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LEAST DISTANCE ESTIMATORS:
A GEOMETRIC INTERPRETATION

Least distance is an important concept in economics, because it is
the principle underlying any least squares regression; in addition it is
the basic concept used in some of the more complicated simultaneous equa-
tion techniques such as two stage least squares. Unfortunately, however,
least distance can only be fully appreciated with some knowledge of vector
geometry. Although this has appeared from time to time in enticing form in
various econometric sources, including Malinvaud's text [6], these presen-
tations have typically been addressed to mathematicians; consequently the
economist with a good working knowledge of econometrics is often left with
his appetite aroused but unsatisfied. This introduction to Qector geometry
and its applications is designed for such an audience, namely those who have
had, say, a graduate course in econometrics, using some matrix algebra. 1In
order to make this argument as brief and simple as possible, it has been
necessary to forego a number of proofs; but these can be consulted else-
where [7],[8]. The methods described geometrically include least squares,
instrumental variables, generalized least squares, and two stage least
squares--including a new heuristic interpretation of this technique. Finally,
for the econometrician per se, the argument is extended in the last section
to describe a new least distance limited information technique which is
then compared with the other least distance estimators suggested by Brown [11,

Malinvaud [6], and Zellner [9].

1Wé should like to thank Robin Carter and T. M. Brown for many helpful
comments,
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Since vector geometry requires breaking away from the traditional
frame of reference, and into an entirely new and unfamiliar one, we il-
lustrate with the simplest possible example: the regression

y=px t+e

The usual assumptionsl.are made about the error term e. In addition, to
keep the geometry simple, note that we assume prior knowledge that the
intercept term in this model is zero; also suppose that to estimate B
there is a sample of only two observations of x and y as shown in Figure

1(a). The sample data are typically displayed in vector notation in the

form:
y=fx+8 )
i.e.,
11| = p|24] + &,
(2)
10 13]  |é,
—
- ~ Y
or y = y *t e (3)

where y represents the fitted value of y. The problem is to select é
so as to minimize, in some sense, the residuals él and éz. Specifically,

if the familiar least squares criterion is used, we

minimize éi + ég %)

Figure 1(b) displays exactly this same information in alternative
vector geometry. Whereas in (a) each observation is plotted in a

“yariable" space (i.e., this space is defined by variables on the axes),

1 .. . S
I.e., e has zero mean, constant finite variance, and is independent
of x and its own previous values.
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Figure 1
The simplest possible regression,using (a)
standard geometry, and (b) vector geometry

in (b) each variable is plotted in an "observation" space. Accordingly,
whereas a point in (a) represents a row in (2), a point in (b) represents
a cclumn.

An important warning is in order. In any practical statistical
provlem the uumber of observations will exceed the number of variables;
hence (b) will be a higher-dimensioned space than (a). (Qur only motive
for keeping (b) a two-dimensional space is to introduce these principles

with the simplest possible geometry.l)

1Limiting this analysis to two sample observations in turn requires
the assumption rhat the intercept is knowi to be zero; otherwise estima-
tion would involve zero degrees of freedow (two sample values to estimate
two paramcters).
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Since any point in Figure (b) is a vector (i.e., a column in equa-
tion (2)), it may be represented either as a point in this diagram or as
an arrow. An arrow will often be convenient, since it can be shifted,
provided of course that its essential characteristics of length and direc-
tion are maintained. Thus the vector ? is shown shifted away from the
origin at the top of this figure. On the other hand, if a vector is
represented by a point, it cannot of course be shifted.

Comparing (2) and (3) we can see that the problem of selecting é
can be viewed as a problem of selecting the fitted ;Z’ where )?= gx

R . . . 1
is a vector in the line from the origin generated by X

What is least squares?

->
. £, 2
Intuitively, it would be desirable to select a y in” X "as close as
5 A
possible'" to the observed 37), i.e., a ¥ that best "fits" the observed ?

This is shown in (b) as the result of a perpendicular (or othogonal) pro-
jection of S? onto X. (Note that any other fitted vector in the ¥ line
(e.g., g:?,would not be as close to ?.) The difference between the ob-

s x
served and fitted '3'7) vectors, (?-y), is the residual e, shown in (b) as the

1You can confirm geometrically that 2% = 24|l = |48 is a vector
13 26
lying in the line generated by 2, with twice the length of X. Similarly

13
length of 2.

