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1. TINTRODUCTION

This article explores the theory, and then develops the computational
techniques, for converting Simultaneous Least Squares (SLS) [2] to a Malinvaud
Minimum Distance Estimator (MDSLS). It begins with a brief review of the linear
theory which leads by analogy to Professor Malinvaud's definition of a minimum

distance estimator [10, p. 325]. His definition broadens to cover the situation

where the parameters enter the estimation problem in a nonlinear form, Such non-
linearity can occur when a complete linear model of several simultaneous equations
is being estimated as a simultaneous operation; or when a single equation, or model
of several equations, is initially structurally nonlinear in parameters and vari-
ables [10, Chap. 9], [3]

One would’ expect the computational program to become more burdensome because
of the added generality in theoretical foundations. Also since Malinvaud states at
various points in [10] that his estimator is equivalent to the maximum likelihood
estimator if the disturbances are normal, one would expect MDSLS to be at least as
burdensome as the computations for Full Information Maximum Likelihood (FML), or
QFML when the disturbance properties are unknown [9, pp. 134-9]. It is demonstrated
below that MDSLS and QFML do indeed converge to the same estimates. Bur surpris-
ingly the computations for MDSLS appear to be shorter and easier to handle than the

outlines previously presented for SLS and FML in [11, [21, [51, [61, [81, [9], [111,

2. MALINVAUD'S DEFINITION OF A MINIMUM DISTANCE
ESTIMATOR

On pages 325-6 of [10] Malinvaud defines a minimum distance estimator (MDE)

as that § which minimizes the quadratic form

(1) (x-y)’ Q-1(x—y), where x is an N dimensional vector with covariance matrix
Qand Ex =y. ¥ =est y. y does not necessarily belong to a linear subspace, as it

does in the general linear model. He points out that '"no general theory of this
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method of estimation can be given," and that "There is no known optimal property

valid for ¥.

Only one result can be stated, and it is obvious; if x is normally distributed,

¥ is the maximum likelihood estimator."

But Malinvaud is looking for a procedure with less restrictive assumptions
than normality, and which is not confined to asymptotically optimal properties.

Malinvaud's definition is presumably drawn by analogy from the theory of
estimation of the general linear model.

(2) Y = X a + p, with T observations in a sample of observed data for
™1 Txk kx1  Txl

Y and X, Assume that
3) E pp’ =V is a full covariance matrix implying heteroscedasticity and all
possible orders of autocorrelation in . If p is normally distributed, then its

density or likelihood function is given by

N'_li-—l

%) L(u) = (2N = (det V)exp - 15 u'V-1L» .

Then the maximum likelihood estimator & of a will be those estimates which max L
or min ﬁ'V—1ﬁ, and is consequently an MDE.

If p is not assumed normal we find the best linear unbiased estimator a of a
and u of p using the Aitken Generalized Least Squares (GLS) approach, In this process
we assume p to exist in a non-Euclidian or non-orthogonal basis or space R(TxT) such
that Rp = €. Then € is assumed to exist in an Euclidian basis, such that it is

homoscedastic and not autocorrelated. Thus

-

(5) Eee’ = Gtz T ; (EC‘E)2 = E”C“ = JFT ct an Euclidian distance.

The corresponding non-Euclidian or generalized distance for p associated with € can

be taken as
1

©  GREW = el = o eV W .

|=
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'V "p can properly define a distance function or metric if V is a positive defi-
nite matrix. This is always so for V a covariance matrix,

Let u = est p and e = est £. Then the GLS procedure involves minimizing
-1 .2
(7) u’v p= e'e/cé , and hence is also a minimum distance estimator according

to Malinvaud's definition above.
Let us now refer to the generalized non-Euclidian distance function or metric

used by Malinvaud as

-1
u’V 'u, in the context of (2) above,

(8) MD =
T
= X vtS utu .
t,s=1 s

what the mathematical analysis tells us here is that for an optimal estimation
of a = est a, all squares and cross products of the estimated disturbances or residuals
must be put on a kind of equal footing, before minimization proceeds. For our esti-
mation to be proper, we must have E uu’ =V, as well as E a = a. A straight mini-
. . 2
mization of u’u would not achieve this, for it would attempt to make u - as small
2 .
as up , when in fact according to the probability structure of the system Wy possibly
should in general be larger than pp. Thus if in V we have Ve and Vs large, while
2
v and v  are small, we should expect u_~ and u u_to be large, and u_ and u u
PP P4 , t ts P P4
to be small. Then our minimization procedure, if it is faithfully to reflect the
. 2
probability structure V of the system, should encourage largeness in u, and uu
2 P . . .
relative to smallness in u_ and u uq. This is precisely what the minimum distance
estimator MD = min achieves for us.
. -1 tt ts .
For in V. we have v and v tending to be small, when v . and v, are large,
while vPP and qu tend to be large when vpp and qu are small, Thus ut2 and u U

