounts insofar as it comes

from a psychologist, and more importantly it is grounded in perception rather than nonper-

ceptual cognition or a language of thought hypothesis.1 More specifically, Barsalou claims

that concepts are partly realized in collections of neural patterns in the perceptual centres of

the brain that were originally activated upon perceiving instances of entities in a concept’s

extension. Barsalou’s theory of concepts is situated in his more general view of conceptual

cognition, which he calls the perceptual symbol systems (PSS) view of cognition.

Although I will be drawing heavily from it in giving my own account of cognition and

how heuristics work, Barsalou’s theory will go largely undefended. Providing a full defence

of a theory of concepts is beyond the scope of this dissertation. However, my reliance on PSS

is justified to the extent that the theory has psychological and neural (biological) plausibility.

Moreover, since my proposed cognitive architecture enables us to model heuristic cognition,

my reliance of the PSS model is justified insofar as we are able to explain a wide range of

phenomena (which, it may be recalled, was a goal set out in chapter 2).

As I shall show, the PSS theory of concepts is in some respects related to an account of

cognition that many philosophers, psychologists, and cognitive scientists have converged on,

namely the file model of cognition. Such widespread convergence indicates that there likely is

1Although see Prinz (2002).
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something right—or at least interesting—about the theory. According to the file model, con-

cepts come with “files” that contain information (e.g., representations and beliefs) about the

concepts, or more precisely about the entities in the concept’s extension. In section 1 of this

chapter, I will expound Barsalou’s PSS theory as well as the file model of cognition. It will

be seen that these two accounts are not immediately compatible with each other. However, in

section 2 I will offer a critical assessment of each account, which will entail certain modifica-

tions and qualifications. The result will be a reconciled theory of concepts and cognition that

is more robust and, in my view, more fruitful.

In section 3 I argue that concepts, understood in terms of my reconciled theory, fulfill the

role of k-systems described in the previous chapter. I will there pick up the discussion from

the previous chapter regarding the exploitation of information in the environment, such as

epistemic technology, and argue that it is in fact one’s conceptual wherewithal to which one

owes the ability to exploit such information in the right ways. We will then be in a position

to see that concepts—or more precisely, the information embodied by concepts and the rela-

tions among such information—facilitate heuristic inference. Specifically, I will contend that

concepts constrain heuristic inference, and furthermore that the characterization of “heuristic”

given at the end of chapter 2 (viz. that they are cognitive procedures that satisfice, and require

little resources for their recruitment and deployment) is met by virtue of such constraints.

Section 4 will be devoted to providing a more detailed understanding of how heuristics

work. I contend that heuristics do not operate over conceptual content, but over higher-order

relations between active and primed concepts and their content (conceptualizations and repre-

sentations). I describe two sorts of informational structure that heuristics exploit. These two

kinds of structure are not meant to be exhaustive, but in the next chapter I will illustrate that

they have a role in facilitating some of the heuristics studied by Kahneman and Tversky, and

Gigerenzer.

As we shall see, the present chapter will be one largely of synthesis, but it will provide

substance to many of the ideas central to this dissertation.
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4.1 Concepts and representation

4.1.1 Perceptual symbol systems

As alluded to, Barsalou’s (1999) theory of mental representation is perceptually grounded. His

view is in a similar vein as the British Empiricism of Locke, Berkeley, and Hume. According

to the Empiricist tradition, sense experience is the only source of ideas (or mental represen-

tations), and moreover, ideas are imagistic in nature. The British Empiricists also believed

that thought proceeded via associations among ideas. Though Barsalou’s theory does not align

precisely with British Empiricism, his theory steps away from language of thought approaches

to mental representation by grounding representation in the perceptual system of the human

brain.

As Barsalou explains, the language of thought hypothesis originated from developments

in logic and computer science, from which formalisms such as the predicate calculus and

programming languages inspired new ways to conceive of mental representation.2 The new

conception of representation departed from experience-based empiricism, and this had consid-

erable consequences, not least of which was a drawn principled distinction between perception

and cognition. One important difference believed to exist between perception and cognition is

that perceptual representations are understood to be modal (i.e., they have specific properties

that are bound to specific mental/neural systems), whereas cognitive representations are con-

ceived to be inherently modality-neutral, or amodal. This immediately leads to the assumptions

that there must be separate mental/neural systems dedicated to perception on the one hand, and

cognition on the other, and that each system must use different means of representation and

operate on different principles. Thus, for instance, a perceptual representation of a chair will

have specific properties and be produced by specific systems that are able to represent its shape,

colour, tactile features, and so on. On the other hand, a cognitive representation of the same

chair will have none of these features, but will be represented—via a transduction of infor-

mation from perceptual systems to cognitive systems—as a nonperceptual, amodal symbol

2Cf. the discussion in chapter 2 of this dissertation regarding the rise of the interest in heuristics.
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chair,3 that behaves a lot like and shares similar properties with words or sentences of natural

languages. It is believed that, as amodal symbols are transduced from perceptual systems, they

enter into larger representational structures that operate as a fully functional symbolic system

which supports all of the higher cognitive functions. Assuming CTM, mental conceptual pro-

cessing can thereby be understood to be computational operations defined over the word- or

sentence-like syntax of the representations of the language of thought. Thus, we get in thought

and thinking the productivity, systematicity, compositionality, and everything else that we get

with natural languages (Fodor, 1975, 1983, 2008; Fodor & Pylyshyn, 1988).

Nevertheless, Barsalou believes that mental representations are not amodal language-like

structures. Rather, he argues that representations are modal “perceptual symbols”. Perceptual

symbols “are records of the neural states that underlie perception” (Barsalou, 1999, p. 582),

and therefore perceptual symbols “are modal because they are represented in the same systems

as the perceptual states that produced them” (p. 578).4 Thus, on Barsalou’s account, percep-

tion and cognition share representational systems. This does not mean that identical systems

subserve perception and conceptual thought; for indeed, mechanisms additional to perceptual

systems are needed for conceptual thought. Instead, perceptual symbols are essentially based

in or arise from perceptual systems in virtue of capturing and maintaining information from

perceiving entities and events in the environment and the body. Hence, for Barsalou, “cogni-

tion is inherently perceptual” (p. 577).

We should note that in important ways perceptual symbols are unlike the ideas or mental

images envisioned by the British Empiricists. Perceptual symbols are not conscious mental

images, but are patterns of neuron activations. Therefore, although perceptual symbols can

function in consciousness or unconsciousness, they are essentially unconscious mental repre-

sentations. Moreover, whereas Berkeley and Hume believed that representation cannot occur

without some specific particular being represented, Barsalou claims that perceptual symbols do

3The convention I adopt here is to represent concepts in small caps, contents in italics, and uses in quotes.
4It is not entirely clear what makes perceptual symbols, symbols in the philosophical sense (i.e., in terms

of meaning, referring, and being grounded). I want to avoid these issues, however, so I will uncritically follow
Barsalou’s terminology.
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not necessarily represent particulars. This is because perceptual symbols are not entire neural

states that are activated in perception. Rather, they are only schematic aspects of the neural

states of active perception. According to Barsalou, selective attention allows the cognitive sys-

tem to isolate and focus on only certain features of a perceptual state, depending on the nature

of the cognitive/perceptual task. As he observes, psychological work on attention has shown

that cognition can attend to the shape of an object while ignoring its colour, texture, and other

surrounding objects. Those features of a perceptual state (i.e., the subset of neural patterns ac-

tive in perceptual systems) that are attended to in the right sort of way5 are consequently stored

in long-term memory (although some information not attended to may get encoded as well to

a lesser degree). It is these attended-to features that constitute mental representations.

As a result of the selective attention process of symbol storage, perceptual symbols are

componential, not holistic. This is to say that perceptual symbols represent certain features

determined by the stored neural patterns, not entire “images” as understood in the Empiricist

tradition in which Locke’s primary properties (such as shape or size) are necessarily present.

As Barsalou explains, “It is well known that high-level neurons in perceptual systems can

code information qualitatively. For example, a neuron can code the presence of a line without

coding its specific length, position, or orientation” (p. 585). One can therefore represent a line

with few or no other specific qualities.6 This may seem counterintuitive, but it is important to

keep in mind here that perceptual symbols are essentially unconscious representations (that can

function in consciousness). Thus, despite the fact that it is difficult, or maybe even impossible,

to consciously construct a nonholistic representation (e.g., an image), it is not unreasonable to

assume that this can be done unconsciously.

5Barsalou does not offer a theory of attention.
6One might conjecture here that it is the use of one’s concept that enables someone to represent a line without

representing a specific length, position, or orientation. That is, once one grasps the concept line, one need not
represent any specific features of a particular line when mentally invoking the concept. This may very well be the
case, but it misses the point being made here, which is that Barsalou’s conception of perceptual symbols is not to
be equated with static images (Barsalou, 1999, 2008b) such as those envisioned by the British Empiricists, and
moreover, that Barsalou cites empirical evidence for the possibility of human neurology to realize representations
of an object without representing many of its specific features. (Pylyshyn (2003) gives evidence that properties
of objects can be tracked without being represented, and this lends support to the possibility of representing an
object without representing specific properties of it.)
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Perceptual symbols are not only supposed to be modal, according to Barsalou, but multimodal

in the sense that they encode information from any of the sensory modalities. The idea is that

different neural/sensory systems will become active upon perceiving an object, and informa-

tion captured by these systems will serve to represent various perceptual features of the object.

Thus, during visual processing of a chair, edge and surface detector neurons fire, while other

neurons fire for colour, orientation, and motion. The overall pattern of activation across this

distributed system represents the entity in vision. Analogous patterns of neural activation in

other sensory modality systems represent how the chair feels, smells, sounds, etc. (Barsalou,

2009). Attended-to aspects of these activation patterns are conjoined by “conjunctive neurons”

that bind features within a given modality (Barsalou, 2009; Barsalou et al., 2003; Simmons

& Barsalou, 2003; cf. Damasio’s (1989) notion of convergence zones), and these bound pat-

terns are stored in memory as perceptual symbols. “Later, in the absence of [perceptual] input,

these conjunctive neurons partially reactivate the original set of feature detectors to represent

the [chair]” (Barsalou et al., 2003, p. 85), and higher association areas of the brain (i.e., the

temporal, parietal, and frontal lobes) integrate activations across modalities (Barsalou, 2009).

These integrated activations thus constitute multimodal perceptual symbol representations.

A very important feature of PSS is that perceptual symbols do not exist independently of

one another. Rather, “related [perceptual] symbols become organized into a simulator that al-

lows the cognitive system to construct specific simulations” (Barsalou, 1999, p. 586) of the

perceptual component it represents.7 The simulations Barsalou has in mind are analogous to

7In his original paper, Barsalou (1999) was not explicit on what makes perceptual symbols “related”, though
he hinted toward the roles played by spatial and temporal relations of external events. More recently, Simmons
and Barsalou (2003) propose that the spatial proximity between conjunctive neurons (i.e., the neurons that bind
the neural patterns that represent perceptual features) in the brain’s association areas is indicative of similarity
relations between representations. In more specific terms, Simmons and Barsalou propose what they call the
similarity-in-topography principle, which states that the closer that conjunctive neurons are in the spatial topogra-
phy of an association area, the more similar those features will be; in their own words: “In general, the topographic
proximity of two conjunctive neurons reflects the similarity of the features they link” (p. 458). As an example,
Simmons and Barsalou claim that the conjunctive neurons that serve to represent a human face will lie close to,
and even partly overlap with, the conjunctive neurons that serve to represent a monkey face; the conjunctive neu-
rons for the face of an elephant, on the other hand, will not reside as close to those for the human face, but will
be much closer than conjunctive neurons that serve to represent a completely different type of object, such as a
chair. Simmons and Barsalou do not have an answer as to what makes conjunctive neurons bind certain features
rather than others. However, they suggest that conjunctive neurons may be “tuned” to certain features that are of
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the simulations that are conducted in mental imagery. When multimodal perceptual infor-

mation is extracted and integrated into an organized system, one can, at any point thereafter,

mentally simulate one’s experiences. Barsalou goes on to assert that, according to his theory,

“the primary goal of human learning is to establish simulators. . . . Once individuals can sim-

ulate a kind of thing to a culturally acceptable degree, they have an adequate understanding of

it” (p. 587). In other words, once one is able to construct a range of multimodal simulations

of an object or event (in a manner that is congruent within one’s community), one possesses

the concept for that object or event. Hence, Barsalou claims that “a concept is equivalent to a

simulator” insofar as a concept consists of “the knowledge and accompanying processes that

allow an individual to represent some kind of entity or event adequately” (p. 587).8 It will be-

come much clearer as we work through this chapter how important the knowledge to represent

an entity or event adequately is; specifically with respect to enabling certain neural activations

(e.g., those activated for words) to activate the appropriate representations for a given concept.

Moreover, a concept is a general kind, but since simulators produce simulations, a con-

cept can undergo any number of conceptualizations—different representations of a concept

according to the many different possible simulations of it. Again, for example, a chair can

be conceptualized (represented) in different ways concerning its size, shape, colour, material

evolutionary significance; and they leave the door open to the possibility that (at least some) “tuning” is learned.
These matters are tangential to the present discussion, so I will not assess them here.

8Since the publication of his original paper, Barsalou has wavered on his stance on equating simulators with
concepts. For instance, in a paper published some four years later, he and his collaborators discuss some empirical
data on grounding conceptual knowledge in modality-specific systems. They there state that “nothing is explic-
itly called a concept”, and that the simulator is “one central mechanism” of conceptual processing (Barsalou et
al., 2003, p. 84, Box 1). Yet, in a publication that same year, Barsalou asserts, “a concept is a simulator that
constructs an infinite set of specific simulations” (Barsalou, 2003, p. 522; more on this below). More recently,
Barsalou contends that simulators “implement” concepts and conceptual processing, while at the same time stat-
ing that “Theoretically, a simulator functions as a concept or type in more traditional theories by integrating the
multi-modal content of a category across instances, and by providing the ability to interpret individuals as tokens
of the type” (Barsalou, 2009, p. 1282). In another work, he states, “simulators are roughly equivalent to concepts
in traditional theories of knowledge” (Barsalou, Santos, Simmons, & Wilson, 2008, p. 251). Barsalou’s non-
committal stance toward strictly identifying concepts with simulators may be a reflection of his effort to distance
his view from language of thought theories of mental representation and concepts (Barsalou, 2003, 2005b). It is
also possible that Barsalou is using the term “concept” to refer to categories, as psychologists are wont to do, as
opposed to what philosophers mean by concepts. However, on some occasions it appears as if Barsalou is in fact
using “concept” the way philosophers use the term. In any event, to avoid the vagueness of Barsalou’s position,
I will assume here that simulators are to be identified with concepts. As we shall see presently, the theory of
concepts I develop adopts this position.
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composition, feel, etc.9 Different conceptualizations will be activated depending on the context

and goals of the agent.

Concepts are standardly conceived to represent categories or classes of things in the world,

i.e., the objects in their extension. chair represents the class of chairs; cat represents the

class of cats; etc. As such, Barsalou claims that once a simulator becomes established in

memory, and as knowledge is accumulated and added to the simulator, one is in a position

to identify members of its class, adequately interact with its members, and make categorical

inferences about them. Categorical inferences proceed from knowledge associated with the

category, which “provides predictions about [an] entity’s structure, history, and behavior, and

also suggests ways of interacting with it” (p. 587). Furthermore, since a simulator contains

an enormous amount of (multimodal) knowledge about a category, one can simulate aspects

that go beyond what is perceived, such as anticipating an entity’s structure or behaviour. For

example, Barsalou claims that the simulator for jet “might suggest that the jet contains pilots,

passengers, luggage, and fuel . . . that the jet is likely to fly horizontally, not vertically, and is

eventually likely to decrease altitude, put down its wheels, and land at an airport” (p. 596).

Thus, simulators, according to Barsalou, afford a wealth of top-down inferences.

It would be instructive to pause here to note that, as Barsalou describes the affordances of

simulators, simulators appear to be as potent as propositional knowledge. We should be hesitant

to accept this, at least not without some critical reflection. Simulators consist of perceptual

symbols which are in some ways similar to images (though, recall, they are distinct from

images). There is a problem, however, with images expressing propositions—a problem that

goes as far back as Fodor (1975) in The Language of Thought (chapter 4). Fodor argued that

9Barsalou (1999) claims that, despite the fact that an individual can produce different simulations or concep-
tualizations of a given concept, concepts are stable for an individual insofar as the same simulator (i.e., the same
areas of neural activation) produces the different simulations. Moreover, Barsalou claims that, although different
individuals conceptualize concepts differently, concepts are stable between individuals insofar as (i) they share
similar cognitive systems and experiences, and (ii) they have the ability to simulate each others’ conceptualiza-
tions. I mention these issues to anticipate some philosophical worries that some may have with Barsalou’s theory,
such as how we are to individuate concepts, how to account for concept stability (i.e., how a concept can remain
the same concept under different simulations or conceptualizations), how the same person can maintain the same
concepts over time, and how different people share the same concepts (this is what Fodor (2008) calls “publicity”).
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we cannot think in images because images cannot express propositions, and this is because

images “are insufficiently abstract to be the vehicles of truth” (p. 180)—a problem that does

not exist for a representational system like language. Consider for example a picture of Bob,

who happens to be a short and fat man. Can we say that the picture truly express “This is

Bob”? Or “This is a man”? Or “Bob is a short, fat man”? Or “Bob is pregnant”? (For the last,

think about what picture would express that proposition.) In short, images do not do the kind of

work that language does, since images are essentially analogue representations while linguistic

representations are digital. In light of this, then, we might be skeptical about Barsalou’s claims

regarding the work that simulators qua collections of perceptual symbols do. As indicated,

perceptual symbols are not to be identified with images.10 Nevertheless, the fact that simulators

are based in the perceptual centres of the brain should cause us to question whether simulators

can “suggest” the propositional knowledge that Barsalou claims (e.g., can a simulator for jet

be a vehicle for the truth that the jet will eventually land at an airport?). This problem may

be circumvented if we include a role for natural language in our conceptualizations. I will

be returning to this suggestion when I adapt Barsalou’s theory to achieve an understanding of

richer concepts.

In any event, simulators, as Barsalou envisions them, also impose constraints on conceptual

processing, which arise from associative connections between perceptual symbols that repre-

sent individuals within the simulator. Thus, activating a subset of perceptual symbols having to

do with the back of a chair can activate associated subsets of perceptual symbols having to do

with the seat of the chair. Constraints weaken or strengthen over time, and default perceptual

symbols can be constructed. Hence, what one simulates (or at least the ease with which one

simulates) is constrained by the perceptual symbols one possesses and the relations between

them. Furthermore, simulators provide background structures that support understanding con-

cepts. For example, the meaning of “lock” is ambiguous when left unspecified relative to some

background—it can mean (among other things) a tuft of hair or something that fastens a door.

10Maybe they are better likened to film strips, though with the possibility of only certain properties being
represented.
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But different perceptual symbols are accessed for “lock” depending on the context. An active

simulator for hair will determine a background of organized knowledge against which “lock”

is understood and conceptualized as a tuft of hair; whereas “lock” will be conceptualized as

something that fastens a door when entertained against the background simulator for door.

Such constraints on conceptualization and representation will have a significant role in the

account I develop below of how heuristics work.

In summary, multimodal perceptual symbols are derived from previous perceptual experi-

ences with certain events or objects. Perceptual symbols get bound up and integrated into a

simulator that produces a range of simulations or conceptualizations of the events or objects in

question. In this way, simulators are concepts, and the simulations produced by a simulator rep-

resent multimodal features of entities that belong to the concept’s extension (i.e., simulations

are conceptualizations).

Barsalou’s theory of concepts is certainly unlike the standard accounts found in philosophy,

especially those that rely on the language of thought hypothesis. Although it is beyond the

scope of this dissertation to fully defend Barsalou’s theory, I believe that it is a psychologically

and neurologically (biologically) plausible account of mental representation. As we shall later

see, I will adapt PSS theory to advance my account of how heuristics work. Nevertheless, some

justification for adopting Barsalou’s account can be found vis-à-vis a model of cognition that

is becoming increasingly popular in philosophy and cognitive science, namely the file model

of cognition. I will now briefly expound the file model, and afterwards I will critically assess

it in concert with Barsalou’s theory of concepts in an attempt to reconcile the two accounts.

4.1.2 The file metaphor

A number of cognitive scientists and philosophers have converged on an idea about the nature

and function of mental representations (e.g., Bach, 1987; G. Evans, 1982, 1985; Fodor, 2008;

Lawlor, 2001; Perry, 2001). The idea is a file model of cognition (Kahneman, Treisman,

& Gibbs, 1992; Pylyshyn, 2003; Treisman, 1982; Treisman & Schmidt, 1982). There is no
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standard doctrine accepted by everyone who endorses the file model, but there is some common

ground that can be identified. I will here roughly follow Fodor’s (2008) account since it brings

to bear a number of issues that are of concern to this chapter.

According to the file model of cognition, each object that one has beliefs about (i.e., knows

of, is acquainted with, erroneously believes exists, etc.) has its own mental “file” in one’s

head. Each mental file has a “label” that both picks out the file, and names the object that is

associated with the file. Further, each file holds a number of “notes” or “memos” that contain

various kinds of information or beliefs about the given object. Recently, the file model has

been adapted as a way to understand the nature and function of concepts.

According to Fodor, mental file-labels are expressions in Mentalese, and the file-notes are

written also in Mentalese. For example, when you think office, you token an office-label,

which calls up the corresponding file. You can then open the office-file and find in it notes

containing representations about desks, office doors, books, shelves, papers, computers, and so

on, depending on what you believe about offices. Conversely, the office-file is what gets brought

to mind when you, for instance, recall where you left your copy of Modularity of Mind.

Of course, files get created and altered subsequent to new experiences and changes of be-

liefs. When you meet Alice for the first time, a new mental file gets created, labeled Alice,11

and in it a number of notes are created according to the beliefs you acquire about Alice. Over

time new notes are added and some notes get revised: You had initially thought that Alice was

single, but now you have come to believe that she is married, and so you make the appropriate

corrections to the notes in your Alice-file. The number of files and the number of notes in each

file can be very large. Fodor believes that they can be “arbitrarily large” and speculates that this

might mean “potentially infinite” (p. 94). But surely, what files and notes one has are bound

by limitations on memory. This does not mean, however, that one cannot have an extremely

large number of files and notes.

There is also the possibility, as acknowledged by Fodor, that beliefs not contained within a

11If one knows more than one Alice, the mental file would be labeled Alicen, where n differentiates. (This is
how Fodor (2008) claims to have solved Frege-style problems of sense and reference.)
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given file may be inferred “online”. Thus, the belief that your cat is not in the top drawer of the

desk in your office is probably not in your office-file, and is generally not something that you

store anywhere in memory, but can be inferred when and if there is an occasion to do so. This

certainly mitigates the demands that the file model places on memory. Moreover, there will

likely be constraints on these sorts of inferences. An inference that your pen is in your desk

drawer is easily made, since that is the place where you usually keep your pen—you therefore

have a store of memories and representations of your pen in your desk drawer. Inferring that

your cat is not in your desk drawer may not be as readily made, given that your cat is never

in your office and may not even fit in the drawer. However, you will probably never infer that

your car is not in your desk drawer (except when doing philosophy), since your car is simply

not the kind of thing that is or can be in a desk drawer (not to mention in an office).12 We

should acknowledge, however, that this is an empirical matter, as is what is actually stored in

one’s files and gets inferred online.

The file model of cognition is useful in explaining the flow of thought. For the notes of a

file can themselves contain the names of labels for other files. Thus, when one searches through

the contents of a given file, other files may be brought to mind. When you recall that your copy

of Modularity of Mind is on top of a stack of papers on your desk by opening your office-file,

the files for papers and desk may be made available for opening and searching among their

contents. Alternatively, one may make inferences and thereby make available further files.

Thus, even so your office-file does not contain a note conveying the belief that your cat is not

in the top drawer of your desk, you can infer this and thereby bring to mind the file for Felix,

your cat.

It is important for the present purposes to understand how the file model can be understood

12We might think of these constraints in terms of pattern matching of information stored in memory. In our
example, you have memories and representations of your pen in your desk drawer, whereas you have no memories
or representations of your cat (or your car) in your desk drawer. And, by assumption, it would be much easier
to match and retrieve associated representations in memory (your pen and your desk drawer) than unassociated
representations (your cat (or your car) and your desk drawer); and there may even be resistance in associating
certain representations if there are conceptual problems in bringing them together (such as your car and your desk
drawer, as cars are not the kinds of things that can fit in a desk). See below for further remarks.
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more particularly to be a theory of the structure of concepts. On this reading, a concept names

a file that contains beliefs about the things in the concept’s extension. When thinking about

cats, for instance, one calls upon one’s file for cat, which may contain such information as is

a living thing, is a furry creature, is a quadruped, is grandma’s favourite animal, etc. Notice

now that what is contained in the file—what notes there are in the file—name other concepts:

living thing, furry creature, quadruped, grandma’s favourite animal, etc. This is not classical

decomposition. Rather, concept files contain notes that convey information about the concept

in question. Hence, unpacking the notes of one’s cat concept file is unpacking one’s beliefs

and other stored information about cats, the representations of which invoke further concepts.

Moreover, similar to what was explained above, whatever is inferred from the beliefs one holds

about a given concept may also excite further concepts, thereby bringing to mind files of their

own. The upshot of this picture for Fodor is that, since concepts name files, one thinks in

file names; and one can subsequently entertain the notes of a file once the appropriate file

name (i.e., concept) is tokened. In short, “file names are Janus-faced: one face turned towards

thinking and the other face turned towards what is thought about” (Fodor, 2008, p. 100).

What I have presented here in brief is a basic file model of cognition. Some authors add a

number of details beyond this basic model, but considering these extra details will take us too

far afield. We will gain a better understanding of how Fodor envisions the file model to con-

tribute to the nature and function of concepts when I critically assess his account below. For

now, however, let us observe that Barsalou’s theory of concepts bears a certain relation to the

file model, as both theories characterize cognitive representations and concepts in relation to

ensembles of information that exhibit specific structures and relations. More specifically, the

information constituting the perceptual symbols involved in a concept’s simulations can be un-

derstood to be what is contained in the concept’s file. Nevertheless, there are some details that

need to get ironed out if Barsalou’s theory of concepts is to be reconciled with the file model of

cognition, and, importantly for the purposes of this dissertation, if the resulting reconciliation

can fulfill the role of k-systems as conceived in the previous chapter. For instance, Barsalou’s
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perceptual symbols are multimodal and grounded in perception whereas the labels and notes

of a file are supposed to be conceived in terms of an amodal language of thought. In the next

section I will argue for some amendments to both Barsalou’s theory and the file model, the

result of which will be a reconciled theory of concepts and cognition. I will subsequently show

that this reconciled theory indeed supports the role of k-systems; I will then be in a position to

propose that they underlie the operations of heuristics.

4.2 A theory of richer concepts

This section will proceed in two steps. First, I will discuss a problem faced by the file model.

This problem is regarding whether it is possible to token a concept without invoking any rep-

resentational content. I will argue that this is not possible on Fodor’s version of the file model,

since it runs contrary to some assumptions of the language of thought hypothesis. I will suggest

more generally that conceptual content and associations between representations are invariably

invoked when mentally entertaining a concept. This view will play a crucial role for my ac-

count of how heuristics work. In suggesting this view, moreover, I will propose that Barsalou’s

PSS theory be interpreted in light of the file model, thereby initiating a reconciliation between

the file model and Barsalou’s theory of concepts.

The second step entails a critique of the PSS theory of concepts as envisioned by Barsalou.

In this subsection, I will argue for a role for natural language that augments Barsalou’s under-

standing of simulators and simulations. The result will be an enriched theory of concepts and

cognition which will underwrite the remainder of the discussion in this dissertation.

