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A General Quasi-Asymptotic Formula for the Sampling

Error Covariance Matrix of Econometric Estimators

by T. Merritt Brown

1, INTRODUCTION

The main part of this paper is the development of a near or seemingly
asymptotic formula for the error covariance matrix S(a) for econometric
methods which are derived by a maximization (max) or minimization (min) pro-
cedure, These methods may have a closed form expression or formula for the
actual estimates of the parameter vector a’, but often do not., Methods to
be studied for which there is no closed form are Simultaneous Least Squares
(SLS), Full Information Maximum Likelihood (FML), and Generalized Minimum
Distance Simultaneous Least Squares (MDSLS). In the closed form group we
study Ordinary Least Squares (LS) and Two Stage Least Squares (2SLS).

While the formulas herein derived are necessarily asymptotic, they
contain more sample related information than is found in the corresponding
conventional asymptotic formulas, This additional detail may make the
formulas a little more analytic for use with small samples,

The author, with a group of colleagues, is currently engaged in a
Monte Carlo research project in which we are testing various econometric
methods, including these formulas, Interim results indicate that the for-
mulas are better than fully asymptotic formulas for FML and SLS, but not
quite as good for 2SLS,

It currently seems safe to assume that, because of ease of computation
and general applicability to max and min methods, that the formulas may be

useful for hypothesis testing, as an aid in assessing the qualities of
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different econometric methods, and for the estimation of S(a) for esti-

mates of the parameters of nonlinear systems,

2, CAUSES OR REASONS FOR SAMPLING ERRORS

In this analysis let us abstract from measurement errors in the data,
specification errors, and serious collinearities in the variables in the
equations, The observed data provide T observations of g endogenous vari-
ables in Y (g x T), and of k exogenous variables in Z (k x T). A complete

model of an economic system is represented in basic structural form (SF) as

BY+ CZ+ U=0; or AX+ U =0 1)
where A = [B,C], X = Zi’ and U is 2 g x T matrix of estimated disturbances
or unexplained residuals, The corresponding true or population parameters of

i=l,...,8 ).

the model are [8,T] = AP’ with true disturbances UP = [uit] (t=1,........,T

We make the following stochastic assumptions:

= 0: E = o =0 = = . -
Buge =03 Bugy =05 Bugeby, = Oggs Bugpby =0 (86s51,.000D5 Bigpbge = 0
Uy’ - ' U U’
E =5=E = [o,.], . = Plim BB 2
T T ETEw =0l e, e T oon T )

We use the notation that ut is the tth column and Wy is the ith row

t s1e . . . .
of Up. Thus p  is drawn from a g-variate probability distribution with co-
s
R . . R t
variance matrix X, with corresponding sample estimates u, and S =——.

T
We occasionally find it useful to convert matrices into vectors, and
for this we use the operator

vec U = (u1,u ,ug) =u’ =est p’ (3)

2,-00
For matrices like A which may contain many zeros and a few constants we use

the operator vec*A = vec A with all zeros and constants deleted, and the

.
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remainder closed up so that

veckA = a’ = (a1,...,an) = est o’ (&)

To review the causes of sampling error in our estimates, we begin by
assuming a population of observed data, PX, from which samples of data SX
are drawn, It is from these samples that estimates are made. PX is the
sample space of SX, and every sample SX is a subset of PX. Thus PX includes
every possible observation xit'

We represent the development of the sample space symbolically in
Figure 1 below. In this analysis we make use of the structural reduced form
(SRF) of the economic model in (1), This is obtained by solving the model
for Y, thereby delineating the determinants of Y,

-1 -1
Y =- rz - U =Y +U0U _; EY=Y 5
B g P sp sp sp 3

Thus Ys represents the systematic explanation of Y by the complete model,
and Us represents the total residuals of the complete model in simultaneous
solution,

In Figure 1 is shown the formation of PY from PZ, AP and PUP, with sam-
Ples SY derived from SZ, Ap and SUp. PX is then formed from PZ and PY, while

any SX is formed from the related SZ and SY.