R . . e s s . . 2 .
are given small weights in the minimization process, while up and upuq are given

large weights, so that the former pair will not be excessively diminished while the
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latter pairs will be strongly reduced. Through this process we obtain optimal
estimates of o and y jointly, and through repeated samples of data could make an
optimal estimate of V = Epp’,

The insight provided by the mathematical analysis of the ML and GLS methods
contains an irresistible logic. The analysis is rigorous when EY is explained in
a linear subspace. But when EY is explained by a nonlinear function of parameters
and variables, we can as yet only use the insight provided by the linear case.
Malinvaud's MDE applies this insight, From this vantage, Malinvaud's minimum
distance estimation formula generalized to include nonlinear subspaces for EY

seems eminently satisfactory.

3. A COMPLETE LINEAR MODEL OF AN ECONOMIC SYSTEM

Let such a model be represented by

9 BY + (4 + U =0=AX+1T
hxh hxT hxk kxT hxT

Y is an hxT matrix of T observations on h endogenous variables, Z represents k

predetermined variables, and U is the matrix of estimated disturbances.

ACh x (h+k)) = B,C ; X((h+k) x T)= [Z] H bii of B = -1, for i=l,...,h, represent-
ing normalization. h-g of the equations in (9) are identities with known parameters
and zero disturbances, so that only g of the equations are stochastic. True or

population parameters corresponding to B, C, A and U are B, F,c{ and JJ. The popu-

lation covariance matrix of disturbances is X, and

_wu’ _AXXA’
(10) § == =est T =="r— .

We make the following assumptions about the disturbances IJ in this model,
The disturbance for each equation has zero mean and constant variance (homoscedastic).
The contemporaneous covariance of disturbances for pairs of equations are constant

and may be non-zero. There is no auto- or serial-correlation among the disturbances.

Thus
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2 2
11 =0 5 . = . = *
an E py, E gy =05 5 E byphsp =044
’ E u‘ituit-r =0 s B uitp‘jt-r =0 H i’j=1""’g > t=1,°°"T 5 rﬂ,‘l,...,T .

The parameters which are to be estimated for this model are the true values
corresponding to A, U and S, The behavioural parameters of A which require esti-
mation are set out as a vector by two operations, Let the rows of A be represented

by a, and the columns by al (isl,...,h ; j=1,...,h+k). Then

[ 2,
) 1 2 h+k
(12) a=] 2l=1a"a" ... ]
vec A = (a1,a2,...,ah)
vec*A = vec A with all zeros and constants deleted = a’, a row vector

containing n elements (a1,a2,...,an).

For any econometric method requiring a non-singular X matrix it is neces-
sary for us to remove the identities from (9). This is because each identity pro-
duces a row and column of zeros in X, Removal is carried out by substituting
the identities into the stochastic equations, a process which preserves the infor-
mation in the identities and the endogenous character of all variables explained by

them, The following model demonstrates this process.

(13) C = b13Y + c11L + c.lO + u,
I-= b23Y + CZBY—T + 50 + u2
Y=C+I+G

The endogenous variables are C = Y, = consumer demand, I = Y2 = investment demand,

Ll

Y=Y GNP; the predetermined variables are L = Z1 = 1iquid assets of households,

3

G=2 government spending, Y_; = GNP lagged one period = Zj, and Z_ = 1.

2
VeckA =a” = (b3, 115 C1gs Pygs Cp30 Cyp)-

The model is over identified,
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Substituting the identity into (13) produces the reduced model.