4.2.1 Conceptual content and associations

The degree to which notes are extracted from files will depend on the cognitive task and task

demands. In general, the whole of what one believes about an object or concept will not

be brought to bear in one’s thinking. Instead, one will tend to (or at least hope to) bring to

bear only what is relevant. In recalling where you left your copy of Modularity of Mind, for
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example, you will not recall everything you know or believe about offices—that is, you will

not consider the office-file in its entirety. You would likely extract some information to the

effect of, say, Modularity of Mind being on your office desk; and other representations may

also concomitantly be brought to mind, such as those having to do with the stack of papers

you have sitting on your desk, on top of which lies Modularity of Mind. (I italicize papers and

desk to signify, as explained above, that these representations can also be the labels of files

themselves (i.e., concepts), and thus any of a host of representations related to these objects

may be activated.)

On the other hand, Fodor contends that label-representations can serve in one’s thoughts

without inviting any other representations contained in their corresponding files to be brought

to mind. This means, for instance, that you can token an office-representation qua file label

without attending to any other beliefs about offices—that is, token the label without opening

the mental file. Whether one does or does not open files when labels serve as constituents of

one’s thoughts will, again, depend on the cognitive task and the task demands. Although this

is an empirical claim, it is a matter of principle according to Fodor. As he asserts, there is a

principled distinction between a file and the notes it contains; and this allows for a correspond-

ingly principled distinction between entertaining a representation and entertaining other beliefs

about that representation (Fodor, 2008, p. 97).

Whether one can in fact entertain a representation without entertaining other beliefs about

that representation, or whether and to what extent this actually does happen, are issues that

deserve serious attention. I suppose, however, that one cannot think a representation (have

a representation in thought) without entertaining other (related) representations. Indeed, it is

hard to understand how one can token a file label without invoking any content on Fodor’s

view, since file labels are supposed to be the constituents of thought, namely concepts. But

tokening a concept supposes content. The crux of this issue has to do with the way in which

labels are connected to their referents. Since, according to Fodor, labels are concepts, tokening

a label in thought must bring the referent to mind, and this implies that some content must
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be invoked. Thus, the tokening of a concept in thought supposes entertaining other (related)

representations.

It is important to keep in mind that the principled distinction between a file and the file’s

contents, and the correspondingly principled distinction between entertaining a concept and

entertaining other beliefs about that concept, are grounded in the language of thought hypoth-

esis. It is the labels of files that are supposed to be the representations we think in, i.e., our

concepts. In other words, file labels are the nonperceptual, amodal, language-like symbolic

representations that are the constituents of the language of thought. Notes that are in attending

files are also written in the language of thought, though they would be complex constructions

of the basic constituents, i.e., complex constructions of concepts. According to Fodor’s ac-

count of the file model, it is because we think in file labels that we are able to pull files, as

it were, without necessarily opening them; and hence, so Fodor claims, one can think office

without entertaining any beliefs about offices. Fodor claims that this is possible when the name

of the office-file is the constituent of one’s thoughts. But it is difficult to understand what he

means by this when he is committed to the position that the proper constituents of thought

are supposed to be concepts and not the names of concepts. As we shall see below, there is

a sense in which Fodor’s claim is tenable, namely if we understand file labels to be natural

language forms (e.g., words). Labels might thereby be connected to the referents expressed

by concepts, but tokening a linguistic form in thought will not necessarily bring the referent to

mind—linguistic forms per se are contentless. That is, if we understand file labels to be natural

language forms, the label would be connected to the file, but the content is the stuff in the file,

and whether and the extent to which the file is opened and explored will depend on the task,

cognitive demands, etc. Nevertheless, this possibility is not open to Fodor since, again, he is

committed to the assumption that file labels just are concepts. Yet concepts are unlike natu-

ral language words in that inter alia concepts cannot be divorced from their representational

content. Natural language words, on the other hand, are not essentially mental representations;

rather, they are linguistic representations which can be mentally represented. This is an onto-
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logical distinction that should not be ignored. I will return to this distinction between natural

language and Fodor’s file labels below.

It therefore does not appear that Fodor can consistently maintain that file labels can be

entertained without invoking (at least some of) the file’s representational content.13 In general,

I assume that concept-files are brought to mind partly opened with some of its contents spilling

out—some of its contents are activated, while other contents are primed. This may be due to

unconscious14 entertaining of representations before they are “brought to mind” in conscious

thought. But whatever the case may be, if this is correct, the principled distinction between

entertaining a representation and entertaining other beliefs about that representation does not

hold.15

We already saw that Barsalou does not subscribe to the language of thought hypothesis,

and that concepts, according to his theory, are multimodal and grounded in perception. Fur-

thermore, concepts are richly structured on Barsalou’s account, consisting of a simulator and a

potentially infinite set of simulations. Indeed, Barsalou argues that such structure can provide

for the productivity and compositionality we get with natural language. I propose, however,

that his theory of concepts be interpreted in light of the file model. Accordingly, the PSS view

would entail that concepts are not mere file labels, but are the files in their entirety, notes and

all. The integrated perceptual symbols in a simulator and its simulations can be understood as

the notes in the file, while the simulator can be understood as the file itself. Barsalou’s theory

thus interpreted is consistent with the assumption that files are brought to mind partly opened

with some of its contents spilling out. For on the foregoing account, entertaining a concept by

conducting simulations will necessarily activate and prime a variety of information about the

13Save for the possibility of contentless concepts. I am unsure, however, whether there can be contentless
concepts. At the very least, we can safely assume that the concepts we usually entertain in thought will have
content.

14To be succinct, I will use “unconscious” to refer to anything that is not conscious, including preconscious
thought or representation.

15We might also note that if it is possible to token a concept without tokening any other representations, then
it would be possible for a mind to contain only a single concept which it grasps and of which it has thoughts (cf.
Fodor, 1990)—in Fodor’s words, thinking about the concept “as such”. However, this is seen to be absurd, since
thinking in concepts supposes content, and content supposes more than a single representation.
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concept.

Fodor maintains that it is wrong to characterize concepts as files themselves, rather than

labels, since not only does this dissolve the distinction between entertaining a file and consider-

ing its contents, but it also threatens associationist commitments that, being a computationalist,

Fodor is loathe to endorse. For instance, if we accept that concepts are files themselves, then

when one entertains a file one must entertain all thoughts implicated by the notes that happen

to “spill out”. Fodor might be right that not everyone thinks mouse when she thinks cat, even

though these are highly associated concepts. However, the co-tokening of representations need

not occur in conscious thought. Indeed, it may be recalled that Barsalou believes that percep-

tual symbols are mostly utilized unconsciously. Thus, co-activations or primings of concepts

and representations can very well occur unconsciously, even if they do not reach consciousness.

It can be that I consciously token cat, but I unconsciously token mouse representations. Or, in

terms of Barsalou’s theory, I consciously token cat, and perceptual symbols having to do with

mice (say, a cat chasing a mouse) are activated unconsciously; in fact, on Barsalou’s theory,

unconscious perceptual symbols may cause me to consciously token cat in the first place.

This picture, however, should not be confused with the associationists’ doctrine that Fodor

argues against; Barsalou’s theory is not an associative-dispositionalist theory. Whereas associ-

ationists believe that fixed associations are what guide thought, the connections between rep-

resentations on Barsalou’s account are dynamic and vary in degree, depending on the context

and the cognitive task, as well as on the strength of connections between perceptual symbols.

If I am simply thinking about how lazy cats can be, I may entertain no representations of mice

at all, consciously or unconsciously. Again, in terms of Barsalou’s theory, my cat simulator

would not be simulating anything having to do with mice.

Moreover, Barsalou need not be committed to the claim that thought generally proceeds via

associations among representations, despite the claim that ex hypothesi people have a general

tendency to co-token representations associated with the concept one is entertaining. When to-

kening cat, one can very well entertain a number of beliefs about cats (from the notes in the cat



Chapter 4. Concepts, Heuristics, and Relevance 143

file or the perceptual symbols involved in a simulation) and thereby activate a network of as-

sociations between various other concepts, without thought proceeding via those associations.

Certainly, one can proceed from one thought to the next based on associations, but this is op-

tional and depends on the cognitive task and effort being invested in the task. At the same time,

it is perfectly acceptable on the foregoing account that thought generally proceeds via infer-

ence (consciously or unconsciously). One can certainly entertain representations and attending

concepts associated with catwithout inferring anything from those associations. Yet inferences

can be made by utilizing the associations or co-tokenings of representations. In this way, one’s

thoughts might be “guided by” associations in a loose sense. We shall see in more detail below

the role of co-tokened representations when entertaining concepts in inferential cognition. The

present point, however, is simply that the analysis of Barsalou’s theory of concepts that I am

giving here should not be understood as a brand of associative-dispositionalism.

To sum up the discussion so far, it is possible to reconcile Barsalou’s theory of concepts

with the file model, even if the language of thought hypothesis is rejected. Concepts are thus

understood as files in their entirety, notes and all, and with at least some associated representa-

tions active and others primed (most of which occurs unconsciously) while the concept is being

entertained. This is approaching the kind of structure that I envision serves the role played by

k-systems in cognition developed in the previous chapter. Before explaining this in more de-

tail, however, I will point out a problem that Barsalou’s account faces, and offer a remedy. This

will lead to an enrichment of conceptual structure better suited to the informational structure

of k-systems.

4.2.2 A critique of the PSS theory of concepts

Barsalou has recently acknowledged the involvement of more than just perceptual systems in

conceptual knowledge, including systems subserving language, affect or emotion, and statis-

tical representation (Barsalou, 2009; Barsalou et al., 2008; Santos, Chaigneau, Simmons, &

Barsalou, forthcoming). As we shall see below, he assigns a special role to the language fac-
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ulty in particular for representing and processing concepts. Nevertheless, the involvement of

these other cognitive systems in conceptual cognition is restricted to guiding conceptual pro-

cesses, and they do not contribute to the nature of concepts themselves. That is, Barsalou

continues to maintain that concepts are inherently perceptual—concepts are collections and

activations of perceptual symbols, which are based in the perceptual systems and have been

stored in long-term memory. (Although he is open to revising his position pending empirical

evidence; Barsalou et al., 2008.)

One thing that Barsalou’s theory fails to account for, however, is how we acquire concepts

for which no perceptual events are associated, or for which no perceptual events are possible.

Barsalou discusses how we might acquire and use abstract concepts, such as truth or disjunc-

tion, via simulations of perceptual symbols of events (e.g., he claims that we can simulate

truth by simulating an event conveyed by a sentence, and then check to see if the simulated

event—or something sufficiently close to it—is in the actual world). I am not convinced by

Barsalou’s account of how we might acquire and use abstract concepts, but I will not adjudi-

cate the matter here. For in any event, these are not the kinds of concepts that I have in mind

by those for which no perceptual events are associated or possible. Rather, the kinds of con-

cepts that cause serious trouble for Barsalou’s account are concepts like proton. A proton is a

subatomic particle of which any type of perceptual experience is impossible. How are we to

simulate proton if we cannot acquire any perceptual symbols for it? Certainly we can conceive

a proton to be a tiny sphere spinning around, but no serious (contemporary) scientist believes

this to be true. In fact, protons have a specific structure made up of three quarks. Protons also

have a +1 elementary charge. What perceptual symbols would be used to simulate these prop-

erties? Analogies can be made with visual diagrams, but these do not adequately capture the

conceptual information afforded by grasping the concept itself. Quarks are not circles, nuclear

bonds are not squiggly lines, and a positive elementary charge is not a “+” symbol. This is not

to say that these visual things cannot represent the properties of protons. But we need some

requisite conceptual knowledge of the referents before we can understand the representation
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relation and what is being represented. A red octagon does not look like “Stop!” any more

than a sphere looks like a proton, but we need knowledge of stop if we are to understand that a

red octagon represents a command to stop (e.g., via, perhaps, perceptual symbols having to do

with ceasing motion). If someone does not already have some understanding of stop, then she

would not know what is being represented by the red octagon.

Imagine trying to teach the concept proton solely by perceptual means to a complete neo-

phyte with respect to science. You might draw a few circles, some squiggly lines connecting

them, and a “+” symbol, and then tell the neophyte that it is a diagram of a proton. You

might even try to convey that a circle represents quark, a line represents nuclear bond, and

the “+” represents positive elementary charge. You mention, however, that protons, quarks,

and so on, do not really look like what is presented in the diagram. But you continue to en-

hance her perceptual experiences, maybe by presenting many such diagrams. The neophyte

might then store her perceptual experiences as perceptual symbols in her long-term memory,

integrate them in a simulator, and perform a number of simulations. It seems that according

to Barsalou’s theory, these perceptual experiences and her resulting perceptual symbols may

be the only means to understanding the concepts proton, quark, nuclear bond, positive ele-

mentary charge, and really any concept for which it is impossible to have direct perceptual

experiences (e.g., unicorn). Yet most of us would doubt that the neophyte really does possess

the concepts proton, quark, etc., based on her perceptual symbols and simulations of whatever

perceptual information she received from the diagrams. At the same time, however, professors

and teachers get their students to understand concepts such as proton, quark, etc., at consider-

able rates of success. Thus, our understanding of concepts in general cannot be owed simply to

perception—something more than perception must ground our (human) concepts.16 We might

recall here Barsalou’s claim that “a concept is equivalent to a simulator” insofar as a concept

consists of “the knowledge and accompanying processes that allow an individual to represent

some kind of entity or event adequately” (Barsalou, 1999, p. 587). It seems that it is “the

16This is to say nothing of what grounds the concepts possessed by other animals, or how other animals acquire
concepts, or whether they possess or acquire concepts at all.
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knowledge” part that requires further explication.

Natural language presents itself as a way around the problem I am posing for Barsalou’s

account of concepts—a way in which we might cash out “the knowledge”, in addition to per-

ceptual symbol simulations, in which a concept consists (or at least in which some concepts

consist). In many ways, one can do more with language than what can be done by perception

alone. Metaphor and analogy are just two examples.17 It would be very difficult, if not im-

possible, to simulate with perceptual symbols: “Juliet is the sun”. One might try to simulate

this by somehow combining the perceptual symbols one has for Juliet and for the sun. But not

only would this not convey the full intended meaning behind this statement, it would convey

the wrong meaning. For Romeo, Juliet is the sun not in any literal sense, but in the sense that

his love for Juliet overpowers his feelings for other women, and that (when one understands

the play as a whole) Juliet is in a way necessary for his life. It is unclear how something like

this can be simulated by perceptual symbols. And yet, all of us can very well understand the

metaphor, at least after it is explained.

My suggestion, then, is that Barsalou’s theory of concepts be augmented by natural lan-

guage for the human case, since perceptual symbols do not have the resources needed to grasp

many of the concepts we in fact grasp. This would entail two important related additions.

First, simulators would be enriched by including linguistic forms; in terms of the file model,

concept-files would contain as notes both perceptual and linguistic information. Second, nat-

ural language affords connections between simulators (or concept-files), thereby substantially

increasing the operational power of our central cognitive processes. I will discuss these in turn.

4.2.2.1 Integrating linguistic information

Natural language increases the informational resources of our conceptual systems such that

all our concepts are enriched. The idea is that linguistic information gets encoded and inte-

grated into our concepts as we learn language(s), hear linguistic descriptions about the classes

17Lakoff and Johnson (1980) argue that our concepts are metaphorical in nature. I do not endorse their argu-
ment. However, there is an interesting connection, I think, between (our use of) natural language and understand-
ing our concepts.
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or referents of concepts, and form beliefs that are expressed in natural language. As a human

infant learns a concept, she learns words and other linguistic forms accepted and used by her

linguistic community to refer to the extension of the concept in question. I am not prepared to

offer here a full theory of content or symbol grounding, but the process would likely occur by

first learning the relation between the said linguistic forms and direct stimuli in the environ-

ment; and as her conceptual and linguistic skills develop, the infant would cognitively realize

a similar relation between the linguistic forms and the perceptual symbols (stored in long-term

memory) associated with the stimuli (cf. Viger, 2007). During this learning process, the in-

fant would increasingly be able to recall and use the appropriate linguistic forms as she learns

to adequately represent the concept in question. I am suggesting that the appropriate linguis-

tic forms eventually get integrated in the simulator created for the concept just as multimodal

perceptual symbols get integrated. More specifically, we may consider the neural activations

involved in producing and processing linguistic forms (in the Broca’s and Wernicke’s areas) as

“linguistic symbols” (to adopt Barsalou’s terminology) on par with perceptual symbols. If this

is accepted, then linguistic symbols can get coded and stored in long-term memory along with

the other perceptual symbols associated with a simulator via the higher association areas of the

brain that integrate activations across cognitive systems (i.e., the temporal and frontal lobes),18

as Barsalou describes and outlined above. The only difference is the cognitive systems from

which the symbols originate and are (re)activated upon tokening or simulating the relevant

representations.19 Hence, I contend that linguistic symbols come to be part of an individual’s

concept-simulator, or what amounts to the same on the foregoing account, linguistic symbols

18Recall that Barsalou includes the parietal lobe as an association area for perceptual symbols. I omit this lobe
here since it does not seem to have much of a role with respect to processing language.

19My suggestion that linguistic symbols get integrated in a simulator inasmuch as perceptual symbols means
that linguistic symbols would have to get bound up with perceptual symbols in specific ways. Barsalou borrows
Antonio Damasio’s (1989) idea of convergence zones to explain how the brain integrates different features of
perceptual experience via conjunctive neurons to form perceptual symbols. According to Damasio, convergence
zones are neural ensembles that store the relevant neural patterns active upon perception, and enact “binding
codes” that specify the neural patterns to be (re)activated during mental representation (in the absence of stimuli).
If this right, then my proposal would require that linguistic symbols are encoded in the binding codes along with
perceptual symbols. At the very least, something in the neural operations underlying mental representation would
have to (re)activate the neural patterns of linguistic symbols in addition to those of perceptual symbols.
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serve as notes in a concept’s file.20

If Barsalou (1999, p. 587) is correct that an individual is understood to grasp a concept

to the extent that she possesses the knowledge that allows her to represent the concept to a

culturally acceptable degree, then linguistic symbols ought to be considered part of a simulator

inasmuch as perceptual symbols are, since the appropriate application and use of linguistic

forms is certainly indicative of the knowledge one possesses with respect to the concept in

question. For example, experiments by Karen Wynn (1990, 1992) reveal that most children

begin counting when they are two or three years old. However, it is not until months or years

after that they are able to understand the meanings of the number words, or the meaning of the

counting routine generally. For instance, children between 2 and 2.5 years of age can count; but

if they are allowed to count an array of objects and then are asked to give the experimenter, say,

four objects, they grab a handful of objects at random, notwithstanding that “four” is a part of

their counting routine. This is certainly evidence that such children do not grasp natural number

concepts, even if they are able to employ the words designating such concepts in a limited

range of situations. Thus, coming to understand a concept includes being able to appropriately

employ the correct linguistic forms in the correct circumstances;21 and according to the view

I am suggesting here, this is facilitated by having specific linguistic symbols integrated in the

concept’s simulator or file.

Allowing for linguistic symbols to be integrated in simulators or files enriches the content

of concepts in significant ways. For not only do linguistic symbols afford additional resources

to token conceptual representations in different ways (i.e., via various linguistic forms, in addi-

tion to perceptual symbols), but linguistic forms may be used in sentences of natural language

20Throughout the remainder of this dissertation I shall employ talk of simulators and talk of files more or less
interchangeably.

21Of course, this does not mean that we must get things right all of the time if we are to possess a given
concept. I am sure that competent people sometimes (or even often) inappropriately employ words. The point
I am making, however, is that, if one understands a concept, one would be able to correctly and appropriately
employ its referring word(s) on the whole or in general; and one’s competence can be assessed according to the
standards of one’s community. Let me point out also that this applies only to linguistically competent humans.
We certainly would not hold a nonlinguistic, nonhuman animal to this criterion; and we probably would not hold
humans suffering from aphasia to this criterion.
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to produce novel descriptions of conceptual content without necessarily invoking perceptual

symbols. Thus, when I entertain the concept cat, I can engage in cat-simulations or I can

activate the linguistic symbol for “cat”. Similarly, I can represent various aspects of cats or a

particular cat by using my perceptual symbols (e.g., the furriness of cats), or I can describe

these aspects, mentally to myself or aloud to others, by linguistic means (e.g., expressing the

belief cats are furry by saying “cats are furry”).22 The “or” in these cases should be under-

stood as inclusive here, for we have no reason to believe that thinking in language cannot be

accompanied by perceptual symbol simulation, or vice versa. Moreover, if Barsalou is right in

that perceptual symbols can be entertained, and that simulations can occur, unconsciously, then

we might expect that linguistically coded information, such as beliefs, can be entertained and

processed unconsciously as well. In fact, that sentence parsing and other linguistic processes

occur unconsciously suggests that this is not implausible.

Furthermore, on the present account it is entirely possible to learn a word in natural lan-

guage without any conceptual content save for grammatical information, such as whether the

word is a noun or verb. At this stage, a person—who can be an adult or child—would know the

role of the word in language but nothing about the concept the word names. And so the person

could very well use the word properly in some contexts, but would not be able to appropriately

employ the word in all the correct circumstances. Over time and with experience, however, the

person would learn what the word refers to and would thereby build up conceptual informa-

tion (filling the concept-file with notes), and this could continue until the person has sufficient

knowledge to grasp the concept in question. This example shows that a word token can initially

create a concept-file which is then subsequently filled with conceptual content (notes). The re-

sult is a concept which one can represent with linguistic or perceptual information (together

22The question may arise here as to whether sentences are included among the linguistic forms that get in-
tegrated in concept-simulators or files. My answer would be the following. Whatever neural activity it is that
constitutes a linguistic symbol and gets (re)activated upon tokening conceptualizations of a given concept is that
which is a proper part of the concept’s simulator. I see no reason thus far to preclude the possibility of whole
sentences being (re)activated in certain conceptualizations. I suspect, however, that limitations on memory recall
and other cognitive resources would restrict the length of sentences that get integrated in a concept’s simulator, if
sentences are the units available for integration at all.
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or independently, as mentioned). Indeed, this seems to be how we in fact learn some of our

concepts.23

The integration of linguistic symbols in concept simulators or files also explains at once

how one can acquire and appropriately employ concepts for which there are no possible per-

ceptual experiences (such as proton), as well as how one can learn abstract concepts more

generally. A student can learn proton because the teacher explains in natural language that

protons are subatomic particles composed of three quarks, etc., while explaining at the same

time the concepts quark, nuclear bond, etc. (the teacher can also draw diagrams to supple-

ment the learning process). The student’s simulator for proton would thus consist mainly of

linguistic symbols with which she would be able to use as and productively incorporate in lo-

cutions pertaining to protons and related matters. The student is subsequently prepared to draw

inferences about protons and comes to have beliefs about such entities, and hence she grasps

the concept proton. The same sort of learning process would apply to how one can acquire

concepts for nonexistent entities, such as unicorn, along with abstract concepts. The import

of this picture is great, since many of our concepts are initially formed in the absence of di-

rect perceptual experience. As Christopher Viger (2007) observes, “My acquisition of ‘shark’

was more like my acquisition of ‘unicorn’ than that of ‘tree’ ” (p. 133). In a word, linguis-

tic symbols are constitutive of most, if not all, of our concepts, and have a significant role in

conceptual cognition.

The importance and utility of concepts containing linguistically coded information (as part

of a simulator or as notes in concept-files) extends further. For there are certain events that

language can represent generically. Consider, for instance, the thought Alice stole the pen.

This thought need not be completely perceptually grounded.24 The manner in which Alice

stole the pen may be irrelevant; it might not matter whether Alice took the pen off Bob’s desk

and slyly placed it in her pocket, or whether Alice forcefully grabbed the pen out of Bob’s

23I owe this point to Chris Viger. See below.
24I say “completely” because there may be certain aspects of this thought, such as Alice or pen that is percep-

tually grounded, notwithstanding that the entire thought Alice stole the pen is not.
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hand as he was writing with it, or whether Alice borrowed the pen and then decided to keep

it without permission. If the thought Alice stole the pen would be completely perceptually

grounded, specific perceptual symbols would have to be activated for specific simulations, and

thus such details (e.g., the manner in which the pen was stolen) would be filled in. However,

if the thought were to be linguistically coded, “Alice stole the pen”, all that matters (viz. that

Alice stole the pen) can be coded, brought to mind, and conveyed, and irrelevant details need

not be represented. In a way, linguistically coding representations saves cognitive resources in

storing and entertaining certain thoughts. But more importantly for the present purposes, it is

a means by which specific, relevant information gets represented without representing what is

irrelevant.25

4.2.2.2 Affording connections between concepts

So far I have discussed the way in which augmenting Barsalou’s theory of concepts with nat-

ural language would enrich the simulators or files of concepts. As indicated above, the other

role for natural language is to provide a medium for establishing connections between simula-

tors (or concept-files), thereby substantially increasing the operational power of our conceptual

cognition. The idea here is that natural language is a powerful combinatorial system that af-

fords a means by which to combine diverse representations from different systems—an ability

that otherwise may not have been possible. This suggestion follows the accounts offered by

Elizabeth Spelke (2003a, 2003b, 2009; Condry & Spelke, 2008; Hermer-Vazquez, Spelke, &

Katsnelson, 1999) and Viger (2005, 2006c, 2007).

Spelke (2009) observes that many species are able to combine representations from differ-

25Barsalou asserts that perceptual symbols can be indeterminate and generic representations insofar as quali-
tatively specified neurons can encode specific qualities but not others (as explained above). His example is of a
triangle: A given set of qualitatively specified neurons can encode the presence of lines without encoding length;
length may be encoded by a different set of neurons. Thus, we can have a generic representation of a triangle
in the sense that a triangle can be represented without having a specific size. Though I do not doubt that this is
possible—and in fact, Barsalou cites empirical support for the existence of qualitatively specified neurons—this
is not the kind of generic representation that I have in mind here. For it does not appear that representations like
Alice stole the pen can be represented by qualitatively specified neurons in the same way as triangle, and there is
no evidence that this can be done neurologically. With the triangle case only part of what is perceptual is specified
(i.e., shape), whereas with the stolen pen case nothing perceptual is specified in the relevant sense.
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ent cognitive systems, at least to a certain extent, in making inferences. It is possible that an

organism’s cognitive architecture enables such combinations by embodying certain pathways

between representational systems; and some pathways may get established through the neu-

ral/cognitive development of an organism. It is also possible that an organism may learn to

combine representations from different systems, though this would be a slow and piecemeal

process. Humans, on the other hand, have available in addition to these two options a capac-

ity that enables arbitrary combinations between representations, and as Spelke contends, this

combinatorial capacity may be identical to the human capacity for natural language. Spelke

acknowledges that the human brain might develop a rich combinatorial power per se, but she

believes that this power is at least bolstered or guided by, and mutually developed in conjunc-

tion with, the development of natural language. Spelke cites empirical evidence to support her

position. For the sake of brevity, I will only discuss one kind of evidence here.

Spelke and her collaborators (Gouteux & Spelke, 2001; Hermer & Spelke, 1994, 1996;

Wang, Hermer-Vazquez, & Spelke, 1999) reveal interesting limits on navigational abilities in

children. In their experiments, children up to 2 years of age were tested in reorientation tasks

in which an object was hidden in a room, the child was disoriented, and then asked to find the

object. It was evident that the children were able to represent that the target object was located,

for example, at a corner with a long wall on the left, but they were unable to represent that

the object was at a corner with a blue wall on the left. According to Spelke, the children were

unable to combine geometrical representations (e.g., left of a long wall) with object-property

representations (e.g., blue wall) in order to represent the locations of the target objects.

As may be expected, human adults exhibit the ability to combine such geometrical and

object-property information under similar circumstances with ease. Spelke claims that the dif-

ference in performance between the young children and adults can be accounted for by the

emergence of spatial language. The developmental research of Hermer-Vazquez, Moffett, and

Munkholm (2001) reveal that the transition to flexible navigation in humans occurs around the

time when children master spatial expressions in natural language, such as “left” and “right”.
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Furthermore, performance on productive language tasks with items involving the terms “left”

and “right” turn out to be the best indicator of success on reorientation tasks for children at

this transitional age. These findings suggest that natural language has a key role to play in

navigation for humans. This suggestion is supported by further experiments on human adults.