We next consider the process of working from the X data, through an
estimation method, to the estimated structure, This is represented in Figure 2,
We assume'that the econometric method used is consistent, so that with the
full population PX, and correct specification of structure, our estimating pro-
cedure will produce the true structure a and Ap, as well as the related
o! = vec I,

In Figure 2 we indicate that if the whole population or sample space of

X is used in the estimation method, the result produced will be the true
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Figure 1

structure o, 0., (We only indicate o in the diagram,) Next we indicate the

occurrence of three random samples, s1x, 82X and S3X, drawn from PX. S3X
is represented by the dots spread rather uniformly throughout PX. As each of
these is fed through the estimation method we get corresponding estimates

a‘, s‘; az,sz; and 83,83. We expect these estimates to differ from a,0 since

none of the samples or subsets covers the whole population,
Let us represent the sample errors of a1 only by ai -q = 61, 1=1,2,3.

We expect 61 to be moderately large, since S]X though centrally located,
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Element of S4X
~

Estimation
Method
(Consistent)

Figure 2

represents a very incomplete coverage of the population, SZX likewise leaves

a very large portion of the population unrepresented, and in addition is located
well off center and near the boundary of PX, We expect a very large error 62
from it, S3X on the other hand has points in all regions of PX. Even though

it is not a large sample, it is meant (symbolically in Figure 2) to be a sample
which is very representative of PX. From it then we may expect an estimate
close to «.

The basic assumption which comes out of this intuitive analysis is that
the more representative the sample is of the population, the more accurate will
be the estimates a’ and s’; and conversely, the less representative the sample,
the greater the sampling error.

Since most econometric methods for simultaneous equation systems are

believed to be biased when using small samples, we shall develop our covariance
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matrix about expected values Ea rather than true values a. We define a

sampling deviation operator dS in the following:

da=a- Ea; E[dsa dsa'] = I(a); Est Z(a) = S(a) (6)

S(a) is thus more properly a sampling deviation, or dispersion matrix,

rather than a full sampling error covariance matrix,
The causes of sampling error, which our review above associates with

the use of unrepresentative samples, can now be briefly summarized.

Cause 1: Sample Size T. With small T the probability of obtaining a fully

representative sample of PX becomes quite low., Indeed when T is very small
it may even become impossible to have the elements of SX spaced well enough

throughout PX to provide a representative sample.

Cause 2: The Extent of Variation in Z. Referring to Figure 1, if SZ has low

variation relative to its potential provided by PZ, then SZ cannot be a repre-
sentative sample of PZ, We analyze this in relation to estimation formulas

as follows. The Z data frequently enter our estimation formulas in the form
of raw moments ZZ’, Individual elements of 2ZZ’ are of the form

T T
z Z2 and £ 2,2, , (i,j=1,...,k). The variation in Z_is defined to be
1 it poy itT3E t

T —_ 2 T, _ 1T
- = h = — h
equal to Z(Zit Zi) z Z where zi T z Zit’ It follows that

T

T -
2 bX z2 T Zi, so that X zit = yariation of Zi + T (average size of Zi) =

T
= 2y et
T

T{ (variance of Zi) + average size of Zi}. Thus & zit is of the order of sample

size T, sample variance of Zi and average size of Zi = 0(T,V,S8). If we let

T
ZZ=(@s.+.52)=2Z , we have the general formula,

Hl=
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2z’ = 1{%— + zz'] = T(CS) (7)

where CS = sum of covariance (C) matrix and size (S) matrix. The larger
is 22'/T, the larger are C and S, and the greater the probability that

SZ is representative of PZ. We could of course have large zz'/T with low
C and high S, when the sample by chance consists mainly of large elements

in Z, and is unrepresentative, But the probability of this is low,

Cause 3: The Dispersion of PUp as Represented by X. The higher the "noise"

level of the system relative to the (CS) of PZ, the larger the space of

PX relative to PZ. With PX enlarged the chances of a given sample SX being
representative of PX are reduced.1 Alternatively one can argue that, for

a given SZ fixed in repeated samples, the changes in SUp for repeated sam-
ples can be great, when I is large., This will cause SX to vary consider-
ably from sample to sample, and will thereby cause a’ to experience wide

variability in repeated samples.