(14) (b13-1)c + wa + b1BG +oe L+ e = 0

b c+(b23-1)1+b G+c, .Y +c2

23 23 23%-1 Z,+tu, =0

0 2

We do not normalize the reduced model, which is represented by
(15) BrYr + CrZ +U=0-= Arxr + U . Note that U is unchanged by the substi-

tution, and that

(by371)5 Byj 10 Bigr 05 S0

(16) Br ;

r
b23 s (b23 1) 0, Db

It
o
1

23° ©23° 20

If we let a’ = vec*A , we have each a_, = a__.(a), a function of the unre-
T r ri ri
stricted parameters a of the original model (9).
The explanation of the endogenous variables and data Yr (henceforth Y
without subscript) by the reduced model separates into a systematic component Ys

and a random component Us’ as we solve (15) for Y.

17) y=-8lcz-B'U=Y +U .
r r r S S

Here Us represents the total residuals of the complete model in simultaneous

solution, and Ys =EY = - Br CrZ = FrZ. We define (17) as the structural reduced

form (SRF) of the model, with SRF residuals US and covariance matrix SS .

RS B [ R Y BN R -1 =17
(18) SS = Br T Br = Br SBr est Br z Br = est ZS .

4, SLS AND ITS CONVERSION TO A MALINVAUD MINIMUM
ESTIMATOR

The principle of SLS is to find that parameter structure A and a which will
cause the vector of total residuals uS = vec”’ US to have a minimum Euclidian dis-

tance. Our distance function D is the square of this distance

‘ 2 2 2 2

(19) D =uu =u_+.. AU e ees .+usg1+. LU

’

=tr TS =tr 8 =tr U U [2].
S s S S
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In terms of (1) and Sec. 2 above, EY is explained in a nonlinear subspace
of the parameters a to be estimated. Thus EY = - B;1Crz is a nonlinear function

L4

of a. Also cov(vec Y) =cov y = cov(y - Ey) = cov W = E usus = Zs ® IT # IgT .
Hence using SLS to estimate (9) and (15) is analogous to using LS in the general
linear model, when GLS should be used for increased efficiency. Consequently

applying the principles of Sec. 2 above, we have for a generalized Malinvaud

distance (squared)

’ -1
(20) MD = uS(ZS ® IT) u = min, as an improved basis for estimation of
B, "'and Z .

Conversion of MD to Matrix Form for Convenient Computation

A useful symbolism in what follows is the following. Let A and B be matrices
of the same dimension, mxn, Define AOB = [aijbij] i=1,...,m ; j=1,...,n = simple

direct product of A and B, Define operator s in front of a matrix to mean to sum

up all elements of the matrix. Thus sC = Z cij' Then
i,
= b - 4 = d
(21) s(AoB) anb”+. "+aijb1j+" 4a_ b =vec A vec’ B =tr AB

From (20) we have

-1 s _ r -1 I‘
(22) MD = tr ZS ® ITuSuS = si(zs ® IT)otkys}

‘nt ‘.’lg 1] Y11 W qqe e Ugqpe s Uegr s Uegr)
=8 ;§1IT cces ;gg IT o ;S1T
%sg1
I.lng
= o‘l‘(u2”+...+u§1,r) F oeeees. + Ulg(us'l1usg'l+'"+us1TuSgT)
081 (usg1usﬂ+...+u u )+ ..... + crgg(u2 +..otUg o)
sgT s1T s ‘ sgl sgT
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T g P T ,
= X Z GlJ u.,u ., = X ut Zf1 ut
t=1 i, 3=l s sit sjt = s s s
- - L4 - -
(23) ™MD = tr U' bY 1U = tr (2 1U YU (since tr AB” = tr A'B) = tr & 1S' = sX 1 ogs’
s 8 s s s s s s s s

This result supports Professbr Dhrymes' conjecture in [6], p. 203, (15).

We note from (23) that while SLS is based on min tr S;, MDSLS (or MD for
short) involves min weighted sum of Sé, with each element of S; weighted by its
corresponding element in 2;1. This is in conformity with the theory of Section 2,

found in optimal estimation of the general linear model.

Tteration Formula for Min MD

The iteration formula proposed is the one used in [9], [8], [11, [2], [5].