For instance, Hermer-Vazquez et al. (1999) presented human adults with navigation tasks ac-

companied by interference tasks. Participants exhibited a general impairment in navigation

performance for all cases, but those who were given an interference task that specifically in-

terfered with language production performed like the young children—they were unable to

reorient with respect to nongeometric properties.

Spelke goes on to suggest that natural language assists in improved navigation performance

due to the combinatorial properties of language. The property of compositionality of natural

language allows speakers to represent the meanings of arbitrarily many combinations of words,

once the meanings of a given set of words and the syntactic rules for their combination are

known. Moreover, natural language crosscuts representational systems, and in this sense it acts

as a domain-general system of representation. Thus, natural language allows linguistically-

competent people to combine information in such a way that allows them to form representa-

tions that might not have been otherwise possible. With respect to the spatial and navigation

tasks,

the combinatorial machinery of natural language allows children to formulate and
understand expressions such as left of the blue wall with no further learning. This
expression cannot be formulated readily outside of language, because it crosscuts
the child’s encapsulated domains. Thanks to the language faculty, however, this
expression serves to represent this conjunction of information quickly and flexibly.
(Spelke, 2003b, p. 296)26

Though the evidence discussed here is only with respect to spatial representation, I believe

that the role of natural language can be generalized. Indeed, Spelke (2003a, 2003b, 2009) ar-

gues that natural language enables the creation of new concepts and changes within concepts,
26Spelke (2000, 2003a, 2003b; Spelke, Lee, & Izard, 2010; Spelke, 2007) also provides convincing evidence

that shows that distinct and more-or-less encapsulated systems in the human brain produce representations of the
geometric properties of spatial layouts, on the one hand, and properties (e.g., colour and shape) of objects, on the
other. The work of Susan Carey (2004, 2009) also suggests this.
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and that natural language is significantly involved in our representational capacities with re-

spect to artifacts, natural number, and social cognition. Extending this idea further, there is no

principled reason why the productivity, compositionality, and combinatorial power of natural

language cannot be harnessed in cognition generally. The latter is suggested by Viger (2005,

2006c, 2007). Viger argues against the language of thought hypothesis, claiming that concepts

need not possess the logical or compositional relations exhibited in natural language, and also

that the language of thought hypothesis does not possess the wherewithal to deal with the prob-

lem of how conceptual symbols are grounded. According to Viger, our conceptual apparatus

is enhanced once we learn natural language. He therefore advances what he calls the acquired

language of thought (ALOT) hypothesis: “some of our ability to think is acquired in learning

. . . a natural language” (Viger, 2005, p. 322). Unlike the properties ascribed to concepts by the

language of thought hypothesis, natural language terms are connected to each other in many

different associative respects. And so tokening a natural language word, for instance, can co-

token other associated words. Whether and to what extent co-tokening occurs will depend on

the organization of connections among words in cognition, but if the foregoing view is correct,

the result is an interconnected network of words that allows for any attending content to in prin-

ciple activate any other content (which, as discussed in the previous chapter, is paradigmatic

of central cognition; Viger, 2006c). “The interconnected network is like a roadway through

the mind, a constructed central superstructure that makes for easier travel among the modular

cognitive operations embedded within this superstructure” (Viger, 2007, p. 135). Thus, in a

sense, natural language encodes information in our concepts in such a way that makes it easier

to activate certain cognitive operations (Viger, 2006c). This picture is certainly consistent with

how Barsalou envisions conceptual thought.

4.2.3 Putting it together

The application of Spelke’s and Viger’s work to my account of concepts and cognition is best

understood in terms of the file model of cognition. It may be recalled that Fodor believes that
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one can think in file labels without invoking any content (i.e., any notes in the file), and that I

argued against this view since Fodor takes file labels to be concepts. I had proposed earlier that

concepts be understood as files in their entirety. I now further propose that we revise the file

model such that natural language representations (linguistic forms) that name concepts are the

labels attached to the files. On this revised model of concept-files, it may very well be possible

for the language faculty to token file labels in the absence of conceptual content (cf. my com-

ments above regarding learning a word and building up conceptual content afterward). That is,

it is possible that we can entertain natural language words without invoking any content, such

as when I mindlessly associate words like “salt” and “pepper”. Fodor endorses such associa-

tions between words (see Fodor, 1983, pp. 78-83; Fodor, 2008, pp. 98-99). However, Fodor

“suggests . . . that associations are the means whereby stupid processing systems manage to

behave as though they were smart ones” (Fodor, 1983, p. 81).27 On my account, on the other

hand, associations among words offer a means by which smart systems exercise their intelli-

gence. Furthermore, unlike Fodor, I have two distinct ways that associations can occur, namely

among items within a file or between natural language words qua file labels. This bimodal

means of association thus provides resources for thought and reasoning within and between

files, and this would certainly play a role not only in making inferences, but also in reinforcing

and corroborating inferences.

Perhaps more importantly, if we understand labels as linguistic forms, then the language

faculty can operate over file labels, and thereby enable the connections and combinatorial op-

erations suggested by Spelke. For it is in virtue of being linguistic forms that file labels would

possess the formal syntactic properties that lexical items have in a natural language. Thus,

according to my view, lexical items qua linguistic symbols can be integrated in and serve as

labels for concepts, and thereby serve as units over which different cognitive systems can oper-

ate (cf. Viger, 2006c). The language faculty may therefore independently operate on file labels

27To give this passage context, Fodor is arguing that informationally encapsulated systems (namely, modules)
are stupid systems, and so they do not intelligently evaluate information; according to Fodor, one recourse is for
them to operate according to associations.
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to establish the connections initially needed to bring diverse concepts to bear on one another.

Indeed, words are independent objects—independent from concepts—and therefore they can

be independently manipulated. Thus, as the language faculty operates over file labels qua lex-

ical items, all the linguistic machinery can be brought to bear when thinking in file labels. We

have noted that the linguistic machinery includes the combinatorial power of language, which,

as suggested, can enable connections between and combinations of concepts. Natural language

may not be necessary in combining content across concepts, but it certainly seems as if it plays

a significant role in facilitating the process.

In addition, as intimated above, the linguistic machinery includes the grammar of natural

language, which can yield important and rich information about the concept the label names.

For example, the label for one’s cat concept is a noun (i.e., “cat”), and “cat” does not act as,

say, a verb in language. Information such as this can indicate something about the nature of

cat—at the very least, it indicates that it is a thing—and this in turn tells us something about

the role the concept plays (or can play) in thought.

Construed as such, file labels really are Janus-faced, but not precisely in the way that Fodor

(2008, p. 100) described (viz. “one face turned towards thinking and the other face turned

towards what is thought about”). In light of the present considerations, it is more appropriate

to claim that file labels are Janus-faced where one face is turned toward the concepts they label

(what the thought is about) and the other face turned toward their role as a lexical item in

natural language.

I have shifted here from talking about concepts in terms of simulators to talking about

them in terms of files, but this was mainly for expository purposes. In terms of simulators, we

can envision a natural language form qua linguistic symbol to be integrated into a simulator

in such a way that it is flagged and understood to name (or label) the simulator. I suppose

this happens by a neural ensemble that encodes in a specific way the relevant neural patterns

in tokening the linguistic symbol (cf. Damasio, 1989; see footnote 19 above); this neural

ensemble would thereby specify the neural patterns that point or refer to the concept, and in
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this way the linguistic symbol acts as a symbol insofar as it names or stands in for the concept

in question. In this way, a linguistic form can function in cognition as a symbol that represents

or expresses a concept.28

As explained above, I am assuming that linguistic forms are grounded in the linguistic

systems of the brain and (re)activated as linguistic symbols. The language faculty may be

an independent representational system, but the lexicon can be understood to exist separately

from the linguistic system. So linguistic symbol activations can belong to a simulator, where

the linguistic symbol continues to be operated on by the language faculty according to the

formal syntactic properties it exhibits as a lexical item in natural language. Thus, simulators

can encode natural language forms qua linguistic symbols, and produce simulations and con-

ceptualizations with them (where the content of the conceptualization, it may be recalled, will

depend on the context and cognitive task). As an independent system, the language faculty

can process the linguistic symbols flagged as naming simulators and thereby make connections

between simulators according to the syntactic properties of the linguistic forms as exhibited

by natural language. Subsequent simulations then serve as deeper conceptual processing, pro-

viding deeper integrations of conceptual information between concepts, notwithstanding that

language initially makes possible many connections between concepts, as Spelke contends

(rightfully, I believe). Moreover, linguistic symbols activated by simulation will suggest fur-

ther conceptual connections, since the linguistic symbols embedded within a simulator can

very well pick out the names of other simulators.

In summary, my suggestion is that Barsalou’s theory be augmented by natural language.

Natural language enriches the content of simulators by allowing the integration of linguistic

symbols; in terms of the file model, concept-files contain as notes both perceptual symbols

and linguistic forms. Furthermore, if we understand file labels to be natural language words,

then, following Spelke and Viger, natural language affords combinatorial resources needed to

28This approaches what Viger (2007) claims. He posits the existence of interface structures between cognitive
systems that are activated during object recognition. Viger asserts that “a symbol is neurally encoded with a
projection to the interface site of what the symbol stands for” (p. 132).
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make connections between concept-files or simulators and their content. Natural language thus

enables more powerful cognitive operations than would otherwise be available.

It should be acknowledged that Barsalou (1999) assigns a role for natural language in his

symbol systems theory. However, the role he describes is not precisely the role I am advocating

here. Rather, Barsalou envisions linguistic symbols as perceptual symbols. More specifically,

he claims that spoken and written words are the perceived events from which selective attention

focuses and extracts perceptual symbols from the modes of perception (typically of hearing

spoken words or seeing them written), which then “become integrated into simulators that later

produce simulations of these words in recognition, imagination, and production” (Barsalou,

1999, p. 592, my emphasis). The simulators for words are subsequently associated or “linked”

to the entities or events they name, or more specifically, to the concepts the words label. Once

this linking happens, according to Barsalou, words can control simulations: “On recognizing

a word, the cognitive system activates the simulator for the associated concept to simulate a

possible referent. On parsing the sentences in a text, surface syntax provides instructions for

building perceptual simulations” (ibid.). Barsalou goes on to claim that “the productive nature

of language, coupled with the links between linguistic and perceptual simulators, provides a

powerful means of constructing simulations that go far beyond an individual’s experience”

(ibid.).

Nevertheless, I do not believe that these simulations will go far enough. For notice that

Barsalou is not claiming that words or linguistic symbols are integrated into the same simu-

lator of the concepts they label. Instead, words have their own simulators, the constituents of

which are perceptual symbols for the perceived events of hearing spoken words or reading writ-

ten words; these simulators then become linked to the simulators (or concepts) they express.

On this account, then, Barsalou still faces the problem presented by nonperceptual concepts

like proton. Certainly, one can develop a simulator from the perceptual symbols extracted

from perceptual experiences of hearing or reading “proton” (call this the pprotonq simulator,

since the concept is not proton but of the word “proton”), but without any perceptual experi-
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ences from which to extract perceptual symbols for proton itself, there would be nothing to

link pprotonq to. This is similar to the problem I discussed earlier about needing requisite

knowledge of stop to understand that a red octagon means “Stop!”.

In contrast, on the account I am suggesting here linguistic symbols are not merely linked to

the concept(s) they express, but get integrated into the simulators themselves as, for example,

words or beliefs expressed in natural language, and some word(s) would function as names for

the simulators (concepts). Natural language words and sentences may not be amodal,29 just as

Barsalou claims, but as I argued above there is a way in which language enables its users to

abstract away from modalities to express a proposition, make an exclamation, ask a question,

perform a speech act, or whatever. This is what allows us to understand what protons are (along

with everything else we cannot perceive), as well as what allows us to represent logical entities

and mathematical objects, have thoughts of impossible or nonexistent entities (such as unicorn

or god), and have coherent and robust abstract concepts.30 Information is encoded in language

differently than in perceptual symbols, and as such, the kind and the amount of information

that can be expressed in either format differs from each other. As should be apparent given the

discussion above, thinking the cat is on the mat in natural language expresses the proposition

that the cat is on the mat, whereas thinking it in simulations of perceptual symbols expresses the

same content but also carries much more information—perceptual information, to be precise.

And the degree to which simulations in perceptual symbols carry more information depends

on the manner in which the cat is on the mat is simulated (e.g., depending on whether the cat is

simulated to have a specific orientation; whether the cat is simulated to have a specific colour;

whether the cat is simulated as a specific breed; whether the mat is simulated to have a specific

colour or pattern; etc.).31 Thus, although linguistic symbols as constituents of natural language

29It might be more appropriate to say that natural language words and sentences may be amodal in certain
respects but not others. Word or sentence tokens that are spoken or written on a page, for instance, are certainly
not amodal, as they involve the sensory modalities of audition and vision, respectively. However, it is not so clear
whether employing a word or a sentence in thought and grasping its meaning involves any sensory modality.

30As I had indicated above, Barsalou argues that his PSS theory can account for representing abstract concepts.
He uses the examples of truth, disjunction, negation, and anger. However, I do not think his theory can account
for all abstract concepts. (I believe that his account of anger is particularly inadequate.)

31Cf. the discussion above in section 4.1.1 regarding what can be expressed by images as opposed to what can
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can be the stuff of thought and can express some of the same information as perceptual symbols,

either format will embody and express different concomitant information.32

It might be noticed, however, that Barsalou recognizes that natural language plays a central

role in producing simulations. This is indicated in the passage cited above: “the productive

nature of language, coupled with the links between linguistic and perceptual simulators, pro-

vides a powerful means of constructing simulations” (Barsalou, 1999, p. 592). More recently,

Barsalou has discussed an even more prominent role for natural language (Barsalou, 2008a;

Barsalou et al., 2008). For instance, Barsalou et al. (2008) assert, “In general, we assume that

linguistic forms provide a powerful means of indexing simulations (via simulators), and for

manipulating simulations in language and thought” (p. 252). This approaches the role of natu-

ral language assigned by Spelke and Viger, and the one advocated here. In more specific terms,

Barsalou et al. believe that associations between linguistic forms generate “pointers” to asso-

ciated conceptual information. They claim that humans can employ “linguistic strategies” to

facilitate easy but superficial, shallow inferences. Such superficial linguistic strategies can be

highly effective, but according to Barsalou et al., they do not directly involve deep conceptual

processing; conceptual processing is supposed to occur only via simulations. In a little more

detail:

we assume that the syntactic structure of sentences controls the retrieval, assembly,
and transformation of the componential simulations that people integrate to repre-
sent sentences and texts. Similarly, we assume that interactions between the two
systems are responsible for the representation of propositions, conceptual combi-
nations, productively produced phrases, recursively embedded structure, etc. In
general, we assume that symbolic structures and symbolic operations on these
structures emerge from ongoing interactions between the language and simula-
tion systems. (pp. 272-273)

be expressed by propositions. It should be noted, however, that nothing I am saying here hangs on whether images
can express propositions—I am not here talking about the proposition phrase “The cat is on the mat”, but rather
the content of the proposition.

32I suppose that there can be natural language simulations analogous to perceptual symbol simulations. With
respect to natural language, however, simulations would occur as rehearsals of some form of “inner speech” (cf.
Carruthers, 2006a). The sentences that this inner speech would produce would be various descriptions of the
associated concept in natural language, and there may also be a kind of inner conversation—a talking to oneself,
as it were—in which various questions are posed and answered. And, like perceptual symbol simulations, natural
language simulations mainly occur unconsciously. This is mere speculation, however. None of what I have to say
here depends on the details of such natural language simulations, or indeed whether they actually occur.
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[B]oth systems are probably essential for achieving the powerful symbolic abilities
of the human cognitive system. Neither alone is likely to be sufficient for symbolic
behaviour. . . . Across many abilities, the two systems work together to achieve the
power and distinctive properties of human intelligence. (p. 274)

We might therefore observe that the present account of cognition is at least consistent with

Barsalou’s recent writings. However, to repeat, my account of concepts allows for the integra-

tion of linguistic symbols in simulators, and I believe this is needed to account for representing

abstract and nonperceptual content. I also believe that the integration of linguistic symbols in

simulators aids in establishing and maintaining connections between simulators (concepts), as

well as in offering a means by which certain linguistic symbols (words) can serve as labels that

name or stand in for concepts. This indicates another important respect in which my account

differs from Barsalou’s, namely having to do with the feature of concepts that allows natural

language to negotiate conceptual processing. For Barsalou and his collaborators do not share

the reconciled file model in which simulators have labels in natural language, which enable

the linguistic system to connect concepts and representations across domains, and exploit their

content. Barsalou et al. (2008) assign natural language a substantial role in cognition, but they

do not adequately explore what it is about concepts that allows natural language to connect

and combine them. In fact, Barsalou et al. assume, following Barsalou (1999), that simulation

mechanisms implement combinatorial symbolic operations (see Barsalou et al., 2008, p. 251),

not natural language operating over linguistic data integrated in concepts as labels.

I should note that this account is meant to be neutral with respect to the language of thought

hypothesis. The foregoing view is that natural language augments perceptual symbols in our

conceptual apparatus in more elaborate ways than proposed by Barsalou. As such, the present

account enriches Barsalou’s theory of concepts. Yet, although Barsalou’s theory rejects the

basic tenets of the language of thought hypothesis, I have not given any arguments against the

possibility that the stuff of thought is in fact language-like representations. All I have argued is

for an interrelation between concepts (as simulators or files) and language.

Given this initial discussion on the account of concepts that I am adopting here, we are now in a
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position to understand more fully the role of heuristics in cognition, and more specifically how

heuristics work. In the next section I will explain how the foregoing account of concepts fulfill

the role of k-systems envisioned in the previous chapter. Examples illustrating my claims will

be provided in the following chapter, wherein I discuss how some of the heuristics proposed by

Kahneman and Tversky, and Gigerenzer, can be understood in terms of the theory of concepts

and cognition proposed in this dissertation.

4.3 From k-systems to concepts

Recall that a k-system is an informationally rich system of knowledge or representations. K-

systems encode various kinds of information in a highly organized fashion—information is

encoded such that specific relations hold between items of information within systems, as

well as between different systems. As explained in the previous chapter, k-systems are what

facilitate the kind of reasoning we witness from humans—reasoning that is quick and efficient,

and that is frugal in its computations. I claimed that without the right kind of architecture and

the right kind of structure and relations among items of knowledge in our heads, we would

be unable to make the inferences that we in fact do—inferences which underlie much of our

cognition. I want to now claim that concepts, as explicated above, are the cognitive structures

suited to the role of k-systems. More specifically, I want to claim that the way heuristics work

is by exploiting concepts, and by the same token that concepts constrain heuristics.

Given the account of the nature of concepts and conceptual cognition just presented, it is

not hard to see why I believe concepts to be the kind of cognitive structure that I described k-

systems to be. It may be recalled that the function of k-systems is to deal with high information-

load and cognitively-demanding problems, paradigmatically ill-defined problems (which are,

again, the problems that we typically have to deal with). I argued in the previous chapter

that humans characteristically handle such ill-defined problems successfully and solve them

because we exploit the information embodied by our k-systems. In light of my explication of

the nature of concepts, however, the information we exploit can be seen to be actually embodied
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by our concepts.

Last chapter I had discussed the role of information in the environment with respect to

cognition and k-systems. Much of the burden placed on cognition can be off-loaded into the

environment. Information can be stored and made to be organized in specific ways by means of

notepads, books, calendars, pictures, and so on. Moreover, external devices such as calculators

and computers can aid in problem-solving. These technologies can certainly mitigate cognitive

costs. I claimed in turn that the requisite knowledge needed to exploit epistemic technology

must be the structured and organized k-systems I described (cf. Sterelny, 2004, 2006). We

can see more clearly now that one in fact requires the appropriate concepts and conceptual

knowledge to suitably exploit epistemic technology. For epistemic technology can be as infor-

mationally rich as we like, but we must conceptualize the technology in certain specific ways

if we hope to exploit its embodied information in the right ways. Consider, for example, a

map. A map encodes information about topography, landmarks, and distances, but if one does

not recognize and conceptualize a map as a map, then one cannot hope to exploit any of the

information it embodies (cf. Sterelny, 2004). At the very least, one must have the concept map,

with the appropriate representational content, to read a map in the right ways.

Imagine that Alice and Bob come across a piece of paper with various markings on it,

mostly lines and geometric figures but no words. Alice and Bob both examine the paper and

its markings. Bob cannot make sense of it, and he therefore believes that it is just a bunch of

doodles. On the other hand, the markings on the paper activate map symbols for Alice. She thus

begins to conceptualize the piece of paper as a map, and she begins to conceptualize the lines

as streets, the squares as city blocks, the blue markings as bodies of water, and so on. Thus

conceptualized, Alice can exploit the representational content of the map. If Alice figures out

which markings on the map correspond to what landmarks, she can triangulate her location on

the map, she can figure out what direction to walk to get to the shoreline, she can infer that

there is a railway two blocks north, and so on. Bob on the other hand cannot exploit any such

information.
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Notice, however, that Alice’s map concept must be sufficiently rich if she is to exploit the

map’s information. For instance, if it is not in Alice’s map file that maps usually represent

water with the colour blue, then she would not understand that the blue markings she sees

indicate bodies of water. Or if Alice did not know that maps are often not in the business of

accurately representing the colour of the land, then she might wrongly believe that the map

conveys information about land colour. Thus, knowing that a piece of paper is a map is not

enough to appropriately conceptualize the information embodied by the map. This is to say

that our concepts must be rich enough to afford the conceptualizations necessary to exploit

information possessed by epistemic technology. In fact, being able to conceptualize certain

things in certain ways in the first place is what allows us to create epistemic technology qua

objects that store and encode certain kinds of information in certain ways.

To recall the Dretskean theme pointed out in the previous chapter, what information a signal

carries depends on what the receiver already knows about the source. When confronted with

epistemic technology, or any object at all, our sensory experiences embody a great variety of

information. Our concepts are cognitive structures that enable us to extract and exploit certain

features. In this sense, learning or enriching a concept provides us with the ability to decode

certain aspects of our sensory experience in such a way that we cognitively respond in certain

ways. In Dretske’s terms, concepts allow us to digitalize information from an analog signal.33

A map might contain information about the topography of the land, and anyone who views the

map is seeing this information. But those who do not have a rich enough concept of map to

recognize and interpret topographical information are incapable of extracting or attending to

such information, and therefore incapable of cognizing it or allowing it to affect one’s cognitive

dispositions and behaviour. In Dretske’s words:

33Dretske believes that concepts are cognitive structures that decode analog signals to digital. In a sense, I
believe Dretske is right, although perhaps not completely. It may be more accurate to claim that concepts are
cognitive structures that decode some of the information in an analogue signal. What gets decoded may not be
fully digital, although this can be the case—natural language, for instance, appears to be digital. (Cf. my remarks
above concerning thinking in images in section 4.1.1.). At the very least, however, my position is that having the
appropriate perceptual symbols and/or linguistic information is what would enable one to decode various aspects
of an analog signal.
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Learning to recognize and identify daffodils, say, is not a process that requires
the pickup of more information from (or about) the daffodils. . . . The requisite
information (requisite to identifying the flower as a daffodil) is getting in. What is
lacking is an ability to extract this information, an ability to decode or interpret the
sensory messages. What [a] child [who is learning to recognize daffodils] needs
is not more information about the daffodil but a change in the way she codes the
information she has been getting all along. Until this information (vis., that they
are daffodils) is recoded . . . , the child sees daffodils but neither knows nor believes
that they are daffodils. (Dretske, 1981, p. 144)

According to Dretske, developing a concept daffodil is what will enable the child to identify

daffodils, to know and believe that certain flowers are daffodils, and to behave appropriately.

As explained above, natural language can facilitate connections between concepts. How-

ever, deeper conceptual processing also has a role in combining and integrating the represen-

tational content of concepts (notwithstanding, however, that language makes possible many

connections between concepts in the first place). Once a concept becomes established, and

as knowledge is accumulated and added to the concept, one is put in an increasingly better

position to make inferences about the objects or events picked out by the concept. Let us re-

call here Barsalou’s claim that, since a concept contains an enormous amount of (multimodal)

knowledge and information, one can simulate aspects that go beyond what is perceived, and

thereby make various inferences about an entity. As described above, for example, the concept

jet might suggest that a perceived jet contains passengers, luggage, pilots, and so on; that the

jet will continue to fly horizontally and in a single trajectory, not vertically or sideways; and so

on.34 Thus, the conceptual content35—the representations and conceptualizations—of active

or primed concepts guide inference. Furthermore, what inferences one can make, and the rel-

ative ease with which one makes inferences, is constrained by the concepts one possesses and

the relations between them. This is because the associative connections that exist within and

between concepts inhibit certain inferences while facilitating other inferences. This was illus-

trated by the example above: the ease with which inferring that your pen is in your desk drawer

34We should keep in mind here, however, the hesitations outlined above in section 4.1.1 with respect to this
example.

35For the sake of brevity, I will refer to the perceptual symbols, simulations, beliefs, and other linguistically
coded information (i.e., the representations and conceptualizations) embodied by concepts simply as “conceptual
content”, unless there is a need to be more specific.
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will be much easier and more natural than inferring that your car is not in your desk drawer.

Pens are the kinds of things that are typically in desk drawers, while cars are not. Thus, we

typically have positive experiences of pens in desks, and these experiences and representations

are stored in our memory as items in the respective concept files. On the other hand, we have

no experiences of cars in desks, and so we will have no such representations in our files. You

can therefore just recall from memory that your pen is in your desk drawer, whereas you have

to do cognitive work to infer that your car is not in your desk drawer. In fact, one’s conceptual

content of our car and desk concepts will generally inhibit the inference that one’s car is in

one’s desk drawer, since (as I observed above) cars are not the kinds of things that can fit in

desks. And even when we do the cognitive work to make the inference, we may still resist it:

if we were to hear someone say “My car is in my desk drawer!” we would likely assume that

a joke was being told or that a toy car was being referred to, rather than that someone’s actual

car was in a desk drawer.

4.3.1 What this means for heuristics

Now that we have done all this work on understanding the architecture of cognition, and the

nature of concepts, let us see what it does for our investigation into how heuristics work. As

I was saying, concepts guide and impose constraints on inference. Yet it is certainly possible

that one can reason beyond the constraints imposed by the conceptual content of active and

primed concepts in making inferences. The latter impose only initial constraints on inferences.

If one were to thoroughly reason through a problem by fully exploring potential outcomes,

solutions, or consequences, and the means to achieve them, one could make any number of

inferences. Heuristic reasoning, however, does not proceed this way. Rather, heuristics are

completely subject to the constraints imposed by the conceptual content of active and primed

concepts. And this is what makes heuristics work the way they do. Let us recall, once again,

the characterization of “heuristic” that I developed in chapter 2.

H7 Heuristics are cognitive procedures that satisfice, and that require little cogni-
tive resources for their recruitment and execution; they operate by exploiting
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informational structures.

Heuristics, by their very nature, are not procedures that thoroughly explore problems (i.e., they

satisfice), and so they operate according to the information that is made available (in terms

of what is activated or primed) throughout the satisficing process. How much information is

surveyed will depend on the heuristic used, the nature of the task, the goals of the agent, and

constraints on time, resources, etc. Sometimes conceptual information will continue to get

activated or primed until a goal is met—until something “good enough” (i.e., that satisfices)

turns up. Other times, we may not need to go too deep into our concept files to activate

conceptual information, if we arrive at our satisficing answer quickly. And we might not even

need to use a heuristic if we get the correct answer right away. However, the information made

available to heuristics will generally not be sufficient to make deep conceptual inferences,

but sometimes (if the conceptual information is sufficiently organized) heuristics can produce

good inferences based on present relations and activations. The aspiration level set for a given

heuristic can entail that a certain (small) number of inferences is made before reasoning is

terminated (e.g., a decision is made, or one capitulates), but the exploration of the problem will

usually not go too far. Thus, the operations of such a heuristic will remain constrained by the

concepts that get activated or primed throughout the satisficing process.