5[24]1'.3 a vector lying in the line generated by X, with 6 times the

2More specifically, in the line generated by 4 (hereafter referred

to as the "¥ line'").
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vector joiningl ? to ; % is also shown shifted to the origin, with its

two coordinates confirmed as the two residual terms shown in figure 1l(a).
Since the perpendicular projection of § onto X minimizes the length

of & (designated as ||é]|), it will also minimize the squared length ||§| 2.

But from the left hand side of (b) we confirm that this may be expressed,

according to the Pythagorean theorem, as

||§" = é‘i + éi = sum of squared residuals

which is recognized in (4) to be what we minimize in applying least squares.

Thus the vector geometry interpretation of least squares is the perpendicular

1An example will confirm that in vector geometry, addition of two
vectors (@ + B) is defined by "adding one to the other," thus

b (55) addition 2] + 3] = [5]V
. A E

while subtraction (a - b) is defined by joining B to 2 thus

. » r1v
G.4) _ Subtraction lz] - 131 = [.1:\
7. %% —— e eet—

. 4 1 3
(" l 3) e
./ \a®
¥

b (3,0
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projection of ¥ onto X; accordingly least squares is the "least distance"
estimator.1

It is now appropriate to interpret é, which (according to our fourth
footnote) is the length. of ? relative to the length of X, or about .5 in
our example. The other more familiar interpretation of B is the slope of
the estimated regression line in figure (a); here again its value of
approximately .5 is confirmed.

Finally, this vector geometry clarifies a property that is generally
much more difficult to grasp using matrix algebra alone: the orthogonality

(perpendicularity) of the residual vector Z and the regressor X.

What is correlation?

The higher the correlation of X and ¥, the better the regression
fit and the smaller the length of 3; or the tighter the angle 6 between
X and ;. A standard measure of closeness of two vectors is cos 8, which
can be shown to be r, the correlation of the two variables. Thus

£ = cos = length of 3 (5)
length of ¥ 5
-

In the limit, if ?'lies in the 2’1ine, then y and ¥ coincide, and r =cos
g=1; on the other hand, if ? is perpendicular to §i i.e., if

vy % (6)

then the_l_projection (read "perpendicular projection') of ? onto X

-

is at the origin, hence the numerator of (5) disappears, and r = 0.

1Not to be confused with the "least lines" estimator,(MAD), which involves
minimizing the absolute deviations

& |+ 18, ]
Note that this would have a clear distance interpretation (i.e., minimize
the combined lengths of él and éz) in figure (a), but not in (b).



1.

(£

When does least squares work best?

The answer is: 'when the linear model holds, with the standard
assumptions about the population error term1 e." These assumptions can
be consulted in any standard text. But for our purposes we concéntrate
on three: the components s €, etc., of the true error vector e are
assumed to

have an expected value of zero and constant

finite variance; (7)
be uncorrelated with each other; and (8)
be statistically independent of X 9)

In Figure 1 we displayed the estimation technique; now in Figure 2
it is appropriate to show in vector geometry what the underlying population
is assumed to look like. The assumptions above imply that the distribution
of € can be shown as the left hand sphere in this diagram; this represents
a boundless cloud, thick at the center, but thinning out in the distance.
This "ellipsoid of concentration" delimits most of the possible values of e,
some of which are illustrated as the dotted vectors. We confirm that the
ellipsoid is centered on the origin because its expected value is zero

(assumption (7)),and it is a sphere by virtue of the other two assumptions.

Figure 2

Least Squares as an unbiased, consistent estimator

1Not to be confused with the estimated error &, which hereafter we call
the "residual'.
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A typical error vector that we suppose this population has generated
is shown as the solid arrow e within this sphere of concentration. Its cor-
relation with X happens to be slightly positive; but note that some of the
other possible (dotted) errors would be negatively correlated with X, SO
that averaged over all possible errors, the correlation of x and e is zero.

Our population model is1
y=px +¢ (10)
Taking expectations, and noting (7),
E@G) = gx (11)

i.e., E(y) lies in the X line, as shown in Figure 2. Moreover, from (10)

any observed §'will be this expected value (Biﬁ plus the error term e; the
specific ; which we observe in this case is accordingly shown in this figure.
More generally, the distribution of all possible ?'values is derived by
shifting the spherical distribution of e from the origin to Bf.

Now consider the statistician who cannot observe e, but only ; and X.
Applying least squares he estimates é by an orthogonal projection of ; onto X.
In this case (because of the positive correlation of e and ¥) he would over-
estimate B; but this procedure is just as likely to underestimate. Hence,
on average é; equals 52, that is, the least squares é is an unbiased esti-

mator of B.

