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MINIMUM SECOND MOMENT ESTIMATION WITH STMULTANEOUS
%
EQUATION SYSTEMS

by

A. L, Nagar and R, A. L. Carter

1. Introduction

The minimum second moment (MSM) estimator was defined by Nagar [1]
to be the k class estimator which minimizes the determinant of the matrix
of second moments about the parameters, This is achieved by the appro-
priate selection of a parameter u, where k =1 +'% and T is the sample size.
However, since u contains population information it is necessary, in
practise, to estimate it using two stage least squares (2SLS). This note
discusses the distribution of the resulting # for the case where there is
only one endogenous variable on the right-hand side of the equation to be
estimated, We use Sawa's [3] results to establish the range of x for which
the moments of the k class estimators exist, If these moments do not exist
MSM is undefined and cannot be employed, We give a straightforward way of
obtaining a non-stochastic approximation to the optimum xn, Finally we give
some Monte Carlo results on the small sample distribution of # and on the

performance of MSM using the approximate optimum x,

2. Notation and Assumptions

We write the linear simultaneous equation system as
a ‘YWF +XB =T

where Yw is a T x M matrix of T observations on M endogenous variables,

*
We would like to thank T. H. Wonnacott for helpful discussion and
the Canada Council for financial assistance, Mrs. Johnson assisted with the
computations reported on in section 6. Residual errors are ours exclusively.
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X is a T x K matrix of T observations on K exogenous variables, U is a
T x M matrix of unobservable random disturbances, I' and B are, respectively,
M x M and K x M matrices of unknown parameters.
We make the following assﬁmptions:
(A.1) T is non-singular, Therefore we can write the reduced form
of (1) as

(2) Y =XI +V, where I = - BT’1 and V = UI‘"1
w w w w w

(A.2) The T rows of U are independent random drawings from an M
variate normal distribution with means zero and a positive
definite covariance matrix Z, That is: % EU'U = £ and
U . N(0,Z).

(A.3) X is a non-stochastic matrix of rank K < T,

Assumption (A.2) implies

3) wa ~ N(0,Q) where Q = 1""'121‘-1

We write the equation whose coefficients are to be estimated as

(%) Y=Yy1+X1B+u

where y and ¥ are endogenous vectors, X. is a T x K submatrix of X, u is

1

a column of random normal disturbances, y is a scalar parameter and B is

a K1 x 1 vector of parameters, The entities in (4) are derived from those

in (1) after the imposition of identifying restrictions and normalization.

There are K2 exogenous variables excluded from equation (4) so K = K1 + KZ'
We will write the reduced form equations of the two endogenous vari-

ables in (4) as

(5) y = Xm 4+ v and

(6) v, = Xﬂ1'+ KK
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(A.4) Equation (4) is over-identified so that v - ;71\/ = u,

3. The Optimum Value of n

The k class estimates c and b of y and B are given by

' ; =-1 ' '

7
- -k
@ ¢ vy T vy 9K b T
= ! ’ ! y
b X X% X
where v, =y, - X(X'X)'1X'y1; the least squares estimate of 31 and

= n
(8) k-'l+T

The MSM value of n is ([1], p. 580)

tr(Q C‘l)

9) ‘K.—K-Z(m-l-K.l)-.?t-T:-RQ—C—Z-)'
where m = the number of right hand endogenous variables (1 in our case)

. _t -1

y,y, ¥.X -

Q= 171 T w:i.t:hy.l=‘X1'r.l
I_ 4
Xy %%

(@]
1]
o
]
(o]



A
We can assume, without loss of generality, that *-% V V = I,

Then, for m = 1 we have:

Using the identifying restriction (A.4) we have:

,-. -
1 Ev1(v-vlv) Y
q_ T = .
0 0

Also,
2 1 leG o @ -
o= 3 Eu'u T E(v V1Y) (v - v]y)
2
=1+y ,
so that
2
1y 0
c, =—
2 .
T ™ lo o
Therefore,
1 0
1
C, =—7
2 .
2 1w o o

TWE can always transform the model to make Q = I, Since Z is posi-
tive definite, we can find a non-singular matrix ¥ such that yy' = ZTT.
Then define P = I'y’, Y Y Pand T = -1P* The transformed model can
then be written as Y F* + XB =u with (¢ = %’ Z P*-1 = I, ©Note that the

transformation leaves X1B, u and the identifying restrictions unaffected



Now if we write

Q=17 Va2

Vo1 V22

then
tr QC, = w ( ! ‘
= 5\ s
2 11 \1 +y
v
tr QC.l = w11 : )
1T+ vy
and
(0) wun=a- 17 where a = K - 2K1 - 5 which is constant for a

Y
given model,

4, The Distribution of #

In practice y must be estimated, say by 2SLS, in order to evaluate
(10) which becomes ne=a- %5 . Asymptotically ; is normally distributed with

~ Y A
mean y and variance cz(y). The density function for y is

1 . .
1 -%(v - v’ (v)]
-1 .
o (V)2

Then the density function for # is

£(y) =

N —

- 2

3 1 ~ 2.~
5 1-31@@-1)  -vy|/o )
an  £@ =——— (a-d) Ze{ ol ] }
ZO'(Y)'\/ETT

where ¢ is a scalar whose purpose is to ensure

fa £GE A =1 .