It is essentially the Newton method using the vector of steepest descent,
-1

2
- OMD = - MD , adjusted by the inverse "curvature" matrix §L£El7 =MD -1 to
da a dada aa’
approach a geodesic line on the surface MD = MD(a). [1, pp. 641-2],
@4) o™ =" n a , h, = .75, h, =1.,0, h, =1.0, etc.
m Saaa 1T 772 T3 ?
Calculation of First Order Partials, MDa
From (23)
os’
OMD _ =1 S . a° _ ,
(25) Sa. s ZS o 'aa—. ; SS = (Y - FrZ) Y - FrZ)
i i
as; OF aF’
—_— = - — Z(Y - - Z
(26) da, aa. ( F Z) + e )= z” Sa
i i
OF OF < OF . A

T - o) ok - o = R+ {1
i i i

where () means to repeat the entire preceding matrix, Let
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(27) (ZZ'F; -zY’) = z(z'Fr' - ¥°) = E. Then

as; ap )
(28) 3;; = S5 ] g+ ( )
(29) F_=- 13;10r ; dF_ B (dB )B c - B, 1dc .
BFr -1
(30) Sa. = - Br F +— ; [2. p. 179].
i

Note that in a linear model, SEE and aar are constant matrices which are easy to

calculate and store, Thus, returning to (16),

ah aBr_[d 17.%% _fo 1 0 O
ab‘oo’éb13 0 0 0 O

13

It is now easy to put together the components of %%2 . We combine matrices
i

like (31) into (30), (30)and (27) into (28), (28) into (25).

Calculation of Second Order Partials, MD

aa
2
2 - a°s’
(32) %’%a— =s 231 o <—$— . From (28)
i i 3
2 2 '
o’s’ [ O°F OF
(33) da ga =;-aa ga E+ da. = gg\) + ()’
A NG N
OE BF;
(34 5= zz'-a—a— . Then from (30)
j j
2
d°F 3B_ _; (9B, d¢ \ _q OB, OF,

= =L - — =
() F=aE, TP 5 By 5—_ Pt Ba B %, .
1] J T ]

, OB OF . _q OB, OF

"B %W &, P T, e,
W J 1 1 J

N
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azpr .1[OB OF_ OB OF
(36) m = - Br Sa. 0. + Sa. Sa. (cf£, carter [5], p. 4).
i 3 i ] 3 i/

Combining (36), (34), (30) and (27) into (33), we are then able to complete (32),

and hence MD .
aa

The above formulas (25)-(36) represent all of the basic calculations needed
for the iteration program (24), They are all simple matrix operations, and have
the further advantage of iterating directly to a and A, without having to go through
ar or vec Fr first., These calculations seem to be easier and more direct than pre-

vious calculation programs outlined for SLS or FML.

Estimation of Zs _

Up to this point we have assumed that ZS is a known constant, In practice
this covariance structure is usually not known, and hence must be estimated. A
consistent prior estimate could be derived from the unrestricted reduced form
(URF) as
,

= _Su su _

(37) = 1 Y(I - Z'(ZZ')-1Z)Y'
su T T *

However a more accurate estimate of this matrix, given a small sample of data,
o 0 _o
would be derived from 2SLS estimates of the structure of the model, Br’ Cr’ Fr’

followed by use of the SRF, giving

o o, 7
Y - FrZ) Y - FrZ) _

(38) zs = T - Ss

[
% can then be updated after each iteration of MD, so that

]
m m, ’
(Y - F. Z) (¥ - Fr) m
(39) 22 = T = SS would be used as a constant in the iteration
1 1.
which provides acm+1), Am+1, B$+1, C2+ and F$+
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Value of Min MD as Check on Convergence1

At the conclusion of each iteration we have from (23)

-1 '
(40) ™MD = tr <Sz\) S:+1 T . Near convergence S: - S§+1, so that
-1
MD ~ tr /\smH s™17 = g7,
s s

A knowledge of this minimum value (gT) of MD can be useful as a check on progress

and proximity of convergence during computations.

5. COMPARISON OF MDSLS TO CLOSELY REIATED METHODS

(a) SLS. As observed above, and in [6], SLS does not make sufficient use of the
probability structure of the model. It works on min trace of Ss, while MD mini-
mizes the sum of all of Ss’ after appropriately weighting each element with the
probability structure.

Of further interest is the feature that while SLS for small samples of
data is not invariant to changes in units and scale of the endogenous variables,

MD is invariant to such changes. This checks using the approach of [4].