As explained in chapter 2, the satisficing nature of heuristics contributes to their requiring

little cognitive resources for their recruitment and execution. But the way concepts constrain

the operations of heuristics is what really enables heuristics to be frugal. Much of the previous

chapter was devoted to showing that the organization among k-systems bears a lot of the bur-

den entailed by high-information-load problems. Now we can understand that it is in fact the

organization of the perceptual symbols and linguistic information of our concepts that bears

the burden entailed by high-information-load problems. The productivity and combinatorial

power of natural language is certainly a factor in mitigating high-information-load problems,

as connections between concepts can be established via concept labels. In addition, the as-

sociations among perceptual symbols and linguistic information, within and between concept
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files, makes concepts parts of an organized infrastructure of conceptual content. Reasoning and

making inferences are thereby simplified in many ways. We often do not have to spend very

much cognitive resources integrating a lot of information due to the informational richness of

our concepts, for either sufficient information has already been integrated for us by the sim-

ulators for our concepts, or our concepts are inherently organized in such ways that facilitate

the retrieval of information. The relations between conceptual content allow easy access to

associated concepts and representations. Consequently, however, the more impoverished one’s

concepts are (with respect to conceptual content or organization), the harder it will be to rea-

son in certain ways with them. I will return to this point below. The point to note for now is

that the organization of information within and between concepts eases the burdens associated

with information processing and information search, and this in turn facilitates swift and frugal

heuristic reasoning.

Thus, in a word, it is our concepts—the information they embody and extant relations

within and between them—to which heuristics owe their ability to satisfice, and to require little

cognitive resources for their recruitment and deployment. Concepts enable heuristics to operate

quickly and efficiently; concepts enable heuristics to be robust and potent inference strategies.

This is in broad strokes how I envision heuristics to work. Some of the particulars still need

to be filled in, however. In the next section I will explain in a little more detail my account of

how heuristics work.
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4.4 How heuristics work: Informational relations and higher-
order operations36

I assume that the nature and content of the cognitive task initially activate and prime37 a fo-

cused set of conceptualized concepts (i.e., specific conceptualizations of concepts, or what I am

calling here “conceptual content”). Suppose, for instance, one is presented with the following

task:

Estimate whether it is likely or unlikely that there will be a plane crash within the
month.

This would activate conceptual content concerning planes, crashes, likelihoods, estimation,

months, timeframes, and perhaps more. Since an individual likely possesses a vast number of

concepts concerning such content, the conceptual content that initially gets activated can be

overwhelming. There are parameters, however, that will provide constraints on what concep-

tual content gets activated. More specifically, there will be two kinds of parameters: parameters

with respect to the nature and content of the cognitive task (what I will call external param-

eters), and parameters with respect to the structure of one’s conceptual cognitive wherewithal

(what I will call internal parameters). In the example we are considering here, the external

parameters include those that are given by the language used (e.g., using “likely” and “un-

likely” rather than “probability”; using “plane” rather than “jet”; using “month” rather than

“30 days”), as well as those that are suggested by the nature of the task (e.g., the task elicits

a course-grained subjective likelihood assignment to a future event as opposed to, say, a fine-

grained numerical subjective probability). The internal parameters will have to do with factors

36The following account was inspired through conversations with Chris Viger. However, I recently came across
a paper by Andy Clark (2002) which advocates for a method to circumvent Fodor’s frame problem by borrowing
from the work of Jon Kleinberg (1999) on web search engine techniques. Though the central ideas of this subsec-
tion were arrived at independently of Clark (or Kleinberg), I roughly follow and adapt parts of Clark’s account,
not only because it corroborates my thesis, but because it fills in some of the details that I had not had a chance to
fill in myself. Nevertheless, two important differences between my view and Clark’s account are that Clark does
not offer the kind of cognitive architecture I give in this dissertation, and Clark is not concerned with providing
an account of how heuristics work in cognition.

37For simplicity, I will use “active”/“activated” to refer to both active/activated and primed content.
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affecting long-term memory recall, such as which concepts an individual possesses, the rela-

tive strengths at which conceptual content is stored in long-term memory, the ease with which

conceptual content is activated (perhaps based on past activations), and the existence and rel-

ative strength of extant connections between concepts and conceptual content established by

past inferences. Both external and internal parameters will substantially constrain what con-

ceptual content gets initially activated upon engaging a given cognitive task, and moreover,

limits on time and cognitive resources will restrict what and how many conceptualizations oc-

cur. Yet, even with these constraints, a considerable amount of conceptual content may still

get activated. Moreover, further activations can be made once the initial set of conceptualiza-

tions occur. For, according to the theory of concepts developed above, the inherent relations

between concepts will have it such that invoking some conceptualization will invoke others,

depending on the nature and strength of such relations. And so the set of activated concepts

and conceptual content will almost invariably be more than what the nature and content of the

cognitive task initially invokes (subject to the constraints just outlined).

We might distinguish here between two types of connections between conceptual content

with respect to the direction in which the connection is established and maintained. In this

sense, connections can be inward or outward. Inward connections of some conceptual content

CCi are those established and maintained by invoking other conceptual content CC j; the direc-

tion of priming or activation is from CC j to CCi. On the other hand, outward connections to

some conceptual content CC j are those established and maintained by invoking CCi; the direc-

tion of priming or activation is from CCi to CC j. For example, tokening a conceptualization of

a plane might token a conceptualization of people, but tokening a conceptualization of people

might not token a conceptualization of a plane. In this case, a plane bears an outward con-

nection to people, and on the other side of the coin, people bears an inward connection from a

plane; but a plane does not bear an inward connection from people. We will get a clearer sense

of how this is supposed to work below when I discuss examples and present diagrams.

I suppose that these connections are established and exist in virtue of associations among
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conceptual content. As claimed, a conceptualization of a plane can likely involve conceptu-

alizations of its passengers, and ipso facto conceptualizations of people; but it is not as likely

that a conceptualization of people will involve conceptualizations of a plane. This is because

there is a much weaker association from people to planes than from planes to people. Such

associations can vary in degree of strength, as discussed above with respect to connections

between concepts generally. In other words, there will be varying thresholds of association be-

tween conceptual content. In short, then, what and the extent to which conceptual content gets

activated will depend in part on the types and strengths of connections borne by the concepts

and conceptualizations invoked by the nature and content of the cognitive task. Let us also

remind ourselves here that the connections between concepts and conceptual content are estab-

lished by associations between perceptual symbols and simulations or via natural language, as

explained above.

It is important to understand that, on the present account, heuristics do not primarily attend

to the content of concepts. I say “primarily” since some conceptual content may figure into

some heuristic processes. But my point is that conceptual content is not what heuristics gener-

ally operate over.38 Conceptual content comes into play with the initial setup of the cognitive

task (as just described), and then with deeper conceptual processing (if it comes to that), but not

with respect to heuristic processing. The relations exhibited by a conceptual system embody

a rich source of implicit (putative) knowledge concerning which concepts and representations

are to be considered for given cognitive tasks. Heuristics utilize this implicit (putative) knowl-

edge, not the content of the concepts concerned, by operating over the informational relations

between concepts and the relational structure of the conceptual system more generally. I will

describe here two types of relational structure that can arise from the conceptual information

that gets activated by the nature and content of a cognitive task, and I will then explain how

heuristics can exploit such structures.

One type of potential extant relational structure (or simply ER-structure) that can arise

38By “operate over”, I mean something to the effect of doing inferential work with computations. This sort of
meaning will apply throughout the rest of this dissertation.
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with respect to a given cognitive task is one in which active conceptual contents bear outward

connections to the conceptual content of some single concept. The number and strength of

inward connections that the latter concept bears would indicate that its conceptual content is

putatively pertinent to the task at hand,39 since multiple inward connections in a sense serve as

corroboration that there is something important about the concept in question with respect to

the task at hand. This is similar to how a scholarly article with multiple citations is accredited

as (in some sense) more important to a given topic than articles with few citations. In this way,

inward connections, like citations, carry information about the pertinence or importance of a

given concept.

Let us call the type of ER-structure just described a thin ER-structure, since the property in

question—namely, the number of strong inward connections to a given concept—is thin insofar

as a concept can bear many strong inward connections while the concepts on the giving-end

of such connections (i.e., the concepts bearing outward connections to the first) may bear no

further outward connections to other potentially pertinent concepts. In other words, considering

only the multiple strong inward connections to a single concept may very well miss other

concepts that may be pertinent to the task at hand.

Richer informational relations between active conceptual content may give rise to a thick

ER-structure. Richer informational relations can arise from making available (i.e., priming or

activating) more conceptual content, which results in an informational structure that embod-

ies richer connections, or more particularly, a richer informational ER-structure. Thick ER-

structures exhibit not only one or a few concepts that bear many strong inward connections,

but many concepts that bear strong inward connections from sets of concepts. The assumption

behind this idea is that in a sufficiently rich structure of activated conceptual content, a per-

tinent concept will tend to have many sources of inward connections, and these sources will

39I realize that by talking about “pertinent” representations I am really talking about relevant representations.
I use “pertinent” here not to skirt the issues concerning the relevance problems discussed in chapter 3, but to
temporarily hold the issues to one side as I develop the present account of how heuristics work. As promised, I will
address the epistemological relevance problem in chapter 6. Furthermore, I qualify “pertinent” with “putatively”
since we have not yet established how we are to determine normative relevance (pertinence). More on this in
chapter 6. In the mean time, however, I will omit “putatively” for the sake of simplicity.
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Thin ER-structure Thick ER-structure

Figure 4.1: Simplified representation of thin and thick ER-structures. The nodes represent
richly structured activated and primed concepts, and the arrows represent inward/outward con-
nections. The concepts bearing the inward connections are deemed pertinent to the task at
hand. With respect to the thick ER-structure represented, the concepts on the left constitute a
set of reference concepts that bear multiple outward connections to the pertinent concepts on
the right.

at the same time bear many outward connections to other pertinent concepts. For the sake of

simplicity, let us call the said sources of inward connections “reference concepts” (RCs). It is

assumed, in other words, that, since pertinent concepts (PCs) are supposed to have, in common,

pertinence to the task at hand, in a rich ER-structure there should be concepts, namely RCs,

that bear multiple outward connections to multiple PCs. The richer the structure, the more RCs

there should be. Furthermore, we would be able to group RCs into sets according to which

PCs they outwardly connect to. Each member of these sets bears multiple outward connections

to multiple PCs, and thus there can be considerable overlap between sets which can also be

used to pick out supersets. And, again since PCs are indeed supposed to have, in common,

pertinence to the task at hand, PCs should bear inward and outward connections to and from

each other as well. Returning to the article analogy, important articles will tend to have many

citations from a variety of other articles, the latter of which may be grouped according to the

articles (in addition to the “important article”) they cite; and moreover, the important articles

would tend to cite each other.
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Figure 4.1 graphically illustrates, in a grossly simplified way, the thin and thick ER-structures

I have described; in reality, the concepts would be more numerous and the connections messier.40

Given these types of ER-structure, my suggestion is that a heuristic can use the information em-

bodied by either ER-structure to pick out pertinent concepts in order to bring to bear certain

representations to the task at hand, or to make predictions, or to make inferences, depending

on the nature of the task and the function of the heuristic. With respect to thin ER-structures,

strong connections that bear inwardly and in large numbers to given concepts would inform a

heuristic that the latter concepts are pertinent to the task at hand, and that they therefore have a

special role to play. There very well may be more than one concept that bears such numerous

and strong inward connections, and if so then each will be considered pertinent. But, by their

very nature, thin ER-structures typically do not exhibit rich structures, and so they generally

should not exhibit relations that pick out more than a few pertinent concepts. Thus, when a

heuristic has a thin ER-structure over which to operate, it is possible that more conceptual

content will be activated in order to do more processing, if some requisite goal is not met by

the thin structure alone. After more conceptual content is activated, the ER-structure might

get thicker with richer connections. It is important to remember that heuristics engage in sat-

isficing processes, and how much conceptual content is surveyed will depend on the heuristic,

the nature of the task, the constraints on the agent, and the aspiration level to be met. And

so, again, conceptual information will continue to get activated until the goal is satificed (i.e.,

the set level of aspiration is met). In terms of the present discussion, this means that a thin

ER-structure may get thicker as a heuristic operates over it. Yet this will not necessarily be the

case. A solution may be found in a thin ER-structure, or a heuristic might simply be satisfied

with whatever answer is produced given a thin ER-structure, in which case no more content

will get activated, and the heuristic will thus deliver the solution based on the thin structure.

Heuristics will often have thick ER-structures to operate over, however. This is because,

as argued in the previous chapter, the cognitive tasks we face usually have a high cognitive

40The figure is adapted from Kleinberg (1999).



Chapter 4. Concepts, Heuristics, and Relevance 175

load, and as such, navigating these tasks invokes large amounts of informationally rich repre-

sentations and conceptualizations. Heuristics that exploit the implicit knowledge embodied by

thick ER-structures thereby have a lot more information over which to operate; heuristics that

operate over thick ER-structures will be informed of which concepts are to be brought to bear

or have a special role to play in inference or prediction.

To illustrate, let us briefly consider the task presented above, viz. estimating whether it

is likely or unlikely that there will be a plane crash within the month. If, for example, the

connectional structure among conceptual content invoked by this task is such that there are a

number of inward connections to the conceptualizations concerning plane crashes, then this

will indicate that plane crashes are in some sense pertinent, and it will therefore have a signifi-

cant role to play in the inference. A heuristic may thus bring to bear such conceptualizations of

plane crashes on the task at hand, and this might suggest to the individual that it is likely that a

plane crash will occur within the month. On the other hand, if one possesses more conceptual

information regarding plane crashes and their frequency, then the ER-structure invoked may be

thick. Some of the representations and conceptualizations may bear multiple outward connec-

tions to such concepts as planes, crashes, frequency, and perhaps others. Depending on the

conceptual content of these latter concepts, heuristics operating over such a thick ER-structure

may still suggest that it is likely that a plane crash will occur within the month. If one con-

ceptualizes frequency in the appropriate ways, however, then one would be able to infer that

the frequency of plane crashes is low. A heuristic would therefore deliver a prediction that it

is unlikely that a plane crash will occur within the month. This is just a very brief illustration.

More detail on how this works with respect to concrete tasks and heuristics will be given in the

next chapter.

We might note, however, that one need not accept what a given heuristic offers. That is, one

need not make a decision based on whatever inferences or judgments are delivered by a given

heuristic. However, what a heuristic does offer is made available for the taking in a quick and

easy way. This is most likely why we are all so tempted to base our decisions on whatever our
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heuristics deliver without thinking the matter through. We might say that we are cognitively

lazy. Furthermore, by the same token, one’s judgments can be mitigated by further knowledge

or cogitation. Much like how one can train oneself to think more thoroughly through logical

problems to ensure that the correct logical rules are applied, one might train oneself to remem-

ber that recalled instances of plane crashes do not indicate whether an actual plane crash is

likely. But remember, according to the foregoing account, the representations and conceptual-

izations activated by a context and cognitive task, and the associations among them, serve as

a network of information that guides heuristic processes. Heuristic inference is also thereby

constrained because heuristics are satisficing procedures that operate on the information made

available throughout the process—deep conceptual processing would be nonheuristic. Thus, if

the conceptual content of one’s active concepts exhibit a certain ER-structure, a given heuristic

procedure will facilitate certain inferences in the absence of further conceptual cogitation.

Let us observe that the picture I am presenting here of heuristics operating over ER-

structures is consistent with the characterization of cognitive heuristics offered in chapter 2.

I should make clear, however, that thick and thin ER-structures are not meant to be understood

as determining what heuristic is to be employed. An ER-structure will determine what infor-

mation a given heuristic can operate over, but it is a different matter as to what a heuristic does

with the implicit knowledge embodied by the ER-structure. The latter will be determined by the

nature of the task and the function of the heuristic. Further, I do not intend to suggest that the

thick and thin properties I have described are in any way exhaustive of the structural properties

that heuristics exploit; my contention is that heuristics operate over structural relations between

concepts and their conceptual content, and that there are cases in which such structural relations

are thick as well as cases in which they are thin, as I have described these properties. The im-

portant point to stress is that heuristics are thereby understood to operate by generally ignoring

almost all of the actual content of the active concepts and their conceptual content. Rather, the

structures over which heuristics operate are the relational structures—structures that implicitly

embody higher-order information (or knowledge) about active concepts and their content. In
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this way, active conceptual contents work together as collections that point to a very small set

of pertinent or salient concepts (in some cases the set may consist of only one concept as a

member). Such pertinent or salient concepts will be those that bear numerous strong inward

connections from other active content. I argued in the previous chapter that heuristics exploit

the informational richness of concepts, but remain computationally cheap. It should be all the

more apparent now how this is so: Heuristics do not compute over conceptual content, for that

would be computationally taxing. Instead, the informational richness exploited by heuristics is

implicit in the ER-structures—the informational richness is the higher-order, metainformation

about conceptual content—which carry much of the computational load.41

At the same time, we should note that there will be instances when the relational structure

embodied by the conceptual content of concepts may not (or maybe cannot) guide heuristic

inference. These will be instances when the available ER-structures are very thick—when,

for instance, too much conceptual information is activated. Such very thick ER-structures

would not be conducive to heuristic processes since the extant informational relations would

not exhibit anything that a heuristic can exploit.42 Thus, some nonheuristic process may need

to be employed to aid in reasoning through these sorts of structures. On the other hand, we

may very well need a heuristic to navigate such a very thick structure, since sorting through all

the conceptual information may be computationally taxing.

Another case when an ER-structure will not be sufficient to guide heuristic inference is

when one’s relevant concepts are too impoverished, or maybe even do not exist at all. In the

previous chapter, I had claimed that impoverished k-systems can negatively affect the way

inferences are made. The same reasoning applies here. When one’s relevant concepts are

too impoverished, heuristics can still be deployed, but they might operate according to the

41This idea is in some ways similar to Fodor’s (1975) thoughts about what heuristics do with respect to assigning
meaning to sentences. Rather than computing the grammatical relations exhibited by the sentence, Fodor believed
that heuristics can infer meaning from background knowledge considerations of the lexical content of the sentence.
See the brief discussion in chapter 2 above (section 2.2.1).

42This is along the same lines as what Goldstein and Gigerenzer (2002) have in mind when they discuss the
“less-is-more effect” with respect to the Recognition heuristic: “The recognition heuristic leads to a paradoxical
situation in which those who know more exhibit lower inferential accuracy than those who know less” (p. 79).
See section 5.2.1 in the following chapter for further discussion.
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informational structure of the context and cognitive task as opposed to the conceptual content

of and relations between the concepts involved. On the other hand, cognition might turn to

default heuristics in such cases, or maybe no heuristics at all. Thus, we might say that an

ER-structure must be thick enough for a heuristic to operate over it to yield a certain solution

(though, as we saw, it cannot be too thick).

Instances in which one’s relevant concepts are impoverished may also lead to the “mistakes

of reason” emphasized and researched by the heuristics and biases tradition. Alternatively,

one’s concepts may be constructed such that the conceptual information that tends to get ini-

tially activated when confronted with a certain type of problem may embody certain informa-

tion or bear certain informational relations such that mistakes and biases tend to ensue. This

may not mean that one’s concepts are impoverished, or that erroneous inferences result from

erroneous beliefs. Rather, one may simply need to conceptualize the relevant concepts in dif-

ferent ways, which would in turn activate different conceptual content, and this might facilitate

correct solutions. I will discuss some of these issues in more detail in the next chapter.

But heuristics do more than just operate over specific informational structures. Though

this is an important part of how heuristics work, what heuristics do with the information they

operate over is key to their function and usefulness. Heuristics are typically employed to aid

in prediction, decision, or problem-solving (or simply “inference”). There is, of course, a

computational cost in making inferences. We saw in chapter 2 that there may be GCO or

optimization procedures that would deliver guaranteed or correct inferences, but only if the

problem in question is well-defined. The other class of problems—the ill-defined problems—

do not have such GCO or optimization procedures, and so making an inference in such contexts

can be computationally expensive. For not only will there be too many factors to consider,

the problem-spaces for these sorts of problems cannot be adequately known, understood, or

characterized. (And even if the problem is well-defined, we saw that there are some cases

where, although there is a GCO or optimization procedure in principle, it is computationally

expensive to discover or execute in practice.) As indicated, heuristics offer a way to manage and
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navigate these problems by effectively ignoring most of the conceptual content of the relevant

representations,43 and instead looking to the extant relations among activated concepts. These

extant relations will indicate what conceptual content to consider. But remember, heuristics

also mitigate the computational costs of inference by satisficing—seeking a “good enough”

solution (i.e., a solution that meets some level of aspiration). Therefore, how much of the

informational relations between activated concepts will be considered, how much conceptual

content will be considered, and what concepts actually get activated throughout the satisficing

process, will depend on the nature of the task and constraints on the agent, but most especially

on the set aspiration level.

A heuristic might thus be understood as partly operating as a metacognitive judgment on

how much effort will be invested in solving a problem (cf. Sperber, 2005). In this light, a

heuristic evaluates and estimates likely dividends by processing the informational relations ex-

hibited by active conceptual content, rather than considering conceptual content; if it does not

meet the aspiration level further activations are made along with further evaluations. Thus,

sometimes a satisficing answer is arrived at with the initial activated ER-structure, but other

times more conceptual information will need to get activated to satisfice (meet the aspiration

level). But a heuristic will deliver a judgment on whether to continue computing, or to capit-

ulate and let other (perhaps deeper conceptual) processes take over. If the aspiration level is

met, however, the heuristic is able to deliver an inference based on the given conceptual in-

formational structure. More specifically, what will be brought to bear on the task will be the

conceptual content exhibited by the concepts that bear a sufficient number of strong inward

connections, and this is because it was determined that basing the inference on such informa-

tion is good enough for the task. As we look at particular examples of heuristics in the next

chapter, we will get a clearer idea of all of this.

43More on what makes representations relevant in chapter 6.
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4.5 Concluding remarks

Let us briefly review. Following Barsalou’s theory of concepts, concepts are conceived to

be simulators that embody perceptual symbols, where these symbols are understood to be

collections of neurons that are activated in the perceptual centres of the brain upon initial

perceptual processing of entities in the concept’s extension. I argued, however, that Barsalou’s

theory benefits from being augmented by including natural language. Specifically, I argued that

concepts (simulators) should be conceived to also include linguistic symbols (collections of

active neurons in the language centres of the brain), and moreover, following the file metaphor

of cognition, that concepts have specific flagged linguistic symbols that serve as a name or

label that expresses or refers to them. Natural language can thus operate over these names or

labels without necessarily invoking conceptual content. Drawing from the work of Spelke and

Viger, the productive and combinatorial properties of natural language enable us to establish

connections between concepts which may not have been otherwise possible.

Given this initial setup of the architecture of concepts and cognition, I suggested that heuris-

tics are cognitive procedures that operate by exploiting the informational structures exhibited

by concepts and their conceptual content (conceptualizations and representations). Such infor-

mational structures also act as constraints that enable heuristics to satisfice, and require little

cognitive resources for their recruitment and execution. The account of how heuristics work

developed here involved describing thin extant relational structures (or ER-structures) that ex-

hibit relatively simple relational properties among primed and active concepts, as well as thick

ER-structures that exhibit richer relational properties among primed and active concepts. As

recently stressed, the important point is that heuristic procedures do not operate over most of

the conceptual content, but over the higher-order information (or knowledge) about the con-

cepts in question implicit in the ER-structure, which makes some content salient. This allows

heuristics to mitigate computational costs of inference, but heuristics also produce metacogni-

tive judgments on how much effort will be invested in solving a problem. Hence, as argued

in previous chapters, heuristics exploit the informational richness of cognitive structures, and
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moreover, heuristics are good candidates to mitigate the computational burdens of cognition,

although it is really our conceptual wherewithal that shoulders such burdens.

In the next chapter I will review some of the empirical data on heuristic reasoning to il-

lustrate the foregoing view of heuristics, concepts, and cognition. Specifically, I will illustrate

that some of the heuristics proposed and studied by Kahneman and Tversky, and Gigerenzer,

can be understood in terms of heuristic operations over thick or thin ER-structures.
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Having explained the nature of the informational structures that heuristics exploit, I can now

corroborate my thesis by illustrating with concrete examples how heuristic reasoning is facili-

tated. The easiest way to do this is by considering empirical evidence with respect to individual

heuristics and showing how they can be understood as processes that exploit the informational

relational structure exhibited by active concepts and content. Thus, by working through the

present chapter we will get a better sense of how my thesis explains a some of the empirical

data on heuristic reasoning.

In this chapter I will discuss two of Kahneman and Tversky’s most developed heuristics—

Availability and Representativeness—and two of Gigerenzer’s most developed heuristics—the

Recognition heuristic and Take the Best—and show that they can be understood as procedures

that operate over such ER-structures. I will also illustrate some other aspects of the general

theory of concepts and cognition developed in this dissertation. Specifically, I will use Kahne-

man and Tversky’s cab problem (to be described below) to illustrate that one’s concepts and

conceptualizations play a crucial role in how problems are conceived and subsequently solved.

For the most part I have tried to be brief in my discussions. I should point out that the

analyses I give are by no means complete, and more work is necessary to fill in many of the

details. Furthermore, I pass over much of the empirical research regarding the heuristics I

analyze. However, I present enough to show that my view can account for several phenomena,

and is therefore a plausible theory of how heuristics work in cognition.

5.1 Heuristics and biases

In this section I will discuss two of the more popular heuristics researched by the heuristics

and biases program—Representativeness and Availability. Although a lot of research has been

conducted with respect to these heuristics since Kahneman and Tversky first began theoriz-

ing about them in the early 1970s, I will mainly be concerned with Kahneman and Tversky’s

original work and their original experiments and examples. This evidence remains valid, and

it provides the paradigmatic cases that are widely cited and discussed throughout the litera-
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ture.1 Before I begin, however, it would be instructive to make some brief observations about

Kahneman and Tversky’s general view of human cognition.

Kahneman and Tversky had at times analyzed people’s judgments under uncertainty within

the framework of mental models (e.g., Johnson-Liard, 1983). Although there are different

accounts of mental models and their role in reasoning, inference, and judgment, Kahneman

and Tversky (e.g., 1983) appear to subscribe to the idea that mental models are mentally repre-

sented prototypes or schemata that can be mentally manipulated according to one’s (perceptual)

knowledge (cf. Minsky, 1975). Judgments about a particular object or event are made relative

to the mental model one constructs of the class of objects or events in question. Kahneman and

Tversky’s purpose was not to advance any theories regarding mental models (or any alternative

hypothesis), so they never discuss such a view of cognition in any detail. Nevertheless, it is

clear that they believed that mental model theory underlies the operations of the Availability

heuristic and the Representativeness heuristic.

There is a similarity between mental models and Barsalou’s theory of concepts, and Barsa-

1Kahneman has recently reviewed and offered new analyses of his and Tversky’s research (Kahneman, 2003;
Kahneman & Frederick, 2002). According to Kahneman’s new analysis of heuristics and biases, a common pro-
cess of attribute substitution explains how judgment heuristics work. Attribute substitution is a generic heuristic
process in which an “individual assesses a specified target attribute of a judgment object by substituting a related
heuristic attribute that comes more readily to mind” (Kahneman, 2003, p. 707). The idea is that a substituted
heuristic attribute will generally be more accessible (i.e., comes more easily to mind) than a target attribute, and
thus the heuristic attribute (rather than the target attribute) will be used to make a judgment. “For example, the
representativeness heuristic is the use of representativeness as a heuristic attribute to judge probability” (ibid.).
As we shall see presently, the account that I offer is consistent with Kahneman’s updated model of how heuristics
work, but we shall also see that my account provides more detail with respect to the cognitive structures that guide
heuristic inference and judgment. However, we should note that Kahneman admits two things. First, he admits
that his new model of heuristics by attribute substitution does not perfectly coincide with the original conception
of heuristics offered by Tversky and Kahneman (1974). Second, he admits that his new model excludes anchor-
ing effects, i.e., effects “in which judgment is influenced by temporarily raising the accessibility of a particular
value of the target attribute, relative to other values of the same attribute” (Kahneman, 2003, p. 707), which is an
instance of Anchoring and Adjustment (see (13) in chapter 2, p. 42). The reason why Kahneman’s new model
cannot explain anchoring effects is because there is no attribute substitution in anchoring, but rather an alteration
of perceived salience of the target attribute. Nevertheless, I believe that the account of how heuristics work that
I have developed in this dissertation enjoys an advantage of covering anchoring effects, although I do not show
this below. In fact, I believe that my account covers heuristic processes in general, but I lack the space here to
adequately show this. Here in brief is how I envision my theory accounts for anchoring effects: The concepts
and ER-structure that get activated upon being confronted with a given cognitive task can act as an anchor, as
Tversky and Kahneman describe, by being more accessible relative to other ER-structures (that may subsequently
get realized), and by pointing to certain conceptual content that is consequently perceived to be salient. Hence,
activated ER-structures can influence inferences and judgments in the way that anchors do, and adjustments can
be made to this anchor as one deliberates through the problem.
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lou recognized this. As he remarks, “mental models are roughly equivalent to . . . simulations

of specific entities and events” (Barsalou, 1999, p. 586). He continues, however, by noticing

a difference between his notion of simulators and the idea of mental models: “Mental models

tend not to address underlying generative mechanisms that produce a family of related simula-

tions” (ibid.).