To sum up this review, we can observe that when each of the above
causes enters our estimation in an unfavourable way--small T; small CS of
SZ relative to CS of PZ; and large I relative to CS of PZ--we can antici-
pate reduced probability of a representative sample, and an expansion of
the sample space of § =a - a. These three forces should be separately
represented in our subsequent formulas, even though we abstract from bias,
and work with dsa and Z(a). We should find Z(a) an inverse function
of T, and of CS of Z, but a direct dunction of X. Our formulas should

also reflect that with increasing T, accompanied by a presumed increase

11 am indebted to Dr. R. J. Wonnacott for this suggestion,
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in CS of Z, Z(a) — 0, irrespective of the relative size of X to CS of

PZ. For each of the econometric methods studied is consistent.

3. GENERAL FORMUIA FOR Z(a) = Cov (a) WHEN a’ IS
DERIVED BY A MAX OR MIN PROCESS

These estimators include closed form cases, as for LS and 2SLS; and
non-closed form cases where the estimates can only be derived by iterating
to the max or min of some function f(a,X), as for FML; Suppose that Z can
be treated as exogenous and fixed in repeated samples. Then our function
can be written as £(a,Y), and both a’ and Y will vary from sample to sample.

The estimates are those values of a, say a which, for a given sample

of data X, cause f(a,Y) to be at its global max or min, At this point
(a_ga,,zz> L il ®
\ a a \aa da
N / a 1 n

Suppose now we think of repeated samples of X, giving us different values
of both Y and a, These have mean values Ea and EY, (Let us henceforth use
a as surrogate for 5, our estimates for each sample.) Our sampling devia-

tions for these random variables are

da=a-Ea; d ¥ =Y - EV ﬁEY+1"Z=0,EY=-B-1I‘Z;Y~EY=-B- U, =U

Y = - B—1FZ _ B-1Up = Ysp (systematic explanation) + Usp (random
component) (9

Us = - B-1U are the residuals of the structural reduced form (SRF) of (1),
that is the total residuals of the complete model when solved to simulate the
sample of Y. Henceforth we shall drop the subscript s from d, and treat d

as the sampling deviation operator.
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Let us now apply a Taylor expansion to (8), about Ea and EY, using

?

y'  =vec Y = (Y”----Y1T —————— Yg1----YgT).
£ (Ea + dA, EY + dY) = £ (Ea, EY) + £ _(Ea, EY)da + fay(Ea,EY)d'y + ---==0
where

2 2
- ] - [.jLi, ]
faa [ dada’ | °? and fay dady
We next make the following approximations:

a) Use a = a as a substitute for Ea in £ and £ .
aa ay
b) Use YS as a substitute for EY in (10).'l

¢) Omit second and higher order terms of the expansion
in (10).
With these approximations we can derive a formula for the sampling de-

viation of a, and hence the error covariance matrix Z(a).

3%¢ 2¢

Sasa’ da + Szg;j dy =0 ; da =~ £ an)

f
aa ayus
Since dada’ is a product of six stochastic matrices, we cannot use the or-
dinary expectations operator on it to derive Z(a). However if we use asymp-

totic expectations and the Plim operator, an asymptotic formula in five con-

stant matrices emerges.

.= "o -1 . . = ' . . -1
Plim E[dada ‘] = (Plim faa) (Plim fay)PllmE[pSus](Plnn fya)(Pllm faa)

T oo

1The LHS term of (10) is zero for all samples., Using our approxima-
tions, the first term on RHS of (10) is also found to be zero for each of
the methods studied, Experimentation is still needed to discover whether in
our final formulas we can use Y as a substitute for Ys in evaluating

£f and £ in S(a).
aa ay

(10)
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-1 -1

(@) = Qdﬂ' Qa,y >:s ® IT Qyot, §owr, ;
S(a) =f£ £ S ®L f £ =Est X(a) (12)
aa ay s T ya aa

Formula (12) is referred to as quasi-asymptotic since, though clearly
asymptotic, it contains more sample information than the fully asymptotic
formulas, The omission of higher order terms in the Taylor expansion of (10)
could be its Achilles' heel, However the success of (12) in our Monte Carlo
research so far is an indication that the errors caused by this omission

are not disastrous,

4, INTERPRETATION OF FORMUIA (12) FOR S(a)

What does our formula for S(a) tell us about causes which influence

the dispersion of our estimates?