When does least squares not work?

The answer is "when some of the assumptions (7), (8), or (9) do: not

hold." For example:

1recalling our prior knowledge that the usual intercept term ()
is zero.



-9-

(a) If e and X are positively correlated, violating assumption (9);

(we continue to assume that (7) and (8) hold). The most common economic
example of this occurs in simultaneous equations, where any endogenous vari-
able appearing on the right-hand side of an equation is correlated with the
error.

The positive (population) correlation between X and e is shown in
Figure 3; for a given X, the distribution of & will tend to be in the same
direction. In other words, as the dotted arrows show, it is now more likely
than not that in any specific sample the model will generate a positively

- -
correlated x and e.

Figure 3

Least Squares as a biased, incon-
. . . -3
sistent estimator if e and x are correlated

1While we concentrate on the vector geometry of this problem, those who
wish to refer to an equivalent interpretation using standard geometry may

consult discussion of the simplest two-equation consumption/income model in [8],

pp. 155-159. Although the models are identical, the notation differs: the
variables y. v, z ard ¢ in Figure 3 correspond, respectively, to C, Y, I
and e in [8].
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As before, the distribution of ? is defined by shifting the spherical
distribution of e from the origin to px, as shown. Suppose the sample yields
the specific e, hence the observed ¥, as shown. A least squares_l_ projection
of ? onto X would in this case yield an estimated é which is too'large.
Moreover, most such estimates will also be too large, because of the "off-
center' or skewed disposition of the errors (i.e., due to the population
correlation of X and Eb. Accordingly a least-squares estimator provides
a biased estimator. Moreover, increasing sample size does not cure this
problem; hence least squares is also inconsistent.

How can a co;sistent estimator of B be obtained? The answer is the

skewed projection of ; onto X in the direction of the axis of the error,

as shown in Figure 4. This sounds difficult, because the only projection
we have developed so .far is a perpendicular one. However
this is possible if we can find another variable z (shown in Figure &4
and called an "instrumental variable') which is perpendicular to the axis
of the error, i.e., which on average has a zero correlation with»g. Then
a perpendicular projection onto this variable will achieve the desired
result, as shown in Figure 4. |
First, both variables ? and X are_l_ projected onto z, yielding the
fitted vectors § and %. Then é is simply the length of § relative to §}
or, by the similarity of triangles, the length of éf relative to X. While
in this particular sample we underestimate B, we were just as likely to
overestimate. Hence this "instrumental variable“ (IV) technique has pro-
vided an unbiased estimator. Unfortunately, in higher-dimension cases

IV does not provide exact unbiasedness, but only asymptotic unbiasedness
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and consistency.1

'kL

4

Q

\E\ é?)ih.uhﬁwmwmbflmé¢ﬂ£L

s
A

Figure &4

How an instrumental variable gives a consistent

. - -
estimator when e and x are correlated

1Although the geometry does give a clear intuitive idea of what is
going on, it glosses over another, even more subtle complication that
occurs in this case. As A. L. Nagar has pointed out, ([3], Chapter 3),
in such an exactly-identified case, the two-stage least squares estimator
(or equivalently, the IV estimator) in Figure 4 has an infinite-variance
Cauchy distribution, with no defined mean. Unbiasedness in this case can
therefore not be defined in the usual sense; instead we must talk about
median-unbiasedness. (But this raised no great problem, since the (Cauchy)
distribution of the estimator is symmetric).

(The equivalence of IV and two-stage least squares in the exactly-

identified case, alluded to above, is shown below in Figure 7).
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Finally, note that IV is also a least distance projection, but in
a very different sense: it is least distance to the instrumental variable,

but not to the regressor.

(b) Serial correlation. In this case assumption (8) is violated,
but assumptions (7) and (9) hold: in particular the error e has zero mean
and is independent of X. Thus its distribution can be shown before we have
any information on X; (in this respect it is similar to the error in
Figure 2, but quite different from the error in Figufe 3, which could not
be shown without first having knowledge of ib.