-0
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The range of yis - @< Yy £ @ so that the range of # is - = < "< a,

The density function (1) is somewhat cumbersome, It may be more use-
ful, therefore, to consider the asymptotic confidence limits for n. We will
show the 95% confidence limits but other limits are easily found. Asymptoti-

cally, we know that

Pr(y, < ¥sv,) =.95 when y =y~ 1.9 c(¥)

Y, =Y + 1,96 U(;).

Therefore,
~2 2 1 2
Pr(y s v,) =Pr(;/_— 7 <Y,)
A |
=Pr(n < a - _7)
Y2
and

(12) 7Pr(un < a - 1 ~ ;) = .95
[y + 1.96 a(y)]

Sawa [3] has shown that the moments of the k class estimator do not
s 2 .
exist for values of k greater than one, Under these circumstances, of course,

the MSM estimator does not exist, 1In order to ensure that k < 1 we must have

2Sawa's finding also has implications for the unbiased k class (UBK)
estimator which is obtained by setting n =K, - m - 1 ([3], p. 579). Since

K2 and m are both positive integers, and since we must have u < 0 for UBK to

exist, this estimator is restricted to the cases where:

i) K2 = m and equation in question is just identified;
ii) Kz-m =1 so that n = 0 and UBK is 28LS.

In case (i) above UBK is a good substitute for ZSLS which does not have finite
moments in the just identified case.
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# < 0. Therefore, we are interested in knowing under what circumstances
the right side of the inequality in (12) is, or is not, zero (or negative).

We can identify two cases.

i) a <0 or 1(2-K.l < 5, 1In this case we can see by (10) that

# is certainly negative and we can use the MSM estimator

with confidence.

ii) a > 0. Since a is an integer number this is equivalent to

az1 or KZ-K1 > 6, In this case, which is more likely

with a large model, we must rely on the term [y + 1.96 G(;)]
to produce a zero (or negative) limit in (12), 1If this term

is small enough, i.e., somewhat less than 1, we would have
1

~.2
[y + 1.96 a(y)]
both y and U(?) are small, or if y is negative and about the

> a, The term in question will be small if;

same size as o(y). Clearly there is a large set of possi-
bilities outside these two conditions so that the use of MSM

with a positive a is not recommended.

5. A Non-Stochastic Approximation
to #n

The MSM estimator was derived under the assumption that u 1is non stochastic.
The previous section shows that, under some conditions we could obtain esti-
mates of u which would lead to MSM being undefined. In addition, the approxi-
mate small sample standard errors of the MSM estimates [1] also depend upon u
being non stochastic., Preliminary Monte Carlo evidence suggests that the use
of a stochastic # can lead to occasional computed values for the small sample

MSM standard errors that are much worse estimates of the standard deviation
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of the sampling distribution than are the computed asymptotic standard
errors. For these reasons we were induced to seek a non-stochastic approxi-
mation to #.

From (10) we see that, since a is always known once the model has
been specified, the stochastic nature of #n arises from the necessity to

estimate yz. However, if y were large enough the term-lz would be small and
Y

could safely be ignored, The size of y depends upon the units in which ¥y
is measured. Therefore, for a < 0, we obtain a non-stochastic.approximation
by scaling the variable ¥y by 10°" and letting # = a, The choice of the

scale factor n will be influenced by the sample size (after scaling 17 should
Y

1 . .
be about the same size as T) and the researcher's prior notions about the

size of v.

6. Monte Carlo Results

The population used in the Monte Carlo experiments was:
y, = .7 Yy - .8 X5 - .7 X, + U

¥, = - 2.5 ¥y - 1.5%x, +1.0x, +u

3 A
] [1.49 1,80
Z=gE v’ =
1.80 7.25
" 1.0 0
Q=7 EVYV=
o 1.0
2000 0 0 0
xx =] © 2000 0 0
0 0 2000 0

0 0 0 2000
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One hundred samples of size 20 were generated from the reduced form using
sets of disturbances V which were random drawings from a bivariate normal
distribution with zero means and covariance (). The 20 x 4 matrix X of
exogenous data is the first four columns of a 20 x 20 orthogonalized ma-
trix of random drawings from a uniform distribution, X is constant over
the 100 samples. Each x; has zero mean,