Given that the account of concepts developed in this dissertation is based on Barsalou’s

theory of concepts (or simulators), there is likewise a relation between the foregoing account

and mental models. There are important differences, however, including not least that linguis-

tically coded information is available for simulation or manipulation in addition to perceptual

symbols. According to my account, a mental model might be conceived to consist of the active

conceptual content of a concept—i.e., active conceptual representations and conceptualiza-

tions. Nevertheless, simulations constructed from the active conceptual content of a concept

are unlike mental models insofar as mental models are usually understood to be constructions

of representations of objects or events generally, whereas my account applies more narrowly

to concepts and the information stored in their files. Another difference that will be exhibited

in the present chapter is that heuristics are supposed to operate over ER-structures according

to my account, whereas no such mechanisms or structures are indicated in the mental models

theory of cognition (as Barsalou observes).

However, let us not get caught up in the details of the similarities and differences between

mental models and the foregoing theory of concepts. Suffice it to say that my theory provides a

framework that is compatible with mental models and ipso facto with Kahneman and Tversky’s

view of cognition.

It is also interesting to note that the present account is consonant with and adds detail

to Tversky and Kahneman’s (1983) notion of “natural assessments”. Recall from chapter 2

(section 2.3.3) that Tversky and Kahneman envisioned that heuristics “rely on” natural assess-

ments, that natural assessments “play a dominant role” in producing judgments and inferences,

although they failed to specify precisely what these assessments are and in what sense they
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are “natural”. Tversky and Kahneman did assert, however, that “natural assessments include

computations of similarity and representativeness, attributions of causality, and evaluations of

the availability of associations and exemplars” (p. 294). With the present account, we can un-

derstand natural assessments as the relations between active concepts and conceptual content

realized when presented with a problem. Thus, computations of similarity and representative-

ness, attributions of causality, and evaluations of the availability of associations and exemplars,

are all present upon the initial realization of the ER-structure invoked by the problem in ques-

tion. And what makes these assessments “natural” is that they are entailed by the inherent

structures that exist within and between concepts and their conceptual content. Understood as

such, heuristics do not so much “rely on” natural assessments as they are, again, constrained

and guided by natural assessments.

5.1.1 Availability

Tversky and Kahneman write,

Life-long experience has taught us that instances of large classes are recalled better
and faster than instances of less frequent classes, that likely occurrences are easier
to imagine than unlikely ones, and that associative connections are strengthened
when two events frequently co-occur. Thus, a person could estimate the numeros-
ity of a class, the likelihood of an event, or the frequency of co-occurrences by
assessing the ease with which the relevant mental operation of retrieval, construc-
tion, or association can be carried out. (Tversky & Kahneman, 1973/1982a, pp.
163-164)

These observations are what support the Availability heuristic:

(12) The frequency of a class or the probability of an event is assessed according to the
ease with which instances or associations can be brought to mind.

According to Tversky and Kahneman, an assessment of availability, or the ease with which

instances or associations can be brought to mind, mediates probability judgments. For exam-

ple, one may predict the rate of plane crashes by recalling recent plane crashes; or one may

estimate the probability that a struggling student will fail an exam by assessing the strength
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of association between students struggling in a class and failing exams. However, Tversky

and Kahneman assert that it is not necessary that one actually mentally perform retrievals or

constructions to assess availability. Rather, “It suffices to assess the ease with which these op-

erations could be performed, much as the difficulty of a puzzle or mathematical problem can be

assessed without considering specific solutions” (ibid.).2 We can see here an indication of the

metacognitive judgments that heuristics offer on how much effort will be invested in solving a

problem.

The assumption is that frequent events are in general easier to recall or imagine than in-

frequent events, and so availability assessment will tend to covary with frequency or higher

probability. Yet, as Tversky and Kahneman emphasize, availability is influenced by various

factors other than actual frequency, and therefore the use of the Availability heuristic can lead

to systematic and predictable biases. For example, Tversky and Kahneman posed the following

problem to research participants:

Suppose one samples a word (of three letters or more) at random from an English
text. Is it more likely that the word starts with r or that r is the third letter?

They found that people tend to approach this task by trying to recall words that begin with r

(e.g., rational) and words that have r appear as the third letter (e.g., cart). Since it is easier to

recall words that begin with r than it is to recall words that have r as the third letter, people

judge that the former case is more likely than the latter, even though there are in fact more

words in the English language that have r as the third letter than there are words that begin

with r. This is a simple example involving little more than memory recall. However, the

Availability heuristic is supposed to influence more complex cognitive operations.

2It is possible that what is doing the work is not the ease with which instances or associations can be brought
to mind, but the number of instances that has been brought to mind. The difference here is between assess-
ments of relative ease in performing cognitive operations such as retrieval or construction, and actually carrying
out retrievals or constructions and thereafter surveying what has been retrieved or constructed. In Schwarz and
Vaughn’s (2002) terms, availability can consist in ease of recall or content of recall, each of which represents dis-
tinct sources of information. Schwarz and Vaughn show, however, that experimental evidence supports Kahneman
and Tversky’s original formulation of the Availability heuristic, viz. the frequency of a class or the probability of
an event is assessed according to the ease with which instances or associations can be brought to mind.
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According to the account proposed in this dissertation, availability, or the ease with which

instances or associations can be brought to mind, depends upon and is facilitated by the con-

ceptual content of one’s concepts and the existence and relative strengths of the extant relations

between them. That is, the strength of association upon which availability relies is borne out by

the network of activated representations and conceptualizations of the concepts one is currently

entertaining.

Suppose one was given the following task.

Estimate whether it is likely or unlikely that a person with mental illness will ex-
hibit violent behaviour.

People with mental illness are generally not violent (especially considering the various kinds of

mental illness). But one might assign a high likelihood if one’s concept-file for mental illness

contains beliefs about mentally ill people being violent—maybe from reading certain stories in

newspapers; or perhaps one had a personal experience with a violent person who happened to

be mentally ill, and this experience is vividly simulated upon mental illness being activated.

Alternatively, one’s mental illness concept might exhibit certain strong associations with other

concepts and conceptual content that imply violence. For example, one’s mental illness con-

cept might be strongly associated with psychopath; and since psychopaths are often violent,

and one’s concept-file for psychopath may contain information having to do with psychopaths

being violent, one might estimate that a person with mental illness will very likely exhibit

violent behaviour.

The use of the Availability heuristic in making judgments regarding, for example, the like-

lihood that a person with mental illness will exhibit violent behaviour can be understood in

terms of the heuristic operating over a thin ER-structure, as described toward the end of the

previous chapter. I here mentioned two cases that can lead one, via the Availability heuristic,

to estimate that it is likely that a person with mental illness will exhibit violent behaviour—

namely, (a) if one’s concept-file for mental illness contains beliefs about mentally ill people

being violent, or (b) if one’s mental illness concept exhibits certain strong associations with
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other concepts and conceptual content that imply violence. If invoking mental illness simu-

lations (or opening one’s mental illness file) results in priming or activating easily recalled

conceptual content, established and built up from news stories or personal experiences regard-

ing violent mentally ill people, such conceptual content ex hypothesi outwardly connects to

one’s violent and mentally ill people concepts; by the same token, violent and mentally ill

people bear multiple inward connections. Assuming that these inward connections are rela-

tively numerous and strong, the ER-structure would indicate that these concepts are pertinent,

and a heuristic operating over such a structure would estimate a relative likelihood according

to the extant connections borne by violent and mentally ill people. If, on the other hand,

one’s mental illness concept exhibits associations with other concepts and conceptual content

that imply violence, then violent alone may bear the requisite inward connections over which

a heuristic would operate, and in a similar fashion, the heuristic would estimate a likelihood

according to the extant connections. Thus, in either case, (a) or (b), one tends to judge that it

is likely that a person with mental illness will exhibit violent behaviour based on an estimation

delivered by a heuristic which operated over thin relational connections exhibited by the given

ER-structure.

I consider the Availability heuristic as operating over thin ER-structures (rather than thick

ER-structures) since it seems that what is “available”—what instances or associations are

brought to mind—bears sufficient inward connections to facilitate the heuristic.3 In addition,

the Availability heuristic does not seem to operate over thick connectional properties. With re-

spect to the present example, for instance, there does not seem to be sets of concepts invoked,

the members of which bear multiple outward connections to multiple other concepts. This, of

course, is a claim that can stand or fall according to empirical evidence. But even if it is the

case that the Availability heuristic in fact operates over thick ER-structures, my general point

still applies, which is that the heuristic operates over the implicit information embodied by the

3Recall the discussion at the end of chapter 4 where I explained that an aspiration level might not be met by a
given thin ER-structure, and more conceptual information would thereby get activated, increasing the thickness of
the ER-structure. I had also claimed, however, that this need not be the case—that no more conceptual information
would be activated—if aspiration level is met by the given thin ER-structure.
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relational structures existing between primed and activated concepts and conceptual content.

(And this same point applies to the rest of the claims that I make in this chapter regarding the

other heuristics I discuss.)

It is instructive to note that the account I am offering here is consistent with what Tversky

and Kahneman envisioned for the Availability heuristic, viz. “It suffices to assess the ease with

which these operations could be performed, much as the difficulty of a puzzle or mathemat-

ical problem can be assessed without considering specific solutions” (Tversky & Kahneman,

1973/1982a, pp. 163-164). Tversky and Kahneman appear here to be intimating that the Avail-

ability heuristic does not consider conceptual content, since their point is that the heuristic does

not actually perform constructions to assess availability. This is along the same lines as what I

had stressed in the previous chapter, namely that heuristics do not operate over the content of

concepts or conceptualizations, since this would involve computations in which heuristics are

not in the business to engage. Again, on my account heuristics operate over the higher-order,

metainformational relations between active content. This may very well be the sort of idea

that Tversky and Kahneman had in mind for the Availability heuristic, although they never

attempted to describe the mechanics of the heuristics they studied.

5.1.2 Representativeness

Let now turn to the Representativeness heuristic:

(11) Probabilities are evaluated by the degree to which one thing or event is
representative of (resembles) another; the higher the representativeness
(resemblance) the higher the probability estimation.

The probabilities referred to are subjective probabilities one assigns to the event(s) concerning

a given inferential task.

Kahneman and Tversky never fully characterize “representativeness” (or “resemblance”),

claiming that it is like “similarity”, which is easier to assess than to characterize (Kahneman &

Tversky, 1972). Nevertheless, they offer a partial characterization, and rely on Tversky’s (1977)

account of the psychological principles of judgments of similarity. According to Tversky and
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Kahneman (1983), “Representativeness is an assessment of the degree of correspondence be-

tween a sample and a population, an instance and a category, an act and an actor or, more

generally, between an outcome and a model” (p. 295). More formally, one judges an instance

or a subset X of a class C as representative of C to the extent that X possesses features that

are believed to be essential to and shared by the members of C, and does not possess many

distinctive features that are not essential to or shared by members of C (Tversky & Kahneman,

1982b, p. 86).

The cases in which Tversky and Kahneman are most interested are those where represen-

tativeness affects people’s judgments of probability. Their interest in such cases is motivated

by the fact that probability theory presents a set of normative rules against which to evaluate

personal judgments, and hence, in certain circumstances there is a sharp “contrast between the

extensional logic of probability theory and the psychological principles of representativeness”

(Tversky & Kahneman, 1983, p. 296).4 As Tversky and Kahneman go on to explain, represen-

tativeness tends to covary with frequency, since frequent instances or events are generally more

representative of a class than unusual instances and rare events, but there are circumstances in

which this is not the case. This is because judgments of representativeness are not determined

by frequency (ibid.). It is generally in such circumstances that errors and biases occur, for this

tendency to covary often leads people to overestimate the actual correlation between frequency

and representativeness.

Tversky and Kahneman believe that people tend to rely on representativeness, despite the

fact that it can lead to systematic biases and judgment errors (with respect to probability), be-

cause representativeness is easy to evaluate and readily accessible. As they explain, “research

on categorization . . . suggests that conceptual knowledge is often organized and processed in

terms of prototypes or representative examples. Consequently, we find it easier to evaluate the

representativeness of an instance to a class than to assess its conditional probability” (p. 89).

4There is an ongoing debate regarding the normativity of the probability calculus and heuristic reasoning (e.g.,
Kahneman & Tversky, 1996; Gigerenzer, 1996). However, I do not want to enter into or address this debate
here. It will suffice for my purposes here to simply acknowledge that there is sometimes a disconnect between
probability theory and heuristic reasoning.
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This corroborates the account of how heuristics work and the role of concepts I have been de-

veloping throughout this dissertation. I will illustrate here that the Representativeness heuristic

can be understood to be a cognitive response to the relational structure exhibited by active

and primed conceptual content of one’s concepts. To see this more clearly, let us consider

some experiments conducted by Kahneman and Tversky which illustrate the Representative-

ness heuristic.

5.1.2.1 The Linda problem

Kahneman and Tversky presented a number of groups of undergraduate and graduate students

with the following problem:

Linda is 31 years old, single, outspoken and very bright. She majored in philos-
ophy. As a student, she was deeply concerned with issues of discrimination and
social justice, and also participated in anti-nuclear demonstrations.
Please rank the following statements by their probability, using 1 for the most
probable and 8 for the least probable.

(a) Linda is a teacher in elementary school.
(b) Linda works in a bookstore and takes Yoga classes.
(c) Linda is active in the feminist movement.
(d) Linda is a psychiatric social worker.
(e) Linda is a member of the League of Women Voters.
(f) Linda is a bank teller.
(g) Linda is an insurance salesperson.
(h) Linda is a bank teller and is active in the feminist movement.

As Tversky and Kahneman report, participants consistently ranked (h) higher than (f)—i.e.,

participants believed that it is more probable that Linda is a bank teller and is active in the

feminist movement than that Linda is just a bank teller. According to Tversky and Kahneman,

participants relied on the Representativeness heuristic and judged the degree to which Linda

resembles the typical member of the class picked out by (h) to be greater than the degree to

which Linda resembles the typical member of the class picked out by (f). But such a judgment

of resemblance “is neither surprising nor objectionable . . . If, like similarity and prototypical-

ity, representativeness depends on both common and distinctive features (Tversky, 1977), it
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should be enhanced by the addition of shared features. . . . [T]he addition of feminism to the

profession of bank teller improves the match of Linda’s current activities to her personality”

(Tversky & Kahneman, 1983, p. 297). Nevertheless, Tversky and Kahneman found “more sur-

prising and less acceptable” that participants generally judged that (h) is more probable than

(f). The reason why this is problematic is that, according to basic probability theory, a conjunc-

tion cannot be more probable than any of its conjuncts alone. (Formally: for any two events A

and B, Pr(A&B) ≤ Pr(A) and Pr(A&B) ≤ Pr(B).) And since (h) is a conjunction of (c) and (f),

judging (h) to be more probable than (f) violates this rule. This result has since been referred

to as the conjunction fallacy.

Stephen Jay Gould is often quoted with respect to this problem:

I am particularly fond of [the Linda] example, because I know that the [conjunc-
tion] is least probable, yet a little homunculus in my head continues to jump up and
down, shouting at me—“but she can’t just be a bank teller: read the description.”
. . . Why do we consistently make this simple logical error? Tversky and Kahne-
man argue, correctly I think, that our minds are not built (for whatever reason) to
work by the rules of probability. (Gould, 1991, p. 469)

The claims that I will offer are (i) that the homunculi in our heads shout as they do because they

are guided by ER-structures (which is just another way of saying that the Representativeness

heuristic operates over ER-structures); and (ii) that it may not be so much that our minds are

not built to work by the rules of probability, but that people tend not to activate the appropriate

conceptual content with respect to their concepts of logic and probability, and thus they rely on

a heuristic rather than logical or probabilistic reasoning.

The description given of Linda provides various conceptual information. If participants

were asked to predict Linda’s occupation or her current activities based on the description

alone, without any options, any number of responses is possible, including but not limited to

(a)-(h). However, the statements given by (a)-(h) focus the cognitive task and provide content

for it. Each statement provides a different background against which to analyze and concep-

tualize the description of Linda, and the statements therefore act as constraints on the initial

setup of the task (cf. section 4.3 of the previous chapter). The statement “Linda is a teacher in
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elementary school” activates the concept elementary school teacher with various conceptual

content regarding things such as elementary school teachers’ general demeanor, level of intel-

ligence, typical major in university, and so on, based on one’s past experiences and knowledge.

The description of Linda also activates various conceptual content, such as representations of

outspoken and philosophy major, and judgments of the extent to which Linda’s description

matches a given statement are made based on the associations between the respective con-

ceptual representations and conceptualizations. We can thus see how internal and external

parameters effect the initial setup of the ER-structure. We can also see how the Representative-

ness heuristic is thereby constrained by active conceptual information as one makes a judgment

about the relative probability that Linda is in fact an elementary school teacher, given the de-

scription provided.

Similarly, the statement “Linda is active in the feminist movement” activates the concept

feminist with various conceptual content. With respect to this statement, however, it appears

that in the vast majority of cases one’s representations and conceptualizations of feminist are

highly associated with the description of Linda—that is, the description of Linda is represen-

tative of feminist. This is evinced by the fact that the majority of participants surveyed by

Kahneman and Tversky most often ranked (c) higher than all other statements (Tversky &

Kahneman, 1982b, p. 92). Hence, people tend to believe that it is more probable that Linda is

active in the feminist movement than any other description provided.

On the theory I am advocating here, the concepts and representations activated by the pre-

sentation of the Linda problem will be many. This is because the problem provides lots of

information, including that given by Linda’s description plus the eight statements that are to

be ranked. This will, in turn, give rise to a complex ER-structure. The description of Linda

will activate conceptual information that forms an initial set of representations. As one con-

ceptualizes each of the statements given, from (a) to (h), additional sets of representations and

conceptualizations will be activated. The Representativeness heuristic would then operate over

the number, type, and strength of connections that exist between the concepts activated by the
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description-set and each statement-set. The connections between the concepts activated by the

description-set and statement-sets will reveal an ER-structure with thick properties. Most rele-

vant to our concerns about the Representativeness heuristic is that the concepts comprising the

description-set will bear multiple outward connections to multiple concepts invoked by “Linda

is active in the feminist movement”, and these connections will be the most strong and most

numerous among all the statement-sets. A heuristic that operates over these thick structural

properties—namely, the Representativeness heuristic—would thereby deem the concepts in-

voked by “Linda is active in the feminist movement” as more pertinent than the other concepts

constituting the other statement-sets. This would explain why people tend to rank (c) higher

than all other statements. This would also explain why (h) “Linda is a bank teller and is active

in the feminist movement” is consistently ranked higher than (f) “Linda is a bank teller”, and

indeed why one’s homunculus shouts, “but she can’t just be a bank teller: read the descrip-

tion”. For, given what has just been said, the concepts comprising the description-set will bear

multiple outward connections to multiple representations invoked by (h) in virtue of its “active

in the feminist movement” part. This ER-structure will not be exhibited when the concepts

invoked by (f) are set against the description-set, since we might expect that the conceptualiza-

tions of the concepts of (f) will bear less numerous and less strong inward connections from the

description-set concepts, or perhaps there will be negative or inhibitory connections between

the conceptual contents invoked by (f) and the description-set.

The issue that Kahneman and Tversky emphasize is the violation of probability theory that

occurs when people tend to judge (h) to be more probable than (f). This phenomenon is cer-

tainly problematic, so long as probability theory is taken to be normative (but see footnote 5;

also see below). But it is not entirely clear that participants are understanding probable or

probability univocally, or even coherently (cf. Gigerenzer, 1996, 2007; Gigerenzer, Hertwig,

van den Broek, Fasolo, & Katsikopoulos, 2005). The ongoing debate over the nature of proba-

bility shows that even the professionals are not clear on these concepts. “Probability” can mean

anything from degree of belief, to frequency, to propensity (von Plato, 1994), and it can also
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be interpreted vaguely or ambiguously, as many laypeople do, in terms of likely, or likelihood,

or chance. This is not to say that people believe probability is meaningless, and that people do

not understand at all what is being asked of them when they are asked to make probabilistic

predictions (pace Gigerenzer, 1991, 1993; cf. Samuels et al., 2002). Rather, the point is that

people’s ideas of what probability is, or what probabilities are, may not agree with one another,

or may not be robustly or wholly understood.

The naı̈ve and novices with respect to probability theory will likely not have a rich or robust

probability concept, and ipso facto such people would not activate the appropriate probability

conceptualizations when confronted with a cognitive task involving probabilities. Neverthe-

less, the use of the Representativeness heuristic in the Linda problem is robust across people

at all skill levels—even experts tend to rank (h) higher than (f) (Kahneman & Tversky, 1982).

Of course, once revealed, the experts immediately understand their fault. Yet something in-

teresting must be going on if even the experts are fooled by their homunculi. Contrary to

Gould’s sentiment, I am not convinced that humans are lost when it comes to reasoning with

probabilities, for indeed many people know and understand very well how to carry out proba-

bilistic calculations. My hypothesis is that people generally tend not to activate the appropriate

conceptualizations with respect to their probability concept. Instead, the thick ER-structure de-

scribed above and the heuristic procedure that operates over it supersede, and in some ways re-

press, the activation of the appropriate conceptualizations that would allow people—especially

experts—to rank the statements given in the Linda problem in accordance with the basic ax-

ioms of probability theory. And I suspect that this is a consequence of how the information is

presented in the Linda problem. More specifically, the way the information is presented facil-

itates the establishment of the given ER-structure, but does not at all facilitate the activation

of many probability conceptualizations. As a result, the naı̈ve, novices, and experts alike tend

to rely on a heuristic procedure—the Representativeness heuristic—that operates over the ER-

structural properties established in cognition when reasoning about the Linda problem, unless

one cogitates beyond this initial ER-structure.
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It is also of interest to note that the Linda problem phenomenon can be couched in terms of

relevance. Specifically, what seems to be going on is that the description of Linda is relevant

to our judgments about her occupation, beliefs, lifestyle, etc. The very fact that participants

are presented with a description of Linda indicates something about the relevance of the de-

scription, namely that it is of importance who Linda is, what Linda does, etc. (i.e., that it is

of importance to the task of ranking the statements provided). In this context, ranking (a)-

(h) in terms of the probability calculus simply appears to be the wrong norm, for participants

may view the task not in terms of probability assignments (notwithstanding the wording of the

task) but in terms of matching—matching the description to how (a)-(h) are conceptualized.

Although this and related matters deserve serious attention, I refrain from discussing them any

further with respect to the Linda problem in particular for a number of reasons. One reason is

that introducing issues about the norms of reason will take us too far afield (though in the next

chapter I discuss normative issues of a different sort). A second reason is that I return to the

topic of relevance in the next chapter, and a more general discussion will be saved until then

(see my comments below with respect to relevance and the Dick problem).

A third reason why I refrain from digressing into matters to do with relevance is that I have

already discussed the Linda problem at length, and the point of the present chapter is not to

explain the phenomenon in terms of relevance, but to show how the account of heuristics de-

veloped in this dissertation explains a range of phenomena (and as I have shown, it explains the

Linda problem). To continue, then, I will show that the hypothesis I have suggested also ex-

plains further phenomena exhibited by other problems discussed by Kahneman and Tversky as

they illustrate the Representativeness heuristic. I will briefly discuss two other such problems,

namely the Dick problem and what has become known as the cab problem.

5.1.2.2 The Dick problem

To investigate the extent to which people’s judgments were affected by prior probabilities, or

base-rates (i.e., the probability of an event unconditioned on evidence), Tversky and Kahneman
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(1974) presented participants with brief personality descriptions of several individuals, and

they were told that the descriptions were chosen at random from a group of 100 professionals

comprised of engineers and lawyers. For each description, the participants were asked to state

whether it was of an engineer or of a lawyer, and to assign a probability. There were two

experimental conditions, one in which participants were told that the group from which the

descriptions had been selected consisted of 70 engineers and 30 lawyers, and the other in

which participants were told that the group consisted of 30 engineers and 70 lawyers. Given

this information, the probability that any given description is of an engineer rather than of a

lawyer should be higher in the first condition where there is a majority of engineers, than in the

second condition where there is a minority of engineers.

However, Tversky and Kahneman found that the same probability judgments were made in

both experimental conditions, which is a violation of probability theory. As they report, “Ap-

parently, subjects evaluated the likelihood that a particular description belonged to an engineer

rather than to a lawyer, by the degree to which this description was representative of the two

stereotypes, with little or no regard for the prior probabilities of the categories” (p. 1125). This

fallacy has become known as base-rate neglect, since the participants allegedly ignored the

base-rates (or prior probabilities) in the problem. On the other hand, when descriptions were

omitted, and participants were asked to give a probability that a person chosen at random would

be an engineer or a lawyer, they made their judgments according to the prior probabilities.

Here is a sample of one of the descriptions they gave participants:

Dick is a 30 year old man. He is married with no children. A man of high ability
and high motivation, he promises to be quite successful in his field. He is well
liked by his colleagues.

As Tversky and Kahneman report, the information given by the descriptions were supposed

to have presented uninformative information: “This description was intended to convey no

information relevant to the question of whether Dick is an engineer or a lawyer. Consequently,

the probability that Dick is an engineer should equal the proportion of engineers in the group,

as if no description had been given” (p. 1125). However, participants tended to assign a
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probability of 0.5 to the statement that Dick is an engineer. This, then, is an example in which

the Representativeness heuristic overrides consideration for base-rates.

According to my account the setup and content of the Dick problem naturally invokes a

certain ER-structure, and a heuristic procedure operates over this structure, assessing its con-

nectional relations to decide the relative pertinence of representations. Given the empirical

results, it seems likely that the ER-structures exhibited by one’s engineer and lawyer concepts

were not decisive between whether Dick is an engineer or lawyer. As in the case of the Linda

problem, the ER-structure invoked by the nature and content of the task supersede consider-

ation of the base-rates. More specifically, the conceptual content of the Dick problem is not

conducive to and interferes with activating the appropriate probability conceptualizations, and

thus the probability assigned to the statement that Dick is an engineer is made via a heuris-

tic procedure rather than via probabilistic calculations. This hypothesis is consistent with the

fact that when descriptions were omitted participants made their judgments in accordance with

probability theory—a situation in which there was no information to interfere with exciting the

appropriate probability conceptualizations. In the absence of descriptions, one’s engineer and

lawyer concepts may be active, but the content that would influence one to ignore the base-rate

is not there.

In contrast to Tversky and Kahneman’s assertion that the descriptive information of Dick

is irrelevant to the problem, I believe that such information is in fact relevant. At the very least,

the active conceptual content, and the extant relations between such information, proves to be

informative insofar as ER-structures tend to reflect the way information is structured in the real

world—one’s concepts and conceptual content are, after all, heavily influenced by empirical

learning. Again, however, I will not pursue this matter any further at the moment. I mention

this point here only to intimate some of what I will be arguing in the next chapter.