Ss' Our theory in Section 2 above gave a prominent role in S(a) to the dis-
;;rsions of the primary residuals p, relative to the CS matrix zz'/T. Formula
(12) brings out this role, but we note that for a complete model it is the
total residufls of the model (SRF residuals) which are relevant., Thus it is

-1 -
SS =B SB ], rather than S, which appears in the formula,

faa' This matrix is evaluated at the peak or bottom of f, depending on
whether the method involves a max or min, The elements of faa are the rates
of change of}the slopes of tangents to the surface in the direction of the
axes, and hence are an indication of curvature, For a narrow peak at a max
the curvature will be high, and the elements of faa will be negative, and

large in absolute value. For a broad humped, nearly flat peak, the absolute

values will be low.
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The narrow peak will provide us with more precision or resolution
in our estimates, with a tendency to small sampling deviations, as indi-

cated in Figure 3.

— s - -
o-— - . D —r—— . s o e -
ST R
P\ - : ST
5 : . .8 ! ~,, .
K - - - e i A\\
! . N .
/ \ g -~ : ! Y S .
4 \
/ | ' B ’ .
P‘i \, "
.

A,

Figure 3

Conversely the broad humped max will give less precision and wider sampling
deviations,

In (12) faa enters twice as an inverse, so that in the narrow peaked
system f;; will tend to have small values, and hence will contribute to small-
ness in S(a). The opposite will follow for the broad humped, low curvature
max,

On the basis of our earlier theory, we can assume that high curvature
in f will be associated with large T, and with large CS matrix zz'/T. We

can check this as we analyze faa for specific methods of estimation,

fa . This matrix of second order partials tells us the rates at which tan-
gent slopes to f = £(a,Y) change from zero at a max or min to some different
value as we change the elements of Y to a new sample, This would tend to

favour a broad humped max (see Figure 3) to achieve smallness in the effect

of fay on S(a). It thus appears that fay’ at least in part, offsets some of



(»

[

-12-

the effect of f;l. As we examine specific econometric methods below, we
usually find that £ is 0(1) in elements of Y and Z, so that £ S ® I f
ay ay s T ya

consists of quadratic and bilinear forms in elements of Y and Z, which
are O(T) and 0(CS).

Thus fay seems to play the role of a brake on f;;, with two of the
latter well overcoming the combined effect of the two fay matrices, Ulti-
mately fay is directly associated with dy = p in (10), providing an inter-

action effect between y and fa(a,x).

5, APPLICATION OF THE GENERAL COVARIANCE FORMULA
TO_SPECIFIC ECONOMETRIC METHODS

5,1 S(a) for LS

Here we have a single equation assumed to satisfy Markoff conditions,

y = 2 a+ u @13)
Tx1 Txk kx1 <1

The function to be minimized is

f(a,X) =u'u=y'y - y'2a - a’2'y + a’z'za (14)

oOF ) ’ azf )

S = fa ==-22y+ 2223 ; Sasa’ faa =2 2722 (5)

2 2
o f _ _ r____ O°f _ r - ‘
3553'7 2 Z1 ) m 2 ZT H fay =-212 (16)
Applying (12), we have
. -1
- - - - - 2
S(a) =2 T(Z'Z) 1(-ZZ')sz(u) ® IT(-ZZ)Z 1(z'z) L. sz(u)(z’z) L s £E§%__

Analysis of (12) for LS

In (15)-(17) we find that the curvature matrix faa is positive, since
we are finding a min, and is large if Z‘z = T(CS) is large. The influence of

large T and large CS in reducing S(a) is brought in through'f;;. fay is not

a7
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related to T, and is increased by large Z's. The combined effect of
fays2 ® ITfya =4 szz'z = sZO(T,CS). The term 0(T,CS) is offset by one

of the f"1 .
aa

5.2 S(a) for 28LS

Let one of the equations in the complete model represented by (1)

be .expressed in the form

Y =Y b+ Z c+u (18)
r T

1
Tx1 Txd Txe

1

where Y. and Yr are endogenous variables included in Y in (1), and Yr

]

means RHS endogenous variables which are explanatory to Y Zr are RHS

1.
exogenous variables which help explain Y1, and which are included in Z in
(1). There are d+e = n RHS variables, and hence n parameters to be esti-
mated in (18).