Each sample was used to compute three kinds of MSM estimates using
three different versions of n; population # = a - 17, a 2SLS estimate of

A 1 . ¥ -
w=u=a-7_5 and a non-stochastic approximation to u = ® = a with the

right-hand ezdogenous variable multiplied by 10-1. The standard errors of

each set of coefficient estimates were computed by both the asymptotic for-

mula and by Nagar's finite sample formula [1]. This procedure produces

frequency distributions of coefficient estimates, and standard error esti-

mates, by each of the three MSM estimators and a frequency distribution of Ao
The frequency distribution of # may give some hint as to the form

of the finite sample distribution of this statistic, Table 1 gives summary

statistics of the empirical distribution

Table 1

Frequency Distribution of #: Summary Statistics

Equation 1 Equation 2

Population Value -7.04 -5.16
Minimum -7.84 -5.27
Max imum -6.36 -5,10
Mean -7.06 -5.16
Standard Deviation .266 .0338
Skewness - 140 - ,624

Kurtosis 3.16 3.40
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The quality of # from cquation 2 is somewhat better than that from
equation 1, For the second equation the mean of the frequency distribution
is equal to the population value and the dispersion is small, Of course Y
for equation 2 is -2,5 compared to a vy of .7 for equation 1., Therefore, the

A 1 . .
portion of u which is stochastic, 735 1s much smaller for equation 2 than for
Y
equation 1, For both equations the range of # is entirely negative so the

MSM estimator exists for both cases,

The square of the skewness coefficient and the kurtosis coefficient
together define which one of Pearson's curves best describes our empirical
distribution, Reference to a chart by Pearson and Hartley ([2], p.234) shows
that # for equation 2 follows a type I curve. Type I curves have finite
upper and lower bounds. 7 has a finite upper bound but an infinite lower bound,
Type IV curves have infinite upper and lower bounds., The result for equation
2 is, therefore, more credible than that for equation 1.

Pearson and Hartley also provide a table giving upper 5% points under

Pearson curves ([2], p.230) for various skewness and kurtosis values, Inspec-

Y
~

n -
tion of this table shows that for equation 1 Pr(}—?;—ﬁ < 1.64) = ,95 and for
%

n o= Ua
equation 2 Pr< - %< 1.8;) = ,95, 1If we substitute the population values

~

of n for pa and the standard deviation of the frequency distribution for Tn we
obtain for equation 1 Pr(i < - 6,61) = .95 and Pr(# < -5.10) =.95 for equation
2. We, of course, would expect the empirical confidence limit to be negative
because a = -5 for both equations of this model,

In Table 2 we present the empirical bias and empirical root mean

square error for MSM using the three alternate methods of deriving R,
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Table 2

Performance of MSM with Alternative yu Values

Population #_by 2SLS #=K-2K-5
Coefficient | Bias RMSE Bias RMSE Bias RMSE
Yy = o7 -.00201 . 0452 -.00449 .0461 -,00122 L0454
B1 == .8 -.000214 ,0443 .00160 .0448 -.000784 0444
BZ =- .7 .00424 .0351 .00580 .0354 .00374 .0352
y1 =-2,5 L0677 .247 .0678 .247 .0654 .247
53 =-1.5 .0306 .145 .0306 145 .0297 145
34 = 1.0 -.,0165 14 -.0165 14 -.0159 14

Of course the three versions of MSM we deal with are the same asymptoti-
cally, The figures in Table 2 suggest that for finite samples the use of our
non-stochastic approximation to x (with appropriate scaling of the right hand
endogenous variable) gives estimates that are better than those obtained when
# is estimated by 2SLS; every bias is smaller and 3 out of 6 RMSE values are
smaller for 7 than for #. Indeed, in terms of bias % outperforms even population
n for every parameter, For the second equation all methods were judged equally
good on the basis of RMSE.3 In general we would expect that where there are
significant differences in the performances of the three MSM versions # will
give better estimates than # but where there are only small differences in per-
formance the ranking is not clear,

When # (by 2SLS) was used to compute the small sample MSM standard errors

the results were observed to become unstable for cases where # had a fairly

3 .o
We do not consider it useful to report results to more than 3 signifi-
cant digits, '
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large variance. For instance, for equation 1, whose % (from Table 1) was
widely dispersed, we obtained finite MSM standard errors some 50 times as
large as the average in 1 case out of 100 for each coefficient, This did
not occur with equation 2, for which # had a very small variance, nor did
it occur when a non-stochastic # is used, That is, this problem was solved

by the employment of our approximation 3

7. Conclusion

We conclude that the optimum value of k, when there is one endo-
genous variable on the right hand side, is given by

K, - K, =5

2 1 s -
1T+ T ; if K2 K1 =5, y_I to be scaled.

1; if K,Z > 5,

(13) k
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