5.1.2.3 The cab problem

Another example that exhibits base-rate neglect is the following cab problem.
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A cab was involved in a hit and run accident at night. Two cab companies, the
Green and the Blue, operate in the city. You are given the following data:
(a) 85% of the cabs in the city are Green and 15% are Blue.
(b) A witness identified the cab as Blue. The court tested the reliability of the

witness under the same circumstances that existed on the night of the accident
and concluded that the witness correctly identified each one of the two colors
80% of the time and failed 20% of the time.

What is the probability that the cab involved in the accident was Blue rather than
Green knowing that this witness identified it as Blue?

This problem is unlike the Dick problem, since the latter illustrates how supposed irrelevant

information invites the use of the Representativeness heuristic, causing one to ignore prior

probabilities. The cab problem, on the other hand, is supposed to illustrate that the Represen-

tativeness heuristic can be triggered even while cogitating relevant information. Here, (a) and

(b) are both relevant to determining the probability that the cab involved in the accident was

Blue, and the correct answer is arrived at through Bayes’ theorem: the probability is 0.41.5

Thus, despite the witness’ report, the hit-and-run cab is more likely to have been Green, and

this is because the prior probability that the cab is Green is higher than the credibility of the

witness. However, Tversky and Kahneman (1980) report that participants who are presented

with this cab problem typically answer that the probability that the cab was Blue is about 0.80,

which happens to coincide with the credibility of the witness. Tversky and Kahneman inter-

pret this result as participants employing the Representativeness heuristic, taking the witness’

credibility as representative of the probability that the hit-and-run cab was in fact Blue.

I am not convinced that Tversky and Kahneman have correctly described the processes

underlying people’s judgments on this problem. Rather, I believe that the cab problem sim-

ply reinforces my claim that most people—namely the naı̈ve and novices—do not know how

to solve probability problems involving base-rates. According to my account, the incorrect

responses are the result of an epistemic deficiency with respect to treating probabilistic infor-

mation. However, I suspect that, unlike the Linda problem and the Dick problem, if the cab

5Where H = the hypothesis that the cab was Blue, and E = the reliability of the witness’ testimony:

Pr(H|E) =
Pr(E|H)×Pr(H)

[Pr(E|H)×Pr(H)]+[Pr(E|¬H)×Pr(¬H)] = 0.8×0.15
[0.8×0.15]+[0.2×0.85] = 0.41



Chapter 5. How HeuristicsWork: Considering Empirical Evidence 201

problem was presented to knowledgable statisticians, or indeed if the problem was on a final

exam for a statistics class (with bright students), incorrect responses would not be the majority.

In the terms I have used above, the probability concepts possessed by the participants in Tver-

sky and Kahneman’s study did not bring to bear the appropriate conceptual content to facilitate

the correct answer. On the other hand, statisticians or students in the context of an exam on

statistics will likely bring to bear the appropriate conceptualizations of (probabilistic) informa-

tion presented in the cab problem. For not much other conceptual information is invoked by

the cab problem to enable the proposed interference effects observed in the Linda and Dick

problems.

Nevertheless, I bring up the cab problem for discussion because it can be used to illus-

trate a different point, namely that people’s responses to the cab problem can be manipulated

by the format in which probabilistic information is presented. Probabilistic information can

be presented in a number of ways: as percentages, as fractions, numerically, pictorially (e.g.,

in pie-charts), and so on. Notice that the manner in which probabilistic information is pre-

sented in the cab problem is as numerical percentages. According to Gigerenzer and Hoffrage

(1995, 1999), the human brain is not equipped to reason with numerical percentages, and I

tend to agree. More precisely, I believe that humans generally do not possess the conceptual

wherewithal to appropriately conceptualize probabilistic information in terms of percentages.

Gigerenzer and Hoffrage illustrate, on the other hand, how probabilistic reasoning can be facil-

itated when probabilistic information is presented in what they call “natural frequencies”, i.e.,

unnormalized frequencies observed by encountering instances in a population sequentially. As

they illustrate, natural frequencies carry information about base-rates, whereas normalized fre-

quencies or probabilities do not. Thus, when one reasons with natural frequencies, one need

not bother with understanding how to appropriately integrate base-rate information in making

inferences or predictions, since such information is already built in.6

6Despite Gigerenzer’s frequent accusations that Kahneman and Tversky focus too much on the mistakes and
biases that occur as a result of employing heuristics, Kahneman and Tversky have in fact investigated how reason-
ing is affected by the format in which probabilistic information is presented, and they have shown that probabilistic
reasoning can be thereby improved. See Kahneman and Tversky (1979, 1973a); Tversky and Kahneman (1980,
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To express the probabilistic information in the cab problem in natural frequencies, (a) and

(b) would be replaced by the following:

(a′) 85 out of 100 are Green, 15 out of 100 are Blue.
(b′) A witness identified the cab as Blue. The court tested the reliability of the

witness under the same circumstances that existed on the night of the accident
and concluded that the witness correctly identified each cab 8 of every 10
times and failed 2 of every 10.

The question posed would then be:

The witness will identify out of cabs as Blue.

Reasoning would proceed as follows. Of the 15 cabs that are Blue, the witness would correctly

identify 12 (8 of every 10). Of the 85 cabs that are Green, the witness would incorrectly identify

17 (2 of every 10); this means that on these occasions the cab was actually Green. Thus, the

witness would identify 12 cabs as Blue of a possible 12 + 17 cases in which the cab is not

actually Blue. So the answer is 12
(12+17) = 0.41, which is the correct answer. Gigerenzer and

Hoffrage (1995) performed experiments, the results of which show that people have an easier

time arriving at the correct answer to the cab problem when the probabilistic information is

presented as given here rather than as in the original (although not everyone arrives at the

correct answer).

The natural frequency information can be also be represented graphically, as presented in

Figure 5.1 (cf. Gigerenzer & Hoffrage, 1995). When the information is represented in this way,

it is easily seen that the witness will have correctly identified 12 out of 12 + 17 cabs as Blue.

This illustrates that the manner in which information is (re)presented affects the way it is

cognized. In terms of the thesis of this dissertation, changing the format in which information

is presented will activate different conceptualizations; and the different conceptualizations will

facilitate different ways to reason about the information given. Specifically, when the same

information is represented in natural frequencies, one is able to conceptualize it in ways that

1983).
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100 

15 85 

12 3 17 68 

Total number of cabs 

Number of Green cabs 

Number of Blue cabs 

Number of Blue cabs 

correctly identified by 

witness (8 out of 10) 

Number of Green cabs incorrectly 

identified by witness (2 out of 10) 

    12 

12 + 17 
= 0.41 

The witness will identify ______ out of ______ cabs as Blue. 

Figure 5.1: A graphical representation of the cab problem expressed in terms of natural fre-
quencies.

make it easier to cognize than when the same information is presented in percentages; and

when natural frequencies are represented graphically, the task may become even easier.

There are three things to note here. First, in addition to the fact that natural frequencies

embed base-rate information, when the cab problem is presented in Gigerenzer and Hoffrage’s

reformulation, the question that participants are expected to answer (viz. “The witness will

identify out of cabs as Blue”) is not equivalent to the question that participants

are expected to answer in the original problem (viz. “What is the probability that the cab

involved in the accident was Blue rather than Green knowing that this witness identified it as

Blue?”). Gigerenzer and Hoffrage’s formulation asks participants to give a fraction with respect

to the number of cabs that the witness will identify as Blue, whereas Kahneman and Tversky’s

formulation asks participants to give their own probability that the cab involved in the accident

was indeed Blue. The actual problem is therefore different between the two formulations. This
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is an important point, for what is asked of the participants will affect the way in which the

problem itself is conceptualized; and different conceptualizations of information will be more

or less helpful to different conceptualizations of the problem. Here, the way Gigerenzer and

Hoffrage present the probabilistic information in the cab problem is conducive to the manner in

which they present the information to be predicted. I suspect, however, that their participants

would not have as easy a time arriving at the correct answer if the question posed was that of

the original (viz. “What is the probability that the cab involved in the accident was Blue rather

than Green knowing that this witness identified it as Blue?”) or something close (e.g., “What

is the probability that the cab involved in the accident was Blue?”).

A second (and related) thing to note is that the manner in which the problem is conceptual-

ized between the two formulations affects the cognitive task elicited from participants. Kahne-

man and Tversky’s formulation elicits a task of determining a probability based on numerical

information, whereas Gigerenzer and Hoffrage’s formulation does not elicit such a task, but a

categorization task. In chapter 3, I cited Sterelny as claiming, “the practice of marking a trail

while walking in the bush converts a difficult memory problem into a simple perceptual prob-

lem” (Sterelny, 2006, p. 225). The same sort of thing is happening here between Gigerenzer

and Hoffrage’s formulation of the cab problem on the one hand, and Kahneman and Tversky’s

formulation on the other. Gigerenzer and Hoffrage’s formulation converts a difficult probability

problem into a simpler categorization problem. When probabilistic information is presented in

natural frequencies, the task is changed from predicting a probability to grouping together the

number of instances when the witness identified cabs as Blue, and comparing it to the num-

ber of instances when the witness was actually correct. This categorization task is made even

easier when represented graphically as in Figure 5.1. However, in Kahneman and Tversky’s

formulation, the task is much more difficult because none of these resources is available to

solving a probability problem as such. And, as I am claiming here that the conceptual content

of people’s probability concept tends to be impoverished, people will generally have a hard

time solving the problem in Kahneman and Tversky’s formulation.
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The third thing to note is that the way in which we solve the cab problem does not have

much to do with heuristic procedures as I have been understanding them here. For the way

in which the cab problem is solved—in either Kahneman and Tversky’s or Gigerenzer and

Hoffrage’s formulation—is not by exploiting any metainformational structures such as those

embodied by ER-structures. Rather, the cab problem is essentially a problem in formal prob-

ability which requires certain skills and knowledge to arrive at the correct answer. Thus, con-

trary to what Kahneman and Tversky claim, I claim that the cab problem does not exhibit the

use of the Representativeness heuristic, or any other heuristic. I discussed the cab problem

at length, however, to illustrate that conceptualizations of a problem and conceptualizations

of the information relevant to solving the problem or making predictions interact in specific

and important ways. The format in which information is presented, and the manner in which

questions or problems are posed, therefore affect one’s ability to reason about and solve the

problem. Moreover, to corroborate the general picture of concepts and cognition advanced in

this dissertation, I wanted to illustrate that one’s conceptual wherewithal plays a crucial role

in reasoning insofar as it is equipped to produce the kinds of conceptualizations to facilitate

certain ways of reasoning about the problem. I suspect that the account I am offering here with

respect to the cab problem can be applied more generally to framing effects,7 however I will

refrain from exploring this matter here.

5.2 Fast and frugal heuristics

Let us now turn to Gigerenzer’s fast and frugal heuristics. I will here comment on two further

heuristics: the Recognition heuristic and Take the Best. As it will presently become evident,

these heuristics can likewise be understood as procedures that exploit and are constrained by

extant, informationally rich structures between active concepts and content.

7The framing effect is a phenomenon wherein the same information presented in different ways elicits different
and contradictory responses.
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5.2.1 The Recognition heuristic

The Recognition heuristic is perhaps the simplest of Gigerenzer’s heuristics. The way it basi-

cally works is one chooses the alternative she recognizes:8

(14) (i) Search among alternatives; (ii) stop search when one alternative is recognized;
(iii) choose the recognized object.

However, this heuristic (like any other) is not successful and accurate in all environments. It

works only when just one alternative is recognized, while the others are completely unrec-

ognized.9 Moreover, “The single most important factor for determining the usefulness of the

Recognition heuristic is the strength of the relationship between the contents of recognition

memory and the criterion [being predicted]” (Goldstein & Gigerenzer, 2002, p. 78). What is

being referred to here is the recognition validity, which is the proportion of instances when a

recognized object has a higher criterion value than an unrecognized object (in the same class

of objects). The Recognition heuristic is defined as successful when the recognition validity is

greater than 0.5 (i.e., when there is an above-chance correlation between recognition and the

criterion being predicted).

Goldstein and Gigerenzer (1999, 2002) hypothesize how the Recognition heuristic works.

They note that criteria that are being predicted are not always readily available or accessible,

and so a person has to make inferences about it. Inferences, of course, are based upon an

individual’s previous knowledge of the class of objects in question, some of which comes

8The Recognition heuristic is really supposed to apply only when there are two alternatives, and no more. I
do think, however, that this heuristic can be generalized to apply to situations in which there are more than two
alternatives.

9Goldstein and Gigerenzer (2002) use the term “recognition” to “divide the world into the novel and the previ-
ously experienced” (p. 77). The way I use the term “completely unrecognized” coincides with their understanding
of being confronted with a novel object. To have previous experience with an object means that it is recognized,
and this experience can be vaguely remembered (a situation Goldstein and Gigerenzer call “mere recognition”) or
richly remembered (a situation where the object is recognized and additional information can be provided about
it). Though I do not want to enter into any kind of discussion on the matter here, I believe that when an object is
vaguely remembered, one possesses conceptual content about the object, some of which may even be primed upon
vague remembering, but such information does not make in into conscious thought. Thus, as far as possession of
knowledge about an object is concerned, I do not think that there is much of a difference between the object being
vaguely remembered and it being richly remembered.
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from “mediators”. Mediators, according to Goldstein and Gigerenzer, are third-party entities

that indirectly carry information about the criterion in question. As we shall soon see, being

mentioned in newspapers can serve as a surrogate for information about relative city size, and

in this way it is a mediator for the latter criterion. An individual can make accurate predictions

on some criterion provided that there is a correlation between the criterion and the information

carried by the mediator (what Goldstein and Gigerenzer call the “ecological correlation”), and

provided that there is a correlation between one’s recognition memory and the information

of the mediator (what they call the “surrogate correlation”). Recognition can therefore carry

information about a given criterion via a mediator.

Despite its simplicity and frugality, Gigerenzer and his colleagues have touted the Recogni-

tion heuristic to make more accurate predictions on a number of tasks than a variety of standard

rational and statistical methods of decision, such as multiple regression (for the most discus-

sion, see Gigerenzer et al., 1999). Gigerenzer (2007) goes on to argue that the Recognition

heuristic can be used to explain a wide variety of phenomena, varying from which prod-

uct a consumer is more likely to buy, to predicting which football team will win a game, to

which symphony will be favoured—the recognized brand will most likely be purchased by

a consumer, the recognized team will be predicted to win, the recognized symphony will be

favoured.

Let us consider Goldstein and Gigerenzer’s (2002) experiment which tested the use of the

Recognition heuristic. They presented a group of American undergraduates with pairs of names

of German cities. The task was to choose the larger city in each pair, and to indicate whether

they recognized the names of the cities. Goldstein and Gigerenzer found that in the vast ma-

jority of instances where one city was recognized but not the other, participants predicted that

the city they recognized was the larger of the two. Hence, Goldstein and Gigerenzer concluded

that the Recognition heuristic was being employed. In addition, they found that the Recog-

nition heuristic produced, on the whole, accurate predictions. They explain such accuracy in

terms of mediators: as recently mentioned, being mentioned in newspapers is a good surrogate
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of information about the sizes of foreign cities, for as Goldstein and Gigerenzer show, there is

a correlation between city size and the number of times the city was mentioned in newspapers.

A more startling result that Goldstein and Gigerenzer discuss is that the American students

were better at predicting the relative sizes of German cities than predicting the relative sizes

of American cities. They call this phenomenon the “less-is-more effect”: “The Recognition

heuristic leads to a paradoxical situation in which those who know more exhibit lower inferen-

tial accuracy than those who know less” (p. 79). They explain this instance of the less-is-more

effect by claiming that the American students were unable to use the Recognition heuristic on

American cities, since both cities of many pairs were recognized, reducing their responses to

guesses if no other knowledge aided in their predictions. Of course, Goldstein and Gigerenzer

recognize that knowing less is not always going to produce better predictions. Knowing nei-

ther cities in a given pair is going to produce only chance guesses; and knowing lots about each

city may produce more accurate predictions, especially if one possesses a piece of knowledge

which directly indicates which of two cities is larger. Thus, the less-is-more effect really only

occurs when one relies on recognition to make an inference, but one’s knowledge does not

exceed recognition validity.10

However, a more general way to explain the use and success of the Recognition heuristic is

through the exploitation of the connectional structures among active conceptual information.

The recognized object will in most cases activate more concepts and conceptual information

than the unrecognized one, thereby imposing initial constraints on heuristic reasoning. For

example, suppose of Berlin and Augsburg, Berlin is the recognized city while Augsburg is

completely unrecognized. Upon reading or hearing “Berlin”, a number of conceptualizations

contained within or related to one’s Berlin-file may be activated, such as those having to do

with the Berlin Wall, or the fact that Berlin is the capital of Germany, or reading about Berlin

10On the present account of heuristics, knowing too little or too much about objects (without specifically know-
ing the criterion) creates informational structures over which it is difficult for heuristic procedures to navigate. On
the one hand, if too little is known, the ER-structure would be impoverished, making heuristic operations over
its structural relations difficult. On the other hand, if one knows quite a lot (without specifically knowing the
criterion), then there may be too many connections over which a heuristic must operate; in this case, employing a
heuristic may not be an option. See the discussion at the end of chapter 4 (section 4.4).
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in the news quite a bit lately, and so on. However, Augsburg, by virtue of it being completely

unrecognized—by virtue of not possessing any knowledge of it—will invoke minimal con-

ceptual information.11 Thus, there will be nothing in one’s (newly created) Augsburg-file to

suggest one way or the other whether it is a large or small city. On the other hand, there is

ample conceptual information in one’s Berlin-file that suggests that it is, or is likely to be, a

large city. For the representations and conceptualizations activated by entertaining Berlin is

saturated with information that can indicate that it is a large city: a famous wall that divided a

city post-World War II would probably not have been erected in a small city, but a large and

important one; capital cities of countries tend to be large; small cities usually do not make the

news frequently, but large cities do; and so on. All this information is embedded in or entailed

by one’s Berlin concept, and hence, large city would bear a number of inward connections

from the conceptual content activated by opening one’s Berlin-file. Again, these structural

relations will not be exhibited by the conceptual content activated by Augsburg (all of which

comes from the context within which Augsburg is mentioned; see footnote 11). A heuristic

procedure operating over such thin relational structures will therefore indicate that Berlin is a

large city, while no such metainformational structures indicate this for Augsburg. One would

thereby predict that Berlin is the larger of the two.

We can agree with Goldstein and Gigerenzer that mediators exist and carry information

about certain criteria. This is simply an empirical fact, uninteresting as it is. What is more

interesting, however, is what information is actually carried by mediators, how we cognitively

manage such information, and what we do with it. In the above example, the fact that Berlin

once had a famous wall dividing the city, the fact that Berlin is the capital of Germany, and the

fact that Berlin has been in the news lately, all served as mediators. But mediators themselves

assume a great deal of conceptual knowledge. Newspapers, for example, carry information

about relative sizes of cities, but this information is caught up in a web of knowledge con-

11Of course, it will not be the case that no conceptual information will be invoked. For in the context of the
(thought) experiment, one would understand that Augsburg is a city, and that it is supposed to be a city in Germany.
Thus, even if one has not heard of Augsburg before, a file would be created for it from what one can gather from
the context.
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cerning why such cities would be in the news—it is no accident, for instance, that small towns

are rarely, if ever, mentioned in the New York Times. As should be obvious by now, I suggest

that such webs of knowledge play important roles in heuristic inference and reasoning inso-

far as they embody higher-order information about what concepts and conceptualizations are

pertinent and therefore useful in making predictions.

Suppose, for instance, that instead of Berlin and Augsburg, Alice was presented with Wit-

tenberg and Augsburg, and was asked to predict which is larger. Let us further suppose that

Alice does not recognize Augsburg but recognizes Wittenberg only because she recalls Bob

once mentioning in passing that he had once visited that city. Basing her inference on recog-

nition, Alice predicts that Wittenberg is the larger city. This prediction is incorrect, however—

Augsburg is in fact the larger of the two. Goldstein and Gigerenzer might blame Alice’s in-

correct response on a poor ecological correlation between, on the one hand, the relative sizes

of Wittenberg and Augsburg, and on the other hand, Bob’s mentioning that he had visited

Wittenberg; or they might blame it on a poor recognition validity. But ecological correla-

tion and recognition validity are simply factors that contribute to the description of why the

Recognition heuristic may or may not work in a given instance. In contrast, the theory I am

advancing here tells us what is actually doing the work when we rely on recognition in our

reasoning. With respect to Alice, if remembering that Bob had visited Wittenberg did not ex-

cite for her any information that bore specific relations to certain representations having to do

with the relative size of the city, then, since there would be little or no structural information

to guide heuristic inference, she would have simply guessed (wrongly) that Wittenberg was

larger based ex hypothesi on the mere fact that she recognized the name “Wittenberg”. On the

other hand, remembering that Bob visited Wittenberg might have actually invoked for Alice a

specific ER-structure among activated concepts and content. For example, she might have acti-

vated conceptualizations having to do with remembering that Bob detests visiting small cities,

or having to do with the fact that tourists tend to visit bigger cities. Such conceptualizations

might thereby bear outward connections to her large city concept with respect to her concep-
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tualizing Wittenberg, few (and maybe weak) as these connections may be. In this case, Alice’s

prediction that Wittenberg is the larger city would have resulted from the Recognition heuristic

operating over the said thin connectional relations. And so contrary to what Gigerenzer would

assume, Alice’s prediction would have been based on more than just recognition.

Further phenomena can be explained by my theory that cannot be explained by the Recog-

nition heuristic alone. Daniel Oppenheimer (2003) conducted studies similar to Goldstein and

Gigerenzer’s. In one study Oppenheimer asked a group from Stanford University to report

which of Chernobyl and Heingjing is larger, and in another he asked a different group to report

which of Milpitas and Heingjing is larger. Chernobyl is widely known for its nuclear disaster in

1986, though this information is supposed to be irrelevant to its size.12 Milpitas is a small city

of about 62,000 inhabitants,13 situated just north of San Jose, which was presumed to be known

to the participants. Heingjing, however, is a fictitious city; the name was made up by Oppen-

heimer for the purposes of his experiments. The results are interesting: Neither group, on the

average, relied on the Recognition heuristic. Instead, they predicted that Heingjing is larger

than Chernobyl, as well as Milpitas. Oppenheimer uses these results to challenge Gigerenzer’s

claim that usage of the Recognition heuristic is ubiquitous and widespread.

Gigerenzer (2007, 2008c), however, retorts by asserting that there are actually two steps to

employing heuristics. For the Recognition heuristic, the first step is recognition: whether one

alternative is recognized, and the others not. This first step determines whether the Recognition

heuristic is applicable. The second step is an evaluative one: an assessment of the ecological

rationality of the heuristic. If by this evaluation it is judged that the heuristic is not ecologically

rational, it will not be used, and a search for some other (perhaps heuristic) strategy com-

mences. Hence, Gigerenzer explains Oppenheimer’s results by claiming that the participants

did not use the Recognition heuristic after its ecological validity was evaluated. Gigerenzer

asserts that the participants knew that the nuclear disaster in Chernobyl has nothing to do with

12But see my remarks above regarding the Representativeness heuristic and the supposed irrelevance of infor-
mation.

13At the time of the experiment.
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population size, and that they also knew that Milpitas is a small city. He goes on to claim that

this knowledge overrode the Recognition heuristic: “In both cases, many participants did not

follow the Recognition heuristic and answered ‘Heingjing.’ They recognized a city for reasons

independent from population (which invalidated the heuristic in this situation) or because they

had direct knowledge about the criterion (population)” (Gigerenzer, 2008c, p. 25).

Nevertheless, the results of Oppenheimer’s studies are explained more naturally by my the-

ory of how heuristics work. In both of Oppenheimer’s studies, being presented with the name

“Heingjing” not unlikely produced representations and conceptualizations having to do with

China and cities in China. Most people know that China is a densely populated country, con-

taining the largest population on the planet. This knowledge would have excited conceptualiza-

tions that would almost certainly represent Heingjing as a large city. When this representational

information is compared to the representational information activated for Chernobyl (such as

information having to do with the nuclear disaster, and whatever else bears extant relations

to this) and Milpitas (such as information having to do with its being a relatively small city),

it suggests that Heingjing is likely larger than both Chernobyl and Milpitas. This of course

presumes that neither Chernobyl nor Milpitas induced conceptual content that exhibited struc-

tural relations that embody appropriate connections to one’s large city concept. If this were

the case, or if the suggested informational structure did not exist for Heingjing, then Heingjing

may not be predicted to be larger.

In this situation I am agreeing with Gigerenzer that those who predicted that Heingjing is

the larger city did not employ the Recognition heuristic. What I am suggesting, however, is

that Gigerenzer fails to recognize, or at least appreciate, the crucial role played by our concepts

and the extant relations between conceptual content in heuristic reasoning. Recognition carries

information (via mediators) about the thing recognized, but it is not recognition per se that

is doing the work when we employ the Recognition heuristic. Indeed, in such instances our

inferences are based on a lot more information than mere recognition,14 for it is the structure of

14I am not here using “mere recognition” as Goldstein and Gigerenzer (2002) do. See footnote 9.
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relations between activated concepts and conceptual content that guides our heuristics. Again,

in this way activated concepts and conceptual content constrain heuristics. Thus, Gigerenzer

does not need to offer ad hoc revisions to the operations of the Recognition heuristic (viz.

claiming that there are two steps). Instead, if my account is accepted, the extant ER-structure

will indicate that some heuristic other than the Recognition heuristic will be applied.

5.2.2 Take the Best

As mentioned above, when more than one object in a group is recognized, the Recognition

heuristic cannot be applied. However, if additional information about the recognized objects

can be recalled, Gigerenzer (2001; Gigerenzer & Goldstein, 1996) claims that an individual

may rely on the Take the Best heuristic:

(15) (i) Search among alternatives; (ii) stop search when one alternative scores higher
on some predetermined criterion; (iii) choose the object identified in step ii.

Take the Best assumes that an individual has a subjectively ranked order of beliefs about cues

which may discriminate between objects and which are considered sequentially when making

predictions.15 The highest ranked cue which discriminates is termed “the best”, and the objects

that have a positive value with respect to this best cue will be chosen or predicted to possess

some criterion. This idea behind Take the Best was briefly explained in chapter 2 (section

2.4.2.2) and in a little more detail in chapter 3 (section 3.4.2).

Gigerenzer’s examples and experiments that illustrate Take the Best are much like the ones

given for the Recognition heuristic.16 For example, suppose you had to choose which of a pair

of cities is larger. Both are recognized, but you believe that having a university is the best cue

that discriminates on the criterion of city size, and you know that one city has a university while

the other does not. You would thus use Take the Best, and infer that the city with the university

15Like the Recognition heuristic, Take the Best is supposed to apply only when there are two alternatives. But,
again like the Recognition heuristic, I believe that Take the Best can be generalized to apply to situations in which
there are more than two alternatives.

16In fact, the Recognition heuristic might be understood as a special case Take the Best, if recognition is taken
to be a cue.



Chapter 5. How HeuristicsWork: Considering Empirical Evidence 214

is the larger of the two.

Here again we can explain this heuristic in terms of my theory of concepts and heuris-

tics, for Take the Best, too, exploits informationally rich conceptual structures. Indeed, as I

had indicated in chapter 2 (section 2.4.2.2), significant amounts of conceptual information is

typically entailed by the very belief that a cue discriminates. For instance, I had claimed that

certain beliefs are implied about the cue upon which the choice in question was made—at the

very least, we can infer that the said cue was believed to be the “best” to make the choice in

question, and that the cue is believed to be the “best” implies certain things about the concep-

tual content of the cue (as possessed by the chooser), as well as certain things about how the

cue fits within the chooser’s conceptual structure. In chapter 3 (section 3.4.2), we saw in a bit

more detail what we might infer about the conceptual content of the “best” cue as possessed by

the chooser. For example, if one believes that having a university is a good predictor of relative

city size, one must possess a concept university which is rich enough to support such a belief,

or at least to support the belief that having a university is a better predictor of relative city

size than some other cue. And the conceptual information built into one’s university concept

might include, in addition to various representations and conceptualizations that are required

to understand what a university is, information about a university’s function in society; how it

houses a number of faculty, staff, and students; perhaps the relative social classes of members

of a community typical of such faculty, staff, and students; maybe the ways in which having a

university relates to the economy of a city; and probably much more. Indeed, it is such infor-

mation that generally makes one believe that having a university is a good predictor of relative

city size. (We see here again hints of Dretske: A cue will be treated as a discriminating cue

only if one possesses the appropriate conceptual wherewithal to do so.)