(b) LWV, The method of Least Weighted Variance was discovered by Professors

Ronald J. and Thomas H, Wonmnacott [12, pp. 365 ff] through geometrical analysis
on single equation estimation. It involves minimizing the sum of the squares
of the SRF residuals related to the endogenous variables in a single equation
of a complete model, with each residual appropriately weighted. The weight
applied to each residual is the reciprocal of the variance of the URF residual

corresponding to the SRF residual,

Tf the concept of LWV is carried over to a complete model and translated

into a full systems estimator, it becomes a close variant of MDSLS. In terms

1I am indebted to Dr. R, A, L. Carter for this suggestion,



Y]

-12-
of (23) above it becomes as follows. If M is a square matrix let DM be the

diagonal matrix formed when all but the diagonal elements of M are converted

to zeros. Thus

&1]1 0 .....0 i

0 m.....0
(41) M = | 22

_0 o .....mnrﬂ

Then the LWV method is

A -1 . _ P
(42) LWV(a) =g (gzs;> o SS = min,

os* 2
LWV _ r V1 s . OTLWV_ _
(43) aai = s G)ZSU) o aai 3 aaiaa <DZ ) Wl j

It might be found desirable to modify LWV to use

-1 ‘
(44) LWV = s<:DSZFi) o Sg' , thereby improving the weighting matrix with
each iteration,

c FML

This method ([9], [8], [1], [2]) involves minimizing the determinant
(45) d(a) = ISSI. This would appear to be a method quite different from

MD as summarized in (23). If however we make a monotonic transformation of

d to In(d) = Lb(a), the difference begins to close.

dls | N )
(46) LD=1n|S[;dLD= S =vecS1vec'dS =sS10dS = min .
s ISSl s s s s

38 o8’
OLD =1 s 1 -1 s
—— = 0O — = — —
(47) da, - 5 5 Sa, T°% 5S¢ © da,
1 1 e

Thus rather surprisingly the first order partial derivatives of ID are quite
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close to those of MD. Recalling (25), (39) and (40), these differ in a

factor of-% , and in the use of the current value of (SZ) in (47) compared

-1
m-1
to the value of (%S /) from the previous iteration in (39). They become
effectively the same, as we near convergence.

The second order partials appear at first sight to differ more substanti-~

ally,
. 2..
(48) 21D =-1lsgT §E§ s! o EEE +1ssTo % %
baiéaj T s Baj s oa; T s Baiéaj

In the iteration formula (24) the factor % in (47) and (48) would dis-
appear, The second term in (48) is quite similar to the (32), (39) procedure,
again with the difference between the use of ( )—] in (48) and (m 1)

(32), (39). As in (47), this latter difference will vanish as we near convergence,
But the first term in (48) appears to be more formlgable. However we note from
S

(47) that, as we near convergence, %&2 -+ 0, and so 3;- - 0. Hence in (48) both
: .

os oS’

8 and —= - 0 with convergence, so that the first term in (48) gradually

oa, da,
j i
disappears.

We conclude that the values a which bring LD to its lowest minimum do

the same for MD. For ID_ — MD /T and ID - MD /T, as a" - a. Hence
a a aa aa

a(QFML) = a(MDSLS).

6. CONCLUSIONS

By analogy from the mathematical analysis of the general linear equation,
it appears that on theoretical grounds MDSLS is to be preferred to SLS. This re-
sult is also confirmed by the finding that maximum likelihood applied to a

complete linear model is equivalent to MDSLS, although the optimal properties
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of FML are only known for the asymptotic situation,
Wwhen iterations are made from small samples, we are still not sure where

1 17

we stand, To invert S =B_A XX‘A’ B we must have S and B_ of rank g, with
s r r r'r s r

X of rank at least g, so that we must have T > g, and preferably T > g + k, in
order for MDSLS to proceed, This favours the removal of identities for SLS,
where on other grounds it is not required. Also by analogy with the single equa-
tion theory, S presumably requires a degrees of freedem (df) correction such as

td
S = Uy , to provide an unbaised estimation of X. Again by analogy, p could equal

the number of parameters to be estimated in the minimization, There are n para-
meters in a and ES%Fll in ¥, Hence the df in MD could be T - n =~ %g(g+1), while
in SLS df could be T-n,

Since sample error dispersion widens as df or effective sample size falls,
SLS might have a practical advantage over MD and FML in small sample operations,
with given T.

From a computational point of view the procedure outlined above for MD
appears to be simpler than previous programs for SLS and FML. Hence SLS could be

I. For FML we would use the

I

revised to use (23), (25) and (32) above with Zs

same program as for MD,

Finally the MD procedure provides a convenient format for computing LWV for

a full system,
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