With sefial correlation the error configuration is the tilted
ellipse shown around the origin in Figure 5. It is centered on the origin
because the expected value of e is zero; it is tilted in this way because
of the tendency for successive values of e to be alike, i.e., a positive

first value of e is likely to be followed by a positive second value; or

Figure 5

Estimation when there is serial correlation
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a negative first value is likely to be followed by another negative value.
Hence the probability is concentrated to the northeast and southwest of
the origin.1

Now suppose X is as shown, with the distribution of ¥ accordingly
centered on E(§5 = BE; A least squares perpendicular projection will be
unbiased (i.e., as likely to yield an overestimate of B as an underestimate).
In fact, a projection in any direction will be unbiased; thus the problem is
not bias, but efficiency, i.e., the variance of the estimator. It is clear
that least squares is not the most efficient estimator, since it yields
estimates within the range2 ab, while projection at a more appropriate
angle would yield estimates in the narrower range cd. The latter is the
geometric interpretation of generalized least squares (GLS). Or, more
precisely, the equivalent Aitken transformation involves "stretching' the
vector space so that the distribution of ; becomes spherical, after which
ordinary least squares (OLS) can be applied with maximum efficiency.

What is GLS worth? Noting that cd is almost as wide as ab, we
might be skeptical that the Aitken transformation would provide much im-
provement over OLS. This has been noted in a number of other cases as well;
in particular, if X were approximately perpendicular to the axis of e
(like, say, E"), then the perpendicular OLS projection could not be im-

proved upon. Thus the advantage of GLS depends, among other things, on

1A negative serial correlation would, of course, result in an ellipse
tilted in the other direction (punning northwest and southeast).

2More precisely, o estimates of B generated by the great majority
of ? values (i.e., those y values falling within the ellipse) will fall
within the range ab.
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the configuration of X. (The importance of the X configuration is a general
theme that runs through time series analysis; in particular note how the
Durbin-Watson test statistic depends on it).

GLS will also provide little improvement over OLS if p, the co-
efficient of serial correlation,1 is very small. As this approaches zero,
the elliptical distribution of e approaches the spherical distribution of
Figure 2, and OLS becomes a special case of GLS, and as such is the minimum
variance estimator. At the other extreme as p approaches 1, the distri-
bution of e tends to collapse on its major axis; in this case the geometry
confirms that GLS will have very small variance relative to OLS, and hence
provides a big improvement. To sum up: the smaller the coefficient of
serial correlation, the smaller the advantage of GLS.

All this assumes that precise and accurate prior information on p
exists.2 If it does not, and p must somchow be estimated, then it is no
longer clcar that GLS will be superior to OLS; in fact, if the estimation
of p is subject to substantial error, GLS may be inferior. The crucial
importance of prior knowledge in good estimation is a general principle
that is frequently encountered. As another example, instrumental variable
estimation in Figure 4 requires the prior knowledge that Z is uncorrelated
with e. If this prior knowledge is accurate, exploiting it improves the

estimator; if it is false, the estimator may be worse than OLS.

ll.e., the correlation of e, (the error at any time t) with its

previous value e .1

21t also assumes of course that GLS is correctly applied. If it is
not, then the result may be worse than OLS; see [4].
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Least Squares in Multiple Regression

We now return to the standard assumptions of the general linear
model (i.e., spherical and independent errors, etc.), in order to now

consider the problem of regressing ? on two regressors Ei and Qé.' This

problem is shown in three dimensions in Figure 6. The two vectors Ei and
QE generate a plane.1 (Note that any vector not in this plane, such as
;, is designated with a shaded arrowhead, while any vector in the plane,
such as Ei or Qé, is designated with an empty arrowhead.) Least squares
estimation remains the same as in the earlier simple regression case:

the fitted value § is derived by perpendicular projection of ? onto the

(Ei, Eé) plane, with OLS again being a '"'least-distance estimator'.

Figure 6

Multiple OLS Regression

1unless they are collinear--i.e., unless Qi and Qé lie on the same line

] bnd . .
from the origin. In such circumstances, y cannot be estimated as a unique

function of ¥, and X,, as will become evident geometrically.

1 2
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Since y lies in the (Qi, Qé) plane, it can be expressed as a linear

combination of Qi and ;é as followsl:

N

= PR TR % 12)

!

<ol
td

In other words, once y has been estimated by a least squares_l_ projection,

—_

it remains only to determine 8, and é , (the ¥, and X, coordinates of 55.
1 2 1 2

Geometrically, this involves the projection of ? onto Qi at élii; note that

this projection within the (Qi, Eé) plane is not a perpendicular projection”,

- -

but rather a projection in the X, direction, i.e., parallel to Xye Finally,

- —

of course, (12) requires a projection (in the X, direction) of y onto X, at

A

By¥ye

Also shown in Figure 6 isc the parent population, with the spherical
distribution of possible ; values distributed around E(¥), which is also in
the (21, i%) plane,3 like ?. Note the disc, or circular slice d of possible

§‘centered on E(y). Although in this particular case the sample ; we

1Recall in the simple regression case that the intercept term (&) was
-

known to be zero. We continue to assume this; hence X and 2& both represent
-

variable (non-dummy) regressors. If x, were a dummy variable (a colummn of 1's)

then él in (12) would be interpreted as the estimated intercept.