The equation which is estimated conceptually in 2SLS as a surrogate

for (18) is

Y1 = Yrb + Zrc +u o= X'a+ u (19)

S ].12/:, .-z ,
where Xr LYr’Zr ; a (b'e’) ; and Yr EYr in the Unrestricted

Reduced Form (URF) of (1). The URF of (1) is

Y =ZP +U Z(Z'Z)-TZ'Y-!-U , with Y° =Z(Z'Z)-1Z'Y = HY and
u u r r r

Txg Txk

u’ Y. - Xa=u
1 T

2
1 + Uﬁrb (20)

1
Note that H is  TIxT,symmetric and indempotent,

The function to be minimized in 2SLS in order to estimate a is

fa,x*) =ul’'u! =v/y, - v/X'a - a'x;'Y

Iopo 7 . .
11 171 1% +a Xr Xra ? 1)

1

where X* = [Y.',Yr,zr .
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of _ _ ax'v. +2x'Xa 22)
r r T

a oda 1
N - N
- 2 xo'.'xu = 2 Y.I Y. R Yol 7 = 2 Y[HY , YIZ (23)
r T r Tr r T r r  T¥r

z'v ,z2'z z'y ,z'z
r T r r r r r’r

since ¥/'zZ =(¢x -U )z =Y'z .
r Y r ur r rr

To calculate fa , we begin by assembling all endogenous variables in
. . . _ . ol = aen ———
the equation into matrix Y* = [Y1 ,Yr], with vec Y& =y (Y” Y1 T’Yrﬂ

Yar ™ 1™ " Yrar)

’ . ’ 2 ? -
fa= -2 Yr’H Y 1 + 2 YI’-HYr s Yr'zr a=2 YrHY1 ’ YrHYr ’ Yr Zr 1
b

I'4
Zy z'y ,z'z z'y. ,2z'y ,z'z
. rr rr r 1 r T rtr c
, 1
= - ! = - 2X°*°
2 YrH U, Xr u, 24)
ZI
r
2 8Y1 -1
— a f Y'H (""—} 3 0 0 s
fay T dady’ 2, aY‘[ J nxd = nxe b
nx(n+1)T Zlf c
- (t=1,...,T)
- ! ? aY’ ‘,f_ \
ov!\my, , [ 3Y! WY o x4 |7
2 SY 5 + ) BYrit r|
rit rit
oY b (25)
0 7! 0
exl > %y oY it ’ exe
| nx] md T nxe c
(i=l--=d;t=Tl-=-=- T)

11 am indebted to Dr. R. A. L. Carter for suggesting this final

arrangement,
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In (25) we introduce the symbolism that (“) is to represent a dupli-
cation of the expression or combination of matrices of the immediately pre-
ceding brackets of the same form ( ). Similarly for {“} and ["].

According to our general theory in Section 3 leading to (12) we
should use Ys = E} in evaluating (23) and (25). In the asymptotic case how-
ever we have Plim Y* = Plim Ysu = Plim EY = Plim Yép] If we substitute Y’
for Y in (23) and (25) our formulas remain invariant, Monte Carlo tests
should however be made to see if the substitution of YS for Y in these for-
mulas, in the case of small samples, improves their quality. This is equally

true for the methods studied below.

Analysis of (12) for 2SLS

The central matrix of (12) applied to 2SLS is Sg ® IT, where Sg is that
portion of Ss for the complete model which corresponds to Y1 and Yr’ with rows
and columns in the order in which these appear in vec Y+ =y’ defined above,

that is in the order of YT’Yr ~==,Y

1? rd

11 am indebted to Professor A. L. Nagar for a proof of this surprising
result, From the SRF we have

-1 -1
= - - = = +U 1
Y B Tz -8 Up §Z+Usp Ysp sp (1)
The URF is
PR |
—3 = = 2
Y 1>z+Uu Yz'(zz" Z+ U, Ysu+Uu 2)

Substituting (1) into (2) gives

o = ? 4 -1 0y
= $ = = 3
Plim Ysu Pllm(QZ+USP)Z (Zz") Z = %z Pllﬂlng (3)

T o
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From (23) we observe that faa is of O(T.CS of X;). Hence large T,
and large CS of X; ultimately caused by Z, will give high curvature to f at
min, and a sharp resolution of estimates,

fay of (25) has the following composition., 1In the first bracket is
colum t of Y’/ over column t of Z;, followed by zeros. In the second bracket

r

we have: a column of n zeros, except for Yit in the ith position; a dxd
matrix of zeros, except for the ith row which is Y;t’ + transpose, over an
exd matrix of zeros, except for the ith column which is Z;t; a dxe matrix
of zeros, except for the ith row, which is zrt’ over an exe matrix of zeros,
This complete matrix is multiplied by vector (-1,a')' = p. fay thus con-
sists of elements of X*°, post multiplied by p. In the composite term

faysi ® ITfya we have quadratic and bilinear forms of these elements, weighted

by p and S:, and hence the composite term appears to be of O(T.CS of X¥°),

1

It will be offset in terms of order of magnitude O by one of the f;a.