The process by which I understand Take the Best to operate is similar to the one outlined

for the Recognition heuristic. The nature and content of the cognitive task of predicting which

of two cities is larger, for example, will activate and prime various concepts and conceptual

content. If only one of the two cities happens to have a university, then conceptualizations
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pertaining to a university’s function in society, how it houses a number of people, etc., will be

among what is activated or primed. These latter representations will bear strong outward con-

nections to one’s large city concept, which is just to say that large city will bear a number of

strong inward connections. Thus, a heuristic procedure operating over these thin ER-structural

connections will suggest that having a university is indicative of a large city, and as a result,

the city with the university will be predicted to be larger than the other.

On this view, we might thus understand one’s belief that having a university is a good

predictor of relative city size to be implicit in the metainformational ER-structure; that is, be-

liefs about discriminating cues need not be explicitly represented. Assuming that we explicitly

represent pre-ranked sets of cues is implausible, in any case. For we must not only have a pre-

ranked set of cues for predicting relative city size, but a set for any potential decision task that

we are faced with, or at least any potential decision task concerning objects that we have some

familiarity with. This must be the case if Take the Best is available for use for any such decision

task. If I am to predict which car would be faster, I must have pre-ranked cues for that task; if

I am to predict which student will score higher on the final exam, I must have pre-ranked cues

for that task; if I am to predict which apple will taste better, I must have pre-ranked cues for

that task; and so on. Yet carrying around all sorts of pre-ranked sets of cues in our heads is

cognitively demanding in terms of storage space—the human brain is far too limited to be able

to store all these pre-ranked sets of cues. To be sure, the number of sets of pre-ranked cues

would have to be unbounded, since there is an unbounded number of possible decision tasks.

This is an independent reason why we should doubt the framework Gigerenzer proposes for

Take the Best.17

Notice that on the view I am offering there is no need to presume that each of us has a pre-

ranked set of potentially discriminating cues, even if they are implicitly represented. We might

agree with Gigerenzer that we have sets of cues which we may rely upon to predict which object

17As noted in footnote 32 in chapter 3, I suppose that one can produce cue rankings on the fly, as the situ-
ation arises. However, according to Gigerenzer, we must have predetermined cue rankings stored in memory
(Gigerenzer & Goldstein, 1996, 1999).
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scores highest on some criterion (based on rich conceptual information), but on my proposal

we do not have to assume that the cues are in any way ranked or otherwise ordered. Rather,

whatever concepts and conceptual content are activated and the ER-structure will determine

which, if any, cues are treated as discriminating cues. So, for example, suppose one must

predict which of Kitchener and Londono (Ontario) is larger. One’s Kitchener and Londono

concepts would be entertained, and their respective files searched to see if either possesses

information that discriminates with respect to relative size. Once it is found that Londono has a

university while Kitchener does not, the ER-structure just outlined would obtain; and if no other

discriminating information is revealed—if no further representations are invoked which would

alter the ER-structure to suggest otherwise—then one might predict that Londono is larger than

Kitchener. This does not require that one has already determined that having a university is a

good predictor of relative city size. Instead, if there is no other discriminating information that

comes to mind after consulting one’s Kitchener and Londono files, one can simply make an

inference on whatever the heuristic delivers according to the information available.

Notice furthermore that, whereas Gigerenzer’s account entails that one and only one cue

is used in making a heuristic inference (via Recognition or Take the Best), my account does

not entail this. Instead, a number of relevant cues may be considered, and a heuristic inference

may be made based on the conceptual information and ER-structure activated by them. Thus,

in addition to doing away with the presumption of pre-ranked sets of cues, we do not need to

suppose that cues are considered in a sequential manner. Suppose again that one had to predict

which of Kitchener and Londono is larger, that one believes that Londono has a university

while Kitchener does not, and that one (implicitly) believes that having a university is a good

predictor of city size. This time, however, suppose that one is told that Kitchener has a greater

number of residential zones than Londono.18 As before, no other discriminating information

is revealed. In this case, the way in which one predicts which city is larger would depend on

the conceptual content embedded in university and residential zones concepts. For example,

18I am not sure if this is in fact true. I would assume that it is not. But the truth of the matter is irrelevant.
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one’s residential zones concept might invoke representations and conceptualizations that make

one (implicitly) believe more residential zones means more people, which means larger city,

and this belief may be weighed against one’s beliefs regarding universities and the implications

for relative city size. Indeed, one may come to believe that the number of residential zones is

a better predictor of relative city size, despite the fact that having a university is still believed

to be a good predictor. If this is the case, then one might infer that Kitchener is larger than

Londono based on the ER-structure that would be established by activating university and

residential zones and conceptualizations thereof.

Given the story that is being told here, I would assume that, in general, when the task is to

choose between recognized objects, one will almost always activate more conceptual content

than what Gigerenzer assumes. This is to say that it is unlikely that one will only invoke a

handful of cues to decide; instead one will, so to speak, search through the concept-files of

each concept activated by the nature and content of the cognitive task. I therefore believe that

the ER-structure in question will often be thick, since I assume that the conceptual content

invoked by the nature and content of the task can very well be substantial, especially if one

knows a good deal about each object in question. For instance, one might invoke conceptual-

izations concerning not only universities and residential zones, but also concerning whether a

major highway runs through one or both cities in question; whether one or both cities have a

professional sports team; whether one has heard one city in the news more often than the other;

whether there is a famous shopping centre in one or both cities; how many airports there are

in either city; whether one knows of a major river in either of the two cities; whether one has

any friends or relatives who live in or have been to either city; and much more. And all the

activated concepts and conceptualizations would bear various inward and outward connections

to one another.

I presume that a close analysis would reveal that a number of such active concepts could be

grouped according to whether and the extent to which they bear multiple outward connections

to specific concepts (these are included among the reference concepts, as described in the pre-
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Economy 

Infrastructure 

Industry 
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University 
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Figure 5.2: Representation of an ER-structure arising from Goldstein and Gigerenzer’s (1999)
task of predicting which of two cities is larger. My claim is that Take the Best operates over a
structure like the one presented here.

vious chapter), and which concepts are bearing the inward connections (these are the pertinent

concepts, as described in the previous chapter). For instance, of the many concepts excited by

the task we are discussing, some may be grouped into sets according to whether and the extent

to which they bear outward connections to university, airport, highway, capital city, sports

team, and major river; and these concepts implicate individually, and corroborate together,

the concept large city. Potential sources for such outward connections are economy, infras-

tructure, industry, government, and crime. The representation in Figure 5.2 would suggest

that having a university, being a capital city, having one or more airports, and having a major

highway run through the city are implicitly believed to indicate relative city size. Take the Best

can thus be viewed as operating over the suggested ER-structure to deliver an inference that

the city in question is the larger of the two under consideration.

To gain a better appreciation of how my theory offers a richer and more plausible explana-

tion of how we reason and how Take the Best really works, consider the following. Goldstein

and Gigerenzer (1999) report an experiment in which a group of American undergraduates

were presented a number of facts (cues) about a variety of German cities, and were coached in
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understanding which of them were good predictors of city size. The students were then asked

to choose which of two German cities were larger. Goldstein and Gigerenzer show that many

of the students ignored a good predictor cue—namely, having a major league soccer team—

and as a result they performed poorly on many of their predictions. Goldstein and Gigerenzer

claim that the participants were instead simply following the Recognition heuristic, despite the

availability of a good predictor cue. Nevertheless, I offer an alternative account here: Such

“ignored” predictor cues were simply not among the representations that were deemed per-

tinent by the students’ ER-structures invoked by the task. There are many reasons why this

might have been so. One possible explanation is that, although the students were coached in

understanding which cues were good predictors of city size, they were not sufficiently coached

in the pertinence of these cues. In order to play the role of a discriminating cue, a cue must

be conceptualized as a discriminating cue; and this requires that one’s conceptual information

for the cue is rich enough and bears the right kinds of relations to other concepts and infor-

mation, as explained above with respect to university. Only with rich enough content can a

representation fulfill the role of a discriminating cue.

This is not to say that Goldstein and Gigerenzer’s coaching had no bearing on the Amer-

ican students’ predictions. Rather, it is to say that other conceptual information had greater

bearing on their reasoning, resulting in incorrect inferences. It is not certain exactly why hav-

ing a major league soccer team did not bear in a significant enough way on these students’

reasoning. However, according to my theory, it likely had something to do with the students’

background knowledge of German cities and their major league soccer or major league soccer

team concept. I suspect, for instance, that since the participants were American students, the

fact that a certain city has a major league soccer team was not very pertinent because soccer

is not among the major American-centred sports, such as baseball and (American) football,19

and hence they have comparatively little conceptual knowledge having to with the pertinence

19As of late, soccer has been gaining popularity as a sport in the USA. Goldstein and Gigerenzer’s experiment
was conducted before 1999. Nevertheless, I still do not think that soccer would be considered a major American-
centred sport.
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of having a major league soccer team to predicting relative city size. And even though the

students were instructed that having a major league soccer team is a good indicator of relative

city size, it is likely that their existing conceptual structures (like anyone’s conceptual struc-

ture) were so entrenched that they overwhelmed the pertinence of that information. In other

words, their major league soccer or major league soccer team concept were not rich enough to

bear the appropriate connectional structures that embody the implicit belief that a major league

soccer team is useful in predicting relative city size. As such, such concepts would not be rich

enough to support an ER-structure that exhibits the requisite connectional relations over which

Take the Best can operate to deliver a prediction involving the cue that a city has a major league

soccer team.

If the same experiment was conducted with European participants, I would predict that they

would utilize the fact that a city had a major league soccer team differently (it would probably

be used as a discriminating cue), since their conceptual understanding of major league soccer

and major league soccer team would likely be adequately rich. In general, I suspect that

if the conceptual content of one’s concepts were somehow elicited from someone, accurate

predictions can be made about what inferences she would make regarding some subject matter

concerning the concepts in question. With respect to Goldstein and Gigerenzer’s participants,

an initial assessment of the American students’ concepts would indicate something about their

implicit beliefs about the cues’ respective pertinence to the given problem. If the American

students were given a cue that is a good predictor of relative city size and that is congruent with

their background conceptual knowledge, the American students would likely implicitly believe

such a cue to be useful in predicting relative city size, and it would therefore bear significantly

on their reasoning and their resulting predictions. Such cues may, again, include a city being

the nation’s capital, or the number of airports a city has, or whether a city has a university. Each

concept—capital city, airport, university, respectively—would probably be rich enough for

the American students to implicitly understand and utilize the cue as a discriminating cue, and

thereby produce an ER-structure to facilitate correct answers via a heuristic like Take the Best.
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To repeat, this is not to say that a discriminating cue would be the only piece of information

these students would consider, for other information may very well have a bearing on their

reasoning. Rather, this is to say that such a cue will have greater pertinence for these students

(i.e., have an important place in their ER-structure) than a cue that is a good predictor of city

size but is not congruent with the background conceptual knowledge of the individual.

5.3 General remarks

Gigerenzer has complained on more than one occasion that Kahneman and Tversky’s proposed

heuristics are “vague labels”, and that a given cognitive process can appear to be one heuris-

tic under one description, but appear to be a different heuristic under a different description

(e.g., Gigerenzer, 1996; Gigerenzer & Todd, 1999). Gigerenzer may very well be right. Kah-

neman and Tversky’s heuristics certainly bear a certain level of vagueness insofar as there is

no determinate measure of representativeness or availability. Nevertheless, what I hope was

made clear in this chapter is that, notwithstanding that a given cognitive process can appear to

be one heuristic under one description but appear to be a different heuristic under a different

description, under any description a heuristic process operates over and is constrained by the

ER-structures borne by activated concepts and their conceptual content.

Although much more detail can be given as to the manner in which the proposed heuristics

discussed in this chapter operate, I believe that the analyses that I have provided is sufficient

to see that such heuristics are grounded in the heuristic procedures described at the end of the

previous chapter, and more generally in the account of concepts and cognition developed in

this dissertation. More work needs to be done to furnish a complete account of the empirical

evidence of the use of heuristics. Indeed, there are many other proposed heuristics in the

literature that this chapter did not even mention, including those that Simon discusses and a

wide variety of methodological heuristics (see chapter 2). However, what has been presented

here suggests that my theory of concepts and cognition, and how heuristics work, accounts for

enough phenomena to be considered plausible.
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It is also important to note that many of the claims made in this chapter are empirically

testable. In general, I suspect that with the appropriate experimental set-up, we may be able to

infer (to some extent) the conceptual content of one’s concepts and the relations between them

(perhaps based on association tasks); and if we were able to tease this out, we would be able

to make predictions about what ER-structures would get invoked with given inference tasks.

We would then be able to make predictions about what heuristics one would employ, and what

inferences one would thereby make, based on the account presented here.
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Throughout this dissertation I have advanced a theory that claims that heuristics work in cog-

nition by operating over the organization of and connections between our concepts and their

conceptual content. However, one last important issue remains to be discussed, namely the

epistemological relevance problem, which was introduced in chapter 3. As promised, this con-

cluding chapter is devoted to addressing this aspect of the frame problem. This matter will be

by no means fully detailed, but I will use my theory of concepts and cognition to sketch a way

that the epistemological relevance problem might be circumvented; and this will indicate what

role heuristics have, if any, in solving the problem.

In chapter 3 I discussed how heuristics are commonly invoked by various researchers as a

way to circumvent relevance problems in cognition. However, I argued that invoking heuristics

to avoid the computational relevance problem says nothing of whether heuristics can circum-

vent the epistemological relevance problem, which is the problem of knowing or determining

what is and is not relevant in our cognitive processing. Returning to this matter, I will begin

in section 1 by reminding us of the epistemological guise of the frame problem and why it is

a problem. I will then discuss in section 2 how to define relevance, for it seems that how and

whether information is determined to be relevant depends on what property relevance picks

out. I will briefly expound the influential account of relevance developed by Dan Sperber and

Deirdre Wilson (1986/1995), and then argue for a reinterpretation of their theory within the

framework of cognition I developed in this dissertation. This will allow me to assess the role

heuristics have in making determinations of relevance, as well as to explain the reasonable

levels of success exhibited by humans in judging what is and is not relevant in their cognitive

tasks.

In section 3 I conclude that our conceptual wherewithal predetermines what I call de facto

relevance (cf. Gabbay & Woods, 2003). Two important theses are entailed by this position.

One is that heuristics do not actually make determinations of relevance, and so they actually

have no role in circumventing the epistemological relevance problem. But this thesis is not

as severe as it may appear, for I will also argue—which is the other important thesis—that
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humans do not in any case solve the epistemological relevance problem; so heuristic solutions

ipso facto are empty. Contrary to what Fodor believes (see chapter 3), it really does not matter

much whether we solve the epistemological relevance problem.1 Nevertheless, it is important

to see the headway my theory makes in confronting the frame problem in general. I will

illustrate how my account can help us to better understand how humans solve a different aspect

of the frame problem, namely the representational frame problem (as described in chapter 3),

which enables us to exhibit our characteristic reasonable levels of success in determining what

to bring to bear on our cognitive tasks.

In chastising recent attempts to offer a heuristic solution to the frame problem, Fodor (2008)

has remarked that “The rule of thumb for reading the literature is: If someone thinks that he

has solved the frame problem, he doesn’t understand it; and if someone thinks that he does

understand the frame problem, he doesn’t; and if someone thinks that he doesn’t understand

the frame problem, he’s right” (pp. 120-121). This concluding chapter might be viewed as a

response in the following way. I claim that I think I understand the frame problem, but I do

not think to have solved it. At the same time, however, I believe that the account of concepts

and cognition offered in this dissertation helps us to understand how we determine what to

bring to bear on our cognitive tasks. And insofar as I am successful at this, I hope to show that

my account of concepts and cognition (which underwrites my theory of how heuristics work)

explains what we actually do in our reasoning.

6.1 The epistemological relevance problem

Let us begin by reviewing the epistemological relevance problem, and the role that is commonly

ascribed to heuristics in circumventing it. The cognitive systems that are paradigmatically re-

sponsible for general reasoning and decision-making—i.e., central systems—admittedly allow

for free exchange of information. A dream of a snake biting its own tail, for example, bore in

interesting and important ways on Kekulé’s theorizing of the benzene molecule. What is en-
1In any event, Fodor’s understanding of the problem places unreasonable, unrealistic demands on what is

required of central cognition. See chapter 3, section 3.1.2.
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tailed by such a free exchange of information, however, is that, provided an appropriate set of

background beliefs, any representation held by an agent can in principle be relevant to a given

cognitive task in central cognition. Who won tonight’s football game is prima facie irrelevant

to whether there is beer in your friend’s fridge. But if you believe that your friend’s favourite

football team played tonight, and that your friend usually overindulges in beer consumption

whenever his favourite team wins, then your belief about who won tonight’s game actually is

relevant to your belief about beer in your friend’s fridge. Since relevance can be determined

only with respect to one’s background beliefs, there is no way a priori to circumscribe the sub-

set of representations that are relevant in a given occasion of reasoning or inference. And this

is what gives rise to various aspects of the frame problem, as expounded in chapter 3 (section

3.1).

The computational relevance problem, it may be recalled, is one aspect of the frame prob-

lem. It is a problem of how a cognitive system tractably delimits (i.e., frames) what gets

computed in a cognitive task. On the other side of this coin, the epistemological relevance

problem is a problem of how a cognitive system not only ignores most of what it knows, but

ignores the right sorts of things in particular, namely what is irrelevant. In chapter 3 I expressed

this problem thus:

The epistemological relevance problem The problem of how a cognitive system
considers only what is (mostly) relevant, or equivalently, how a cognitive
system knows what is relevant.

Humans seem to determine what is relevant in their cognitive tasks quickly and rather

easily. This is not to say that we always know and consider what is relevant. For we often

fail to do so, especially when cognitive demands are high and/or when cognitive resources

are low (cf. Samuels, 2005, forthcoming). Nevertheless, humans characteristically exhibit

reasonable levels of success at identifying representations that are relevant to the task at hand.

Such reasonable levels of success cannot be ascribed to chance or luck. Therefore, we are

left to explain how humans (seem to) solve the epistemological relevance problem, short of

considering the totality of one’s beliefs (Fodor, 1987, 2000).
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As I had pointed out in chapter 3, heuristics are often invoked as a solution to relevance

problems, or at least to circumvent relevance problems. I argued that heuristics may very

well relieve the computational burden put on a system in delimiting the set of representations

to be considered for a given cognitive task—i.e., circumventing the computational relevance

problem—notwithstanding that the informational richness and extant relations between con-

cepts are what heuristics owe their utility to. As interesting as this may be, however, this says

nothing of whether or the extent to which heuristics can circumvent the epistemological rele-

vance problem. That is, thus delimiting the amount of representations that get considered does

not ensure that what does get considered will in fact be relevant to the task at hand. And as I had

indicated, the arguments often offered to alleviate the worries of relevance problems (e.g., Car-

ruthers, 2006a, 2006c; Samuels, 2005, forthcoming) do not in fact address this epistemological

worry.

Nevertheless, the account of heuristics, concepts, and cognition that I have developed in this

dissertation does address the epistemological relevance problem, at least in a certain respect. To

fully appreciate this, however, we must first understand that the inquiry into how relevance is

determined is constrained by how relevance is defined. In more explicit terms, whether and the

extent to which relevant representations are picked out and brought to bear on a cognitive task

(by heuristics, for example) will depend on what property we are concerned with. Thus, after

relevance is defined we might understand how the present view offers a psychological/cognitive

account of the conditions under which heuristics manage to pick out relevant representations.

What I will do in the following section is provide a cursory overview, and somewhat of

a critical assessment, of what is arguably the most influential account of relevance—Sperber

and Wilson’s Relevance Theory. My aim is not to offer a full critique of Sperber and Wilson’s

theory, but to provide an assessment such that I am able to use the theory as a basis from

which to synthesize a working definition of relevance that conforms to my view of concepts

and cognition. The overarching goal for this working definition is to explain the phenomena of

how we determine relevance in reasoning, and this will have implications for the role heuristics
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have, if any, in bringing to bear relevant representations on the task at hand.

6.2 Relevance

6.2.1 Sperber and Wilson’s Relevance Theory

Sperber and Wilson (1982, 1986/1995) developed their Relevance Theory in the context of

communication and pragmatics. Humans tend to have an easy time communicating with each

other, despite the fact that the meanings of utterances are enormously underdetermined. A sim-

ple example: Alice says to Bob, “Isn’t that cute?” while nodding toward a chipmunk scurrying

up a tree; Bob knows that by “that” Alice is referring to the chipmunk, and not to the birds in

the other branches, the tree itself, the landscape, the sound of a horse whinnying, or whatever

else was within his perceptual field at the time of her utterance. According to Sperber and

Wilson, Bob understands that Alice was referring to the chipmunk because the stimulus of the

chipmunk running up the tree was relevant (or at least more so than any other present stimulus).

Although Sperber and Wilson’s Relevance Theory is mainly concerned with verbal/ostensive

communication and comprehension in particular, they claim that their theory can be extended

to the spontaneous, unconscious inference processes of ordinary thinking (1986/1995, p. 67;

p. 75). Sperber and Wilson are able to make this claim because they ground their account of

relevance in a fundamental and general view of human cognition.

Sperber and Wilson’s view of human cognition is a familiar one derived from general bi-

ological principles, and is very similar to some of the tenets on which Gigerenzer and his

colleagues base their fast and frugal heuristics research program, as well as to some of the

principles which guided Simon’s thinking (see chapter 2, section 2.3). Simply put, biological

organisms are limited entities with finite resources, and adaptive pressures along with other

evolutionary forces compel such organisms to carefully manage their resources. Typically this

means that a system is not wasteful in its resource consumption. But more specifically, this

means that the potential benefits of performing a task—whatever the goals are—must in some

sense be worth the resources invested and used in achieving them. In this sense, the benefits
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must exceed, or at least in some sense balance off, the resources expended in the pursuit and

attainment of the goal. Biological organisms must therefore allocate their resources in such

a way that positively contributes to performance and survival; or, what amounts to the same

thing, they must be efficient, operating with efficient mechanisms.

Sperber and Wilson understand cognition to be a biological function, and as such they

make a general claim that cognition always tends toward efficiency—maximizing gains and

minimizing costs. But Sperber and Wilson make a more particular claim, namely that human

cognition succeeds in increasing its efficiency by having a tendency toward maximizing rele-

vance. Relevance, for Sperber and Wilson, is a technical term referring to a property of inputs

(assumptions) to cognitive processes. According to their Relevance Theory, the relevance of

an input is a function of cognitive effect on the one hand, and processing effort on the other.

Hence, maximizing relevance, according to Sperber and Wilson, is a matter of best managing

one’s cognitive resources to achieve cognitive effects without investing too much processing

effort.

Cognitive effects are best understood as contextual effects achieved by a cognitive system.

A context is simply just a set of assumptions within which informational input can be pro-

cessed. Contextual effects are the results of processing input within a context that could not

have been effected by the input alone or by the context alone. These are characteristically im-

plications (yielding inferences, and resulting in new assumptions), contradictions (compelling

the system to abandon one or more assumptions), or strengthenings (increasing the system’s

degree of belief in given assumptions).

Sperber and Wilson (1995) make the point that a cognitive system, or more specifically

an individual human, is not interested in contextual effects per se, but only insofar as such

contextual effects contribute to achieving the system’s (the individual’s) cognitive goals, or

otherwise fulfilling its functions. For indeed, there may be contextual effects that are not worth

having, or that contribute negatively to the individual’s cognitive functions or goals. Thus,

Sperber and Wilson define a positive cognitive effect as a contextual effect that contributes to
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the cognitive goals or functions of the individual in a positive way. This is typically achieved by

alterations in the individual’s beliefs. In short, positive cognitive effects are cognitive benefits;

they yield positive cognitive utility; they produce an “epistemic improvement” (Sperber &

Wilson, 1995, p. 266); they make a “worthwhile difference” (Wilson & Sperber, 2006, p. 608)

to the cognitive functioning of the individual.

Processing effort, on the other hand, incurs a cost on the cognitive system in terms of

resources expended (time, energy, and other cognitive resources). Effort is required not only

to process inputs and achieve contextual effects—to draw inferences and acquire new beliefs,

revise old beliefs, add to and retrieve information from memory stores, and so on—but it is also

required to construct an appropriate context within which to process inputs. The expenditure of

resources bears negatively on a cognitive system, and therefore bears negatively on relevance.

It should be obvious that relevance, assessed in terms of cognitive effect and processing

effort, comes in degrees, and that this is a direct result of both effect and effort being matters of

degree. What is more, some input may yield greater cognitive effects on some occasions and

less effects on others. This may be due to varying limitations on accessing certain information

at certain times, and on constructing appropriate contexts within which to process the input.

Or, depending on circumstances related to fatigue or stress, the same input may be more or less

easy to process at different times. And, of course, such factors widely vary between individuals,

and so one individual may process some input with greater ease and with greater effects while

another may find it difficult to process the same input with the same effects. Or one individual

may process some input with little effort but with little effect, while another may process the

same input with great effort but with greater effect. And so on. What all this means, in short,

is that relevance is a relative property—relative to an individual (the cognitive system within

which the context is brought to bear on the input in question) and to a time. Hence, Sperber

and Wilson (1986/1995) provide the following two conditions for relevance:

(19) Ceteris paribus, the greater the cognitive effects achieved by an individual by
processing some input within a context, the more relevant that input is to that
individual at that time.
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(20) Ceteris paribus, the greater the effort expended by an individual by process-
ing some input within a context, the less relevant that input is to that individ-
ual at that time.

To illustrate this notion of relevance, let us consider a toy example (Sperber & Wilson,

1996): You purchased a lottery ticket and you know there are three prizes: $100, $500, and

$1,000. After the lottery has been drawn, you receive a phone call informing you that you have

won a prize. The informant can tell you any of the following three things:

(i) You have won $500.
(ii) You have won $100, $500, or $1,000.

(iii) Either you have won $500 or, if I’m speaking right now then
√

2 = 7.

Of these three statements, all are relevant in the sense characterized by (19) and (20). However,

(i) is most relevant: (i) is more relevant than (ii) since the former entails the latter, and so (i)

yields all the cognitive effects of (ii), plus some more specific effects without greater processing

effort. (i) is also more relevant than (iii) since the cognitive effects yielded by both are the

same—for (i) and (iii) are logically equivalent—but such effects are easier to derive from (i)

than from (iii).

According to Sperber and Wilson, the tendency to allocate cognitive resources to process-

ing available inputs—from the environment or from memory—so as to maximize expected

cognitive effects for the least expected effort is the consequence of a general principle which

governs cognition:

The Cognitive Principle of Relevance Human cognition tends to be geared to
the maximization of relevance.

Thus, when presented with competing inputs, cognition will tend to process what is relevant.2

2Sperber and Wilson’s Relevance Theory makes claims about human cognition in general, but an important
consequence of their Cognitive Principle, and one that is the basis for their work in pragmatics, is the Commu-
nicative Principle of Relevance: Every ostensive stimulus conveys a presumption of its own optimal relevance.
This principle is, of course, based on Paul Grice’s (1975) conversational maxim of relation (or relevance), which
really inspired and motivated Sperber and Wilson’s Relevance Theory in the first place. The idea behind Sperber
and Wilson’s Communicative Principle is that a communicator will have a wide range of stimuli with which to
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It is instructive to note at this point the kind of cognitive architecture that Sperber and

Wilson envision. In the original edition of Relevance (1986), Sperber and Wilson subscribed to

a Fodorian cognitive architecture of the human mind, consisting of a variety of specialized input

modules individually dedicated to processing perceptual information of a specific domain (e.g.,

visual, auditory, linguistic, etc.), in addition to a central processing system (central cognition)

which makes inferences by integrating (transduced) information received from the perceptual

modules or retrieved from memory. Thus, following Fodor, Sperber and Wilson understood the

central processing system as nonmodular in nature, and as an inferential centre where many

kinds of information come together, get combined or otherwise manipulated.