2Except in the special case in which the regressors are orthogonal
. -— -
(i.e., X | xz).
- -

3because E(§5 can be expressed as a linear combination of X and Xy3

more precisely,

E(Y) =B, X +B,y %, (13)
with Bl and 62 being the ;i and QE coordinates of E(Y¥), as shown in

Figure 6.
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happened to observe led us to underestimate Bl and overestimate 52, it was
just as likely to have been the other way around; this again illustrates

the unbiased, consistent nature of OLS.1

Two Stage Least Squares (2SLS)

Suppose we wish to estimate the first equation in the simplest

possible system of equations:

y, = By, +¢ (14)
v, = £G), 2, 2,) (15)
" where € is assumed independent of the two exogenous variables gi and 2& .

The problem in estimating (14) is that € cannot be assumed independent

of the regressor ?&; (in (14) € influences ?i, while in (15) ?1

in turn influences ?&; thus §3 is dependent on €). The problem is identical
to the one encountered in the section on instrumental variables above.
OLS will not provide a consistent estimate; on the other hand this can be

accomplished by using an instrumental variable. Either 21 or Eé could be

involves a_l_ pro-

-

used, as shown in Figure 7. On the one hand, using z

1
jection of ;i and ;é onto Ei, at A and B respectively, with B estimated to
be OA/OB. Alternatively, using ;é involves a_l_projection of ;i and ;é

onto Eé, at C and D respectively, with B estimated as 0C/OD.

lWe can also easily see one of the advantages of having orthogonal re-
gressors: they produce the same estimate of 51, regardless of whether ¥ is

regressed on both Ei and 25, or just on Qi alone. If ¥ is regressed on §1

alone, then él is obtained by a_J_projection of ? onto the single vector Ei.
This will coincide with the multiple regression estimate él in Figure 6 only
g R . . . s - P e B .
if ¥ in that Figure 1s_J_ projected onto X,, i.e., only if xz_l_xl. This

argument is easily extended to show that in a model misspecification that

omits a regressor (Eé), bias is avoided only if Ei and ié are orthogonal

(uncorrelated).
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How alternative instrumental variables could be used
to estimate B in equation (14)
Now if only one instrumental variable (say 21) appeared in (15), there
would be no problem;1 to put it another way, (14) would be exactly identi-

fied. But both z, and z, appear in (15), and either instrument2 may be used,

1 2

lln fact the problem would then be equivalent (with the appropriate re-
naming of variables) to the one shown in Figure 4.

2In the interests of brevity, the term "instrument" hereafter replaces
the more awkward "instrumental variable'. Although this is a convenient
abbreviation here, it should be emphasized that this conflicts with its
ordinary usage in economics, where instrumental variable means any exogenously
determined variable (like weather or the interest rate), while instrument
refers only to the subset of these (like interest rate) that may be set by
the government to achieve certain policy objectives.

-
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with each yielding a different estimate.1 We are faced with the dilemma
of "which one to use". This "oversupply" of instruments is of course just
another way of saying that this equation is overidentified.

This dilemma may be resolved in many possible ways: the 2SLS solu-
tion is to use not a single E: but rather a combination of the two, (i.e.,
another vector in the (Ei,?é) plane). Now any such linear combination of
two variables, each of which is independent of 3, will yield a new vari-
able also independent of e; thus any vector in the (;i,;é) plane can be
used as an instrument. It must however have some correlatibn with the re-
gressor ;é. To see'why this is so, comsider the vector q'which is uncor-
related (perpendicular) to ;é; then the perpendicular projection of §é
onto a is zero, which means there is no solution for é. Thus we see that
there are two requirements for an instrument: first, it must be uncorrelated
with the error, and second, it must be correlated with the regressorz. In
fact, the greater this correlation, i.e., the closer the instrument in the
(Ei,gé) plane is to ;é, the better; and this closest vector is ;, the_l_pro-
jection of ;é onto this plaﬁe. But of course this is just the fitted value
that results from a least-squares_l_ projection of ?é onto k?i,;é). So the
first stage of 2SLS-~-namely the OLS regression of ;é on all the exogenous
(instrumental) variables--is seen to be equivalent to the selection of the

R
"best possible" instrument Yye

lln an infinite sample these estimates would be identical, since the
IV technique is a consistent one. But this doesn't solve the dilemma in
small-sample estimation.