We conclude that the total error covariance matrix

1 -1— -———1 i - —
§(a) is 0(; > 03 of X+ ° S;> and -0 as T » o

Qur formula appears to contain more analytic detail relevant to sample

variability than does the conventional asymptotic formula for 2SLS, which is

S@a) = s> (u) (x;’x;)q =2 sz(u)f;; (26)

5.3 S(a) for FML

This and the following methods all work with the simultaneous esti-
mations of all parameters of a complete linear model., Any identities in the
model are eliminated by substitution into the remaining equations, producing
a reduced model

Br Y + Cr Z +U=0; ArX +U=0 27)
gxT kxT
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We now assume that the original model contained g+q endogenous variables,
q of which were explained by the identities. The reduced model then contains
only g endogenous variables,
FML estimates are derived by finding the values of the unrestricted
parameters of the original model (a’ = vec*A) which maximize the likeli-

hood function
1
LAX) =k+ lnldet Br' - 5 In det s (28)

(c£. Koopmans (1950, p. 213); Brown (1959, p. 640)).
The calculation procedures of Brown (1959) can be further simpli-

fied as follows., First we define the operation of Simple Direct Product of

two matrices D and E, each mxn, as

= _1 = .‘ = = ! !
DoE [dijeij_Ji=1~--m [fij | = F =DOE (29)
j=lae-ae n

Then we define the operation of summing all elements of a matrix F with

the opérator s,

F = Z iy te1eom (30)
’J j='| _____ n
Using these operations,
4
- 1 - -1/ -
dl, = tr B Vap’ - Lirs 1ds = yec B T vec/dB - + vec s 1vec'dS'
r r 2 r r 2
17 1 1 1
= r . (o] ] - — fg” o
s B, ©ds |-3ss ds (31)
We next define 8* =TS = ArXX 'A;, so that
-1 | Y . =1 7 =1 Tap
S 0ds =TS o d =8 0ds” =tr S (dAr)}Q{ Ar+ tr S ArXX dAr

-1

s

T

=2tr S A Xx'da’ = 2s(s‘”1A xx’oda ) .
r r r r
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_ et S R D
dL = s{[Br Ig(g+k) S A XX ] 0 dA i (32)

where Ig(g+k) = [Ig’ogxk] .

Proceeding directly from (32) we formulate La’ Laa and Lay’ element

by element,

L ?
a BI. = "1 - ."'1 '-] r
Baj S[Br I8(g+k) S Arxx J © oa, ? (33)

where s is now understood to operate on the complete simple direct product

which follows it,

“aa
14
TBZL = -5 P g1’ 4 57T 98 - A Xx'-s°" 1 2 XX'] o oy
Bal aj L™ Bai r “g(g+k) da, 53; 53;
o [A, 3\
S T\3, XA ) O @9
i i
L
&y
Recall that y/ = vec Y = (Y11---Y1T ------ Yg1---YgT). The differential
of~%§L for changes in y only is
oA
Kaa> [s @, $°)s* A xx’ - 8" 1ArdyXX’] oa—a-’-l (36)
a8 = Ar(,dyXX')Alf; 4 XX’ = @y)y’ +vay’ , @pz’ (37)

’
Zdy > O % k

(34)



! 7
oKX r oY v o+ (™! oY 7
it oY, ? oY,
it it
(38)
72 0
oY, ? kxk
oY 1o .
In (38) we note that Y. v’ is a gxg matrix of zeros, except that
it .
th
its i row is the tth column of Y. Similarly a?fY . 2! is a gxk matrix of
it '
.th . th
zeros, except that its i row is the t  column of Z.
2 OA
a L ."1 aXX’ .-1 .-1 !
da. oY, s[S Ar oY A:.: S ArXX' - S Ar g}éx ] ° §'a£ (%)
j it it it 3
Analysis of (12) for FML
When we examine (34) and (35) we find that -g—z—- is 0(T,CS of X), moder-
i

ated by A_. Let us assume that §° is small relative to XX’, which implies that

A, is small. Then —g—:— will tend to be small, S'“1 large, ArXX' small, Thus

i

L, is 0(1) but increases with increase in XX’ relative to S°. L is accord-
ingly sharper peaked at max when XX’ is large relative to vu’. It follows that
L;l is smaller, the larger is XX’ relative to S°, that is the variation and

size of X relative to variation and size of U.