By the second edition of Relevance (1995), Sperber and Wilson had disavowed such a

central systems architecture in favour of the massive modularity hypothesis. Though I note

this only in passing, I submit that I think certain complications arise for their Relevance The-

ory within a massively modular architecture. This is a matter to be discussed on some other

occasion. However, to avoid these complications, I will continue to refer to Sperber and Wil-

son’s views as if they still subscribed to a central systems architecture; this type of cognitive

architecture is closer to the architecture advanced in this dissertation, at any rate.

Against the background of their original cognitive architecture, Sperber and Wilson saw

cognitive efficiency largely as a matter of achieving “an optimal allocation of central process-

ing resources” (1986, p. 48). At least this is what they saw as the way by which the mind

might achieve efficiency in its inferential processes. Of course, input modules do not face such

a challenge of achieving an optimal allocation of resources, for if Fodor (1983, 2000) is right

and they are informationally encapsulated computational mechanisms, then there is no chal-

lenge for them to appropriately allocate processing resources—a sufficiently small proprietary

communicate her informative intention. To ensure success of communication, it is in the best interests of the
communicator to choose a stimulus that will require the least processing effort on behalf of the addressee. This
Communicative Principle of Relevance is really the centerpiece of Sperber and Wilson’s Relevance Theory, be-
ing a significant contribution and highly influential to studies in pragmatics. However, since communication and
pragmatics are not the focus of this dissertation, the Communicative Principle will not be discussed any further.
Instead, it is the Cognitive Principle that bears significance here, since this principle is supposed to govern general
reasoning and cognition.
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database guarantees that the system will not have to search for relevant information or need to

make computations of relevance (see chapter 3, section 3.1.2).

Sperber (2005) has recently suggested that cognitive efficiency, in terms of maximizing rel-

evance, is achieved biologically—specifically, by optimally allocating energy in the brain. His

proposal is to think of maximizing cognitive effects and minimizing effort in terms of noncog-

nitive physiological processes. Sperber asks us to consider the way in which we manage energy

consumption in our muscular movements. The use of our muscles depend on chemical reac-

tions involving oxygen, nutrients, and the removal of lactate. Efficiency in muscle movements

depends on converting the energy produced by these chemical reactions to work, and letting as

little of it as possible degrade into heat. Thus, the way in which muscle efficiency is achieved is

not by cognitively representing effort,3 but by regulating effort noncognitively by physiological

processes (e.g., producing the right amount of energy in the right tissues, appropriately adjust-

ing blood flow, removing sufficient lactate, etc.). Sperber believes that cognitive efficiency is

achieved by analogous physiological means. He writes,

There may be physiological indicators of the size of cognitive effects in the form of
patterns of chemical or electrical activity at specific locations in the brain. . . . Sup-
pose that these physiological indicators locally determine the ongoing allocation of
brain energy to the processing of specific inputs. These indicators may be coarse.
Nevertheless, they may be sufficient to cause energy to flow toward those processes
that are likely to generate relatively greater cognitive effects at a given time. (p.
65)

At the very least, this seems to be a biologically plausible way that the brain might manage

cognitive efficiency. Sperber developed this idea within the purview of a massively modular

cognitive architecture, but I believe it can equally apply in a central systems architecture.

6.2.2 Relevance in light of the foregoing theory of concepts and cognition

Sperber and Wilson’s Relevance Theory seems consistent with the account of cognition and

how heuristics work developed in this dissertation. Nevertheless, there are a number of ways
3Of course, muscular effort is cognitively represented when the muscle is fatigued. But, as Sperber points out,

it is only above this fatigue threshold that muscular effort is cognitively represented, and even then it is in a very
coarse manner (Sperber, 2005, p. 64).
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in which Relevance Theory is inadequate. For instance, relevance is a property of cognitive

inputs according to the theory, but more specifically it is a property of assumptions. Assump-

tions, for Sperber and Wilson, are what get processed within contexts, and assumptions also

comprise contexts themselves. According to Sperber and Wilson, assumptions are conceptual

representations that are treated as true by the individual (Sperber & Wilson, 1986/1995, p. 2).

This would be fine as it is, except that the theory of concepts that Sperber and Wilson adopt is

along the lines of the language of thought hypothesis. That is, they believe that assumptions

are composed of amodal, atomic conceptual representations over which computations sensitive

to their formal semantic and syntactic properties are defined (see pp. 83-93). This runs counter

to the foregoing view of concepts which, borrowing from Barsalou’s work, envisions concepts

as partly comprised of multimodal perceptual information (i.e., perceptual symbols).

It is interesting to note, however, that Sperber and Wilson subscribe to an account of con-

cepts that appears to be just the file model presented above. More specifically, Sperber and

Wilson

assume that each concept consists of a label, or address, which performs two dif-
ferent and complementary functions. First, it appears as an address in memory,
a heading under which various types of information can be stored and retrieved.
Second, it may appear as a constituent of a logical form, to whose presence . . . de-
ductive rules may be sensitive. . . . [W]hen the address of a certain concept appears
in a logical form being processed, access is given to the various types of informa-
tion stored in memory at that address. (p. 86)

According to Sperber and Wilson, the types of information that can be stored “under” a con-

cept’s address are logical (a set of deductive rules that apply to the logical form of the concept),

encyclopedic (information about the extension of the concept), and lexical (information about

the natural language counterpart that expresses the concept). As Sperber and Wilson have it,

encyclopedic entries of concepts consist of further assumptions subject to the rules set out by

the corresponding logical entries. This picture can be made compatible with the present ac-

count of concepts if perceptual symbols are allowed in. Indeed, Sperber and Wilson’s account

of concepts appears to especially lend itself to the view I developed in chapter 4. For the labels

or addresses that Sperber and Wilson refer to function in a way compatible with that which I
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proposed for file labels. As opposed to being forms subject to deductive rules, however, I en-

visioned labels as lexical items over which natural language can operate to connect, combine,

and inform our concepts. The lexical items stored under a concept’s address on Sperber and

Wilson’s account can also be understood as analogous to the linguistic symbols I described.

But even if multimodal perceptual information is allowed to be stored under concepts’ ad-

dresses, and their account of concepts made compatible with mine, Sperber and Wilson’s view

of computational cognition would need to be modified, for they understand computational

cognition strictly in terms of deduction—processes performed by a “deductive device” that is

supposed to “model the system used by human beings in spontaneous inference” (p. 94). Per-

ceptual symbols will not fall under the scope of a concept’s logical entries, and more generally,

will not be subject to the operations of a so-called deductive device.

This brings us back to the point I initially made, which was that, according to Relevance

Theory, relevance is a property of assumptions. We can now see why their view requires this,

namely because assumptions are the type of thing that can serve as input to the deductive device

they believe to be constitutive of central cognition. And moreover, the deductive device is just

the type of thing that can process an assumption within a context to produce contextual effects.

Yet, if the foregoing account of concepts and cognition is accepted, Sperber and Wilson’s

view needs to be adjusted in more than one respect. For there would have to be a way to

define relevance as a property of multimodal perceptual information inasmuch as a property of

assumptions, but in the absence of a language of thought hypothesis.

Nevertheless, there is something intuitively right about the idea that relevance has some-

thing to do with positive cognitive effects. For indeed, it seems as if processing irrelevant

information would not generally yield positive cognitive effects. By positive cognitive effects,

however, I am not referring to Sperber and Wilson’s understanding of it as contextual effects

occurring in cognitive systems. Rather, I mean it in their broader and looser sense, generally as

cognitive benefits, positive cognitive utility, “epistemic improvement”, or a “worthwhile differ-

ence” to the cognitive functioning of the individual. But is there a more precise understanding
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of positive cognitive effect without invoking contextual effects or deductive inference, but that

is somehow tied to relevance? Or, what would be better, does the foregoing account of concepts

and cognition provide a more precise understanding of positive cognitive effect that is tied to

relevance? I think it does.

To see this, let us recall once again the Dretskean theme that has played a role in the

present account. As I had argued above (chapter 4, section 4.3), in a Dretskean sense, our

concepts are cognitive structures that enable us to extract and exploit certain information in the

environment. Learning or enriching a concept provides us with the ability to decode certain

aspects of our sensory experience in such a way that we are able to cognitively respond in

certain ways which we would not have been able to otherwise. Having the concept daffodil

enables one to see a daffodil as a daffodil, and thus allows one to have daffodil-thoughts and to

cognize daffodil-stimuli in certain ways. Importantly, then, what information one can decode

from stimuli crucially depends on what one already knows about the stimuli, or in the terms of

the present account, on what and the way in which information is coded in one’s concepts and

thus conceptualized.

A natural account of relevance follows from this picture in terms of the amount of infor-

mation received from a source (such as a stimulus). More specifically, the greater the amount

of information received, the greater the relevance of that information. For example, suppose

that Alice and Bob are on a nature walk. Alice is a botanist, whereas Bob never cared for plant

science. As Alice and Bob gaze upon the flora of the forest floor, they both cognitively extract a

vast amount of information from their respective perceptual scenes. However, Alice’s concep-

tual knowledge is so rich that she is able to extract more specialized information than Bob does

or even can, having to do with the various kinds of plants that they come across. In this way,

the perceptual scene carries more information for Alice than for Bob. Of course, they both

process the same information, but Alice can cognitively extract more information. Whereas

Bob simply sees a plant, Alice sees Blindwood ivy; whereas Bob simply sees flowers, Alice

sees daffodils. Importantly, certain information in Alice’s and Bob’s perceptual scene is very
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relevant to Alice but not so relevant to Bob. And the information from the perceptual scene that

Alice finds relevant is just that information she is able to extract via her conceptual knowledge.

On the other hand, such information is not as relevant to Bob because he cannot represent the

information in the same ways, since he lacks the conceptual wherewithal to do so.4

Therefore, I suggest that the relevance of a stimulus to a given cognitive system (or agent)

depends on the amount of information received from that stimulus. Since the amount of in-

formation received depends on one’s conceptual wherewithal to attend to and code specific

information in certain ways, whether and the extent to which something is relevant is depen-

dent on the conceptual content of one’s concepts. But this is not the entire story, since relevance

will also depend on the context and cognitive task. Suppose, for instance, that both Alice and

Bob are botanists, but Alice is interested in finding a rare flower while Bob is interested in

seeing a specific species of ivy. Both Alice and Bob can code the same information in the same

ways, but because of their different goals and cognitive tasks, Alice will find flower information

more relevant than Bob, and Bob will find ivy information more relevant than Alice.

This can be easily accounted for, however, once it is understood that, in setting up one’s

goals and preparing for one’s cognitive task, one requisitely activates a number of concepts with

specific conceptualizations and representations. This will in a sense serve as a filtering mech-

anism for focusing attention. Alice will thus be (cognitively/conceptually) geared to attend to

specific information related to a specific flower whereas Bob will be (cognitively/conceptually)

geared to attend to specific information related to ivies, as each will have prepared a set of con-

cepts, conceptualizations, and representations (conceptual content) upon embarking on their

4In the limit, information is irrelevant if the amount of information received is equal to 0. For this to happen,
however, one would have to be unable to extract and conceptualize any information from the source in question
(cf. Gabbay & Woods, 2003). Unlike Dretske, however, I do not suppose that a signal carries 0 information
if one already knows the message the signal carries. Dretske’s example is of a neurotic person who constantly
has to check to see if his door is locked. According to Dretske, this neurotic person is receiving no information
by checking to see if his door is locked after the first instance. I disagree. Upon checking to see if the door is
locked, the neurotic person still receives the information that the door is still locked, or that the door has not come
unlocked. Processing information one already knows may be redundant, but it may also be useful to strengthen or
reaffirm one’s beliefs. Thus, when I say here that information is irrelevant if the amount of information received
is equal to 0, I am not claiming that one is processing irrelevant information when the information is what one
already knows.
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respective cognitive tasks.5 The conceptual content that gets activated when one prepares for a

given cognitive task will tend to be relevant, although this may not always be the case. What

gets activated will depend on previous experience, past activations, and the extant relations and

connections among the activated conceptual content. Since experience would indicate what

was and was not useful in the past, one would tend to bring to bear similar conceptual content

to bear on similar problems. And since usefulness is an indicator of relevance, such concep-

tual content will tend to be relevant, although what gets activated is essentially based on (what

might be thought of as) guesses. Nevertheless, this will set up certain relations among the acti-

vated concepts and conceptualizations, and these relations will constrain and guide inference,

as explained in chapters 4 and 5 (especially with respect to heuristic inference). The relations

among activated information can be understood as a context in which information-processing

occurs, in a sense similar to Sperber and Wilson’s Relevance Theory. But on the view I am

suggesting here, the degree to which information is relevant is a matter of the informativeness

of such information within such a context. Understood this way, relevance is not just a property

of information (or assumptions or inputs) per se—not just a matter of what information gets

processed—but a matter of how information gets processed.

If this is right, then positive cognitive effect can be understood in terms of the informative-

ness of information that is processed—processing information yields positive cognitive effects

insofar as the results are informative. But this is just to refer to the degree of relevance of the in-

formation in question, or so I am claiming. This means that positive cognitive effect is yielded

by processing relevant information. We therefore have our intuitive connection between posi-

tive cognitive effect and relevance borne out by the present account: Processed information has

positive cognitive effect because it is informative; and the degree to which it is informative is

the degree to which the information is relevant.

Consider, as a final example, riddles. Riddles present an audience with all of the relevant

5This is not to rule out, however, a potential role for perceptual mechanisms. It might be the case, for instance,
that nonconceptual creatures can focus attention based on simple perceptual pattern-matching. But I suspect that,
at least for the human case, one’s conceptual wherewithal will have a very big role to play.
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information needed to solve them. But what makes riddles hard to solve is that people do

not process the information in the right sorts of ways. A person can very well process the

information (or assumptions) presented in a riddle with lots of cognitive effort but to little

effect. On Sperber and Wilson’s Relevance Theory, this would mean that the information is

not relevant. But this is clearly not the case. Instead, the person who tries but fails to solve a

riddle is not conceptualizing the information in a way that facilitates the correct inference—

the person is not bringing to bear on her inferences the right sorts of conceptual information

(in terms of perceptual symbol simulations or linguistically coded representations). Hence,

what should be relevant is not conceptualized as relevant, and she therefore fails to solve the

riddle. This is precisely what the present account claims. And, indeed, once one finally comes

around to conceptualizing the information in the right ways, the solution to the riddle appears

obvious (cf. my remarks in the previous chapter (sections 5.1.2.3 and 5.1.2.4) regarding having

to conceptualize probabilistic information in the right ways in order to facilitate probabilistic

inferences and judgments).

Thus, on the foregoing view, it is not that information is relevant because it produces many

cognitive effects with little effort, but the other way around—information produces many cog-

nitive effects with little effort because it is relevant (as a function of its informativeness). Cog-

nitive effects and effort therefore do not define relevance. Rather, concepts and the extant

relations within and among their conceptual content—i.e., the ER-structure—will facilitate

cognitive effects and effort in processing information. Hence, it is structured concepts that

deliver relevance, which in turn assists in producing cognitive effects with little effort.

6.3 Do heuristics determine relevance?

As I have been arguing, relevance depends on the conceptual content of and extant relations

within and between concepts. But it is a further matter as to how cognition knows what infor-

mation to code up and integrate in—i.e., what information is relevant to—a concept’s simulator

or file. In constructing a cat concept, how does the brain know to code up and integrate the
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general shape, size, and furriness of cats rather than the way they cast shadows, the range of

motion of their left hind legs, or indeed, the position of the moon relative to the earth? That is,

how does cognition know what is and is not relevant in building our concepts? To this the fore-

going account has no answer, nor pretends to; but this is the hard problem of epistemological

relevance.

Evolutionary stories certainly can be told in which the brain evolved to pick out and inte-

grate relevant information. Witness, for instance, Sperber and Wilson:

As a result of constant selection pressures toward increasing efficiency, the human
cognitive system has developed in such a way that our perceptual mechanisms tend
automatically to pick out potentially relevant stimuli, our memory retrieval mech-
anisms tend automatically to activate potentially relevant assumptions, and our
inferential mechanisms tend spontaneously to process them in the most productive
way. (Wilson & Sperber, 2006, p. 610)

Nevertheless, such evolutionary stories come cheap, and are generally unsatisfactory for in-

forming us on how cognition determines relevance.

Yet the epistemological relevance problem expounded in chapter 3 with respect to the frame

problem—namely, the problem of how we know what is relevant to the task at hand—may be

a little easier to tackle. In this regard, let us ask: Can heuristics help in solving this problem

in ways that certain other philosophers (e.g. Carruthers, 2006a, 2006c; Samuels, 2005, forth-

coming) have failed to consider? More specifically, can the theory of how heuristics work,

as developed in this dissertation, solve the epistemological relevance problem? The answer,

unfortunately, is “No”. In fact, I believe that heuristic solutions fail generally for two reasons.

First, of all our epistemic commitments, we in fact almost never know the bearing that a given

commitment may have to a given cognitive task, at least not a priori. This is just to repeat why

the epistemological relevance problem is indeed a problem. It is possible that something that

presently appears to be relevant to a given task will turn out to be relevant only after the appro-

priate research is conducted, and once we have sufficiently built up our background knowledge.

Louise Antony (2003) provides a neat example:6 In the 1930s, an archeological dig in New

6Thanks to Rob Stainton for informing me of this example.
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Mexico revealed a ceramic piece that graphically represented a supernova that occurred in the

11th century. According to Chinese and Japanese astrological records, the supernova in ques-

tion produced a light visible in Earth’s sky which lasted twenty-three days. The representation

on the ceramic artifact is of a small circle with twenty-three lines radiating from it. Carbon

dating indicates that the artifact originated around the time when the said supernova was to

have occurred. According to some experts, this ceramic piece serves as the most certain record

of the supernova discovered outside of China and Japan. In this way, then, the artwork on that

particular ceramic artifact is actually relevant to astronomy, specifically to constraining astro-

nomical theory. Yet, I believe that this serves to illustrate a broader point that we almost never

can know a priori what is relevant to our cognitive tasks. The times when we do or can know

what is relevant will likely be confined to those instances when the problem is specially cir-

cumscribed, or more particularly when the problem is well-defined (see chapter 2, section 2.2).

This, it seems, is why science—the paradigmatic example of a holistic enterprise—requires

teams of people doing lots of work over long periods of time; and even then, science does not

always get everything right. In this sense, I agree with Fodor (2000) that solving the frame

problem (or at least the epistemological aspect of concern here) is tantamount to considering

the whole background of one’s epistemic commitments, for this is the only way to guarantee

that one has not missed anything relevant.

The second reason why I think heuristic solutions to the epistemological relevance problem

fail is that there is nothing to suggest that heuristics, or cognition generally, is in the business

of guaranteeing that nothing relevant has been missed (cf. Samuels, 2005, forthcoming). In

other words, there is nothing to suggest that cognition attempts to solve the epistemological

relevance problem in the first place. In which case, it is not really a problem; we already

know how to solve it, namely the hard way indicated above, notwithstanding that this is not

practical in most cases. At the same time, it seems that most of human cognition is content

with, and seems to get by on, satisficing judgments of relevance. And judgments that are in

some sense good enough should not be confused with solving the epistemological relevance
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problem. Ensuring certainty in our relevance determinations is severely cognitively taxing,

requiring time and resources that we simply do not have in managing all of our day-to-day

cognitive tasks. Consequently, it does not seem as if complete or holistic relevance is even

an issue that deserves serious attention in our cognitive lives unless we are doing high-stake

reasoning, such as in science or philosophy. I therefore believe that any heuristic solution to

the epistemological relevance problem is empty in virtue of the problem being, by all practical

considerations, unsolvable (at least for the majority of interesting tasks), as well as being a

problem that we are typically not in the business of solving in the first place. Hence, I disagree

with Fodor (2000) that our inability to understand how we solve the frame problem (or at least

the epistemological aspect of concern here) is detrimental to computational cognitive science;

for indeed, we do not solve the problem, and so Fodor’s worries are moot.

But now the question arises: If we do not solve the epistemological relevance problem,

then how do we manage our day-to-day tasks and make reasonable decisions? How do we tend

to bring to bear what is relevant if we do not know what is in fact relevant? This is just the

issue that I had accused Carruthers (2006a, 2006c) and Samuels (2005, forthcoming) to have

skirted in their appeal to heuristics to circumscribe what gets considered in our cognitive tasks

(chapter 3, section 3.2). But I will not likewise skirt the issue here. For indeed, we humans

enjoy reasonable levels of success in our reasoning—as Fodor (2008) states, “witness our not

all being dead” (p. 116)—and we must explain this.

We might begin to see how the foregoing account of concepts and cognition can help to

explain our characteristic levels of success in our reasoning. We may not be in the business

of solving the epistemological relevance problem, but, given the present account, we have

more constraints on our reasoning than we know. Specifically, a certain kind of relevance is

determined by the extant relations among the information embodied by our concepts, or more

particularly the ER-structures described in chapter 4. The kind of relevance I have in mind is

a sort of de facto relevance (cf. Gabbay & Woods, 2003), in which information appears to be

relevant due to the architectural characteristics of cognition. More specifically, and to continue
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the line of reasoning in the previous section, I propose that something is de facto relevant if it

is (more or less) informative when processed against a given set of activated concepts (along

with their attending conceptualizations and representations). In this way, de facto relevance

cannot be determined a priori, as should be expected. Instead, it simply arises out of the nature

and structures of our concepts.

The de facto relevance established by the extant relations within and between activated

concepts and conceptual content appears to be enough for humans to get by on. Indeed, a theme

that has been running throughout this dissertation is that this is precisely what is needed to

ensure tractable cognition and, more importantly, to facilitate heuristics. The kind of relevance

that matters to the epistemological relevance problem, on the other hand, is an ontologically

prior relevance. For lack of a better term, let us call this objective relevance. There will

certainly be times when we fail to process objectively relevant information, or that we process

information that is not very objectively relevant at all. In some cases we may end up processing

some objectively irrelevant information. Moreover, there will inevitably be cases in which we

fail to process de facto relevant information, due to cognitive limitations, fatigue, stress, or

some other extraneous factor. Under satisfactory conditions, however, our activated concepts,

with their conceptual content and extant relations, provide a network that informs cognition of

what is de facto relevant, and constrains and guides its processing accordingly (sometimes via

heuristics). The situation may not be ideal, but it is good enough for us to get by on—indeed,

such is to be expected from satisficing organisms. On the other hand, when we enter into

certain high-stake arenas, such as science or philosophy, we alter our standards, and de facto

relevance is no longer good enough. In such circumstances, objective relevance is sought, and

again, this is why progress and getting things right are much more difficult to achieve in these

endeavours.

At the same time, however, we might understand the foregoing account of concepts and

cognition as contributing to how humans manage to solve, not the epistemological relevance

problem, but a different guise of the frame problem. This is something I alluded to toward
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the end of chapter 3 (section 3.4). To see what I mean, let us revisit an issue that I mentioned

there. Recall that in discussing the frame problem, Dennett (1984) had presented an example

of fixing a midnight snack. He noticed that such a mundane task requires copious amounts of

knowledge: “We know trillions of things; we know that mayonnaise doesn’t dissolve knives on

contact, that a slice of bread is smaller than Mount Everest, that opening the refrigerator doesn’t

cause a nuclear holocaust in the kitchen” (p. 136). Dennett also noticed that it is implausible

to think that such knowledge is stored in a human as separate declarative statements. We must

therefore possess a system of representing this knowledge in such a way that it is accessible on

demand. Dennett therefore believed that the frame problem for AI researchers is to design a

system that is organized in such a way that achieves the efficient representation and access we

observe in humans. In his own words: “A walking encyclopedia will walk over a cliff, for all

its knowledge of cliffs and the effects of gravity, unless it is designed in such a fashion that it

can find the right bits of knowledge at the right times, so it can plan its engagements with the

real world” (pp. 140-141); thus,“[the frame] problem concerns how to represent (so it can be

used) all that hard-won empirical information . . . . Even if you have excellent knowledge (and

not mere belief) about the changing world, how can this knowledge be represented so that it

can be efficaciously brought to bear?” (p. 140). Given Dennett’s analysis, I suggested that an

aspect of the frame problem can be understood as the representational frame problem:

The representational frame problem The problem of how a cognitive system
embodies the informational organization, and enables access to the relevant
information, that seems to be required for human-like cognitive performance.

I believe that the present account of concepts and cognition is precisely what enables hu-

mans to solve the representational frame problem. For as I have been at pains to illustrate,

concepts are organized in such a way that the extant relations between their conceptual content

facilitates access to de facto relevant information. Such information may not be objectively rel-

evant, but it will almost certainly be the kind of information that is needed to guide successful

action, and this is all that is needed for human-like performance.
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It is interesting to note, however, that it seems that much of the information that is de facto

relevant turns out to be objectively relevant a lot of the time. This is evident from how humans

get on in the world, and the success rate of many human inferential endeavours. Again, this is

certainly not a result of chance, but likely an outcome of some evolutionary story. Nevertheless,

this is what explains our reasonable levels of success in bringing to bear objectively relevant

information on our cognitive tasks. I admit that this is not much of an explanation. However,

if we conceive of our conceptual system to have evolved to track things in the world, then

it should not be much of a mystery why our conceptual wherewithal reflects the organized

structure of information in the world, including objective relevance relations. In this way,

then, de facto relevance is built up by systems that track objective relevance. And, just like

any cognitive system that tracks stuff in the world, sometimes things work out and sometimes

things go awry; and sometimes cognitive systems track truths but not all the time (such as the

perceptual systems; cf. Viger, 2006b). It seems, however, that in the main cognition tracks

truths in the world, and is quite good at it. Thus, the de facto relevance embodied by the

relations within and between concepts and conceptual content by and large reflects objective

relevance in the world. This, I propose, is what allows us to get by in the world, or in other

words, what enables de facto relevance to be good enough for our purposes.

Assuming that all of this is right, what, then, is the role for heuristics? Heuristics make no

determinations of what information is relevant to given cognitive tasks. Rather, relevance is

already established in the de facto sense. Since heuristics are constrained and guided by what

concepts and other attending information is activated, as argued above, and since these things

are what determine de facto relevance, heuristics are in fact constrained and guided by what is

de facto relevant. More precisely, heuristics operate over ER-structures which embody implicit

information (knowledge) about what is de facto relevant. Thus, the proper role of heuristics

is to draw inferences based on such structures that determine de facto relevance, and I do not

think that we should expect (or even desire) more than that.
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6.4 Concluding remarks

This concludes this dissertation. Let us briefly summarize: There are many different (and

sometimes incompatible) ways that “heuristic” is employed in the philosophical and cogni-

tive science literatures. I suggested that we understand heuristics as cognitive procedures that

operate by exploiting (mental) informational structures. The informational structures heuris-

tics exploit are active and primed concepts and their attending information (conceptualizations

and representations). Heuristic reasoning is thereby constrained by concepts and their attend-

ing information. More specifically, heuristics operate over extant relational structures between

concepts and conceptual content that embody implicit, higher-order, metainformational knowl-

edge about the concepts in question vis-à-vis the cognitive task at hand. By operating over such

structures, heuristics are enabled to satisfice, and require little cognitive resources for their re-

cruitment and execution. Heuristics are thereby good candidates to mitigate the computational

worries arising from the frame problem (i.e., the computational relevance problem), although

it is really our conceptual wherewithal that is shouldering the informational burden. Our con-

ceptual wherewithal is also what determines de facto relevance, and insofar as it does this, our

conceptual wherewithal is what helps us to achieve our characteristic levels of success in mak-

ing determinations of relevance. The structures that determine de facto relevance are those very

structures that heuristics operate over. However, notwithstanding certain claims to the contrary,

heuristics do not circumvent a different aspect of the frame problem, namely the problem of

how a cognitive system knows what is (objectively) relevant (i.e., the epistemological relevance

problem). Rather, the latter problem is generally not solved, and moreover, human cognition

is not in the business of solving it in the first place. But it appears that depending on de facto

relevance is good enough for human performance.
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