7
When we come to analyze Lay’ we observe that gy is 0(X) = 0(1), in-

it
4
fluenced by the size of X, Assuming XX’ large relative to vu’! =58*; A ?;X
it
-1
is 0(1), small. S° = T(CS of U), so that s‘-.I =-:'I‘(_CS of U) will be large

according to smallness of CS of U, with smallness restored as T increases. Now
-1
looking at individual terms in (39), term 1 is OG(CS of U) )x o(1) pre-

4 -1
and post-multiplied by Ar(small) X O{\IT'(CS of U)

1(cs of U)-1
0(5( ) >Ar 0(1). The large and small components, based on assuming
/S

) X Ar 0o(T(Cs of X)) -
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xx’ large relative to UU’, tend to balance out, leaving the whole net

1
result of fay of O(T).

The combined effect of L—lL under our assumptions is for L-1 to
aa ay aa
. 1

be small and 0(1), with Lay of O(T).

The direct role of & or CS of U in S(a) is brought to bear through
Ss in the central term of (12).

Finally as T increases, we can expect S(a) to diminish through the
joint effects of~% and a possible slight increase in Laa and hence a slight
decrease in L;l with samples of X more representative of PX.

The fully asymptotic formula for FML is S(a) = -‘% L;1 . It thus

a
reflects only the influence of sample size, and the relative values of
XX’ and 8°, The direct effects of Lay and £ are ignored, which is quite

appropriate'for very large samples, but this may reduce sensitivity in the

case of small samples.

5.4 S(a) for SLS

The original computational program for this method was presented in
Brown (1960), 1In this method Qe find the values of a’ which minimize a dis-
tance function D. We begin with the structural form (SF) and the SRF for
the reduced model, with identities removed by substitution,

1 1

BY+CZ+U=0;Y=-B C-B U=FZ+1U (40)
r r r r S :

The principle of SLS is to minimize the Euclidean distance between the vector
of observed Y and the vector of the systematic explanation of Y by the com-

plete model, The distance (squared) function is
= = - - r = ! 41
D = tr S_ tr(Y FrZ)(Y F Z) tr U U (41)

The computational procedure appears to be simplified by calculating the
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individual elements of D, and Daa’ instead of attempting to derive the
whole vector and matrix as single formulas.1 A new and seemingly simpler

computational format is now summarized, using this plan,

Dy From (41)

~
\,
N

\

OF N {OF_
oD tr[{gz(zz ¥/ - ZY')} + {,,} ] =2 tra\g’i Bj; E= 2%/ - 2y’ (42)

y:1 NGt 4
OF_ 4 0B 21 3¢, _1- 9B, acr“\\
S5 "% 5% OB o5 TRy Feta (43)
i i ‘\ 1 //
OB oC
The SEE and 553 are constant matrices of 1's and zeros.
i i
D
~aa
2 32 F_ dF oF/!
oD _ rJE | .OE _ 1 _ T
Sa0%; 2 tr o2 aa E+ aa S| 3. - ¥ s, (44)
i i i k| j
32 %s: ‘aZFr ¥,  oF)
= tr = 2tr E+c> 22 (45)
§ai§aj §ai§aj l?aiaaj Bai baj
From (43) we develop
> F. ’aB aF aB BF
Ba a \?a aa Ba aa (46)

(See also Carter (1968) and Brown (1973)).

1The procedure of working with individual elements of Da and Daa was

suggested by Dr, R. A. L, Carter, who found this approach easier to program
for the computer,



D
-ay
Differentiating (42) with respect to th. we obtain
2 OF ' F '
3% ( r . Y ) " Y )
=-trle—z— ) + () = - 2tr z < 47)
5ai5th [ oa, ijt 53; ant
dy’ th
In (47) 2 Y is a k x g matrix of zeros, except that the j  column is
jt ,

the I:th column of Z,

Analysis of (12) for SLS

The first term of (45) is dominated by E = - 2 U;, which will be
small, The second term however is dominated by 2Z’ = T 0 (CS of Z), Thus
the curvature of the D function at min increases with T and CS of Z, so
that D;; decreasc_as with increasing T and CS of Z.

From (47) we observe that Day is dominated by Z, Hence

D S ®I will consist of quadratic and bilinear forms of modified

ay s T Dya
rows of Z and will be 0O(T).

The resulting formula (12) for S(a) gives a central role to the
"poise" level of the model, provided by Zs; is influenced inversely by CS
of Z; and is O(lT).

The above formulation can be compared with the fully asymptotic for-

mula in Dhrymes (1972),

5.5 S(a) for MDSLS

The generalized Minimum Distance Simultaneous Least Squares esti-
mator is developed in Brown (1973), This work was stimulated by discussions
with Professor Phoebus Dhrymes when he was working on Dhrymes (1972), I

began my approach with Professor Malinvaud's definition (Malinvaud, 1970,
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p. 325 £f) of a minimum distance estimator when the parameters enter the
estimation problem in a nonlinear form, as they do in SLS, The resulting
estimator confirms Dhrymesobservation (1972, p. 203) regarding possible
conversion of SLS to a full information estimator. 1In Brown (1973) I
also show that it converges to the same estimates as QFML, and makes easy
allowance for the handling of identities.

In this method the generalized distance (squared) function to be

minimized is

W =tru’ 50 =trZ U’ =55 og (48)
s s 8 s s s s s
Thus, instead of minimizing tr S; as in SLS, we are minimizing a weighted

sum of S;, ﬁith each element weighted by the corresponding element in the

inverse of the covariance matrix of SRF disturbances,

aa
BB 28 (e - oy L)
(CE. (42) above).
2. n2
%‘2} =s 2;10 g:?fi =3 z:o 'L‘\:aigaj E + 2::’; zz' —:Z—f>+ (”)'] (50)

(Cf. (45) above). Note that in the actual estimation process, Zs is esti-

mated from SS of the previous iteration,

MD

&y
Starting from (49)
2 aF
5365¥p =8 le810 E(: Ba g§ \) + O ] Gh
i jt \.
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Analysis of (12) for MDSLS

As in the case of SLS above, MDaa is dominated by zz! =T 0(cs of 2).
The curvature of the MD function increases with T and with covariance and
size of Z, with the converse effects on S(a) via MD;l. From (51) we con-
clude that M S ® I _MD will be O(T). The effect of the relative
ay s T ya
"noise" level in the model on S(a) is provided directly by Ss' The complete

formula for (12) is O(%).

6. CONCLUSIONS

The general formula (12) for the sampling deviation covariance
matrix S(a) is asymptotic, since it could only be derived using probability
limits. Tt is an approximation, since it uses only second-order terms of
the Taylor expansion of the function being maximized or minimized, and equi-
valently, only first-order.terms of the Taylor expansion of the first-order
partials of this function., The success of this approximation hinges partly
on the sampling deviations of a’ and Y being small. The approximation seems
to be tolerable, since in our Monte Carlo research so far we get reason-
able results using (12), with both large and small "noise'" models.

Formula (12) for S(a) provides more detail related to sample data and
their variability than is found in the fully asymptotic formula for each
method studied. Hence it may be closer to the true Z(a) for small samples,
Our research to this point indicates that this is so for the full systems
methods studied. But for 2SLS the conventional asymptotic formula appears
to do slightly better.

We began by analyzing the three main causes behind sampling exror
in estimation: small T, small CS of Z, large Z. It was reasoned that a

formula for S(a), with some relevance to the small sample case, should
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include these three causes., Our formula (12) does so for each of the
methods studied.

Should our Monte Carlo research continue to confirm that (12) is
a useful formula--and this research will be submitted for publication
when completed--the formula will then be tested on nonlinear models. Be-
cause of its ease of computation it may prove to be a useful tool along
with Monte Carlo testing for appraising the relative quality of different

estimators for both linear and nonlinear models,

The University of Western Ontario
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