2Incidentally, it can now be seen that OLS on a single equation model
(as in Figure 2) is just a special case of IV, with the regressor ¥ being the
instrument. X satisfies both the above requirements for an instrument: it
is uncorrelated with €, and it is highly correlated (in fact perfectly cor-
related) with itself.
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The second stage of 2SLS, shown in Figure1 8 is to regress ;i onto ?2
-
at 3;; then é is the length of §l relative to ;é. This is also seen to be
equivalent to using the instrument ;é to estimate B, as follows. The pro-
jection of ;& onto the instrument ?é is of course the same 3?, while the

-

projection of ;i onto ?é is §1; thus é is again the relative lengths of
;1 and ?é.

In summary, 2SLS has been interpreted traditionally as a first stage
regression of ;é on all exogenous variables 21 and Eé, yielding ?é; the
second stage is a regression of ;i on ;é. Alternatively, as a number of
authors (e.g., [5]) were quick to point out, 2SLS may be interpreted as
instrumental variable estimation: the first stage involves selecting the
best instrument 5;, while the second stage involves applying it.

There is a third useful interpretation. We might view the first
stage as a 1éast squares.l_ projection of all variables2 into the instrument
plane, (or in general, into the instrument subspace), yielding ?i and ;é.
Once in the instrument subspace, the original problem (of correlated re-
gressor(s) and error(s)) no longer exists, and the second stage can proceed
as though this problem had never arisen; thus OLS may be applied, as re-
quired by (14), to regress ?i on ?é. (Confirm in Figure 8 that 3; results,

- r I’y
regardless of whether yp or ¥y is projected onto yz.) This important

1In this diagram y1 is | projected onto él,z ), just as y2 was in

Flgure 7. We now concentrate on the instrument space (plane) defined by y1
and yz, whlch 1s of course the same as the plane in Figure 7, since both

vectors y1 and y2 lie in the (zl,z ) plane.

21n our exampie both ;i and ;é; (note that Ei and ;é are already in the

instrument plane).
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Various interpretations of Two Stage Least Squares

conclusion applies in general in higher-dimension cases: a sufficient

condition for consistent estimation is to first project all variables into

the instrument subspace, and then proceed as though the simultaneous equation

problem did not exist. Moreover, a "least distance" interpretation of

2SLS is also clear: the first stage involves a least distance projection
of all variables into the instrument subspace, while the second stage in-

volves the appropriate least distance projection within that subspace.
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It is well known that 2SLS estimation depends on the way an equation
is normalized; in other words, the estimated numerical relatibnship between
53 and ;é would have been different had we specified that ?é was dependent
on ;i in (14), rather than vice versa. Note in Figure 8 that this alter-
native specification would have required in the second stage that ;é be_J_
projected onto ?i, which we dengte by 5;. There is no reason to expect that
the relative lengths of ?i and ?2 would correspond to the relative lengths

-

of ;1 and ?é.

Various normalization-free procedures have been suggested; we now

show one which very explicitly involves the least distance concept.

Least weighted variance (LWV)

The | projection of ;1 and ;é into the instrument plane is often
referred to as a "free fit", or unrestricted OLS fit, of each Y onto the

reduced form; i.e., fit

¥
- S oA 243 6
i S My F ta,zte (16)
Yo = Mgy 2ty 2, TV, an

2
)
=
where the v, are the residuals. Because it is OLS, this procedure for
estimating the n's involves minimizing the squared vector lengths of the

residuals shown in Figure 9, i.e.,

-
minimize ||31|| and minimize |[V,| . (18)

This does not represent a final solution, however, since the structural

condition (14) has not yet been imposed; taking its expected values yields



EG,) = BE(,) (19)

which means that the expected values of ?i and ;& lie on the same straight
line from the origin. It seems eminently reasonable to restrict our fitted

values in the same way,

1
i

) (20)

~»
-
[}

with the double hats indicating that these fitted values conform to the
structural restrictions (19). This means, as shown in Figure 9, that
these two fitted values must lie on a common line from the origin, say ﬁ.
The problem then is to estimate the g's as we did in the free fit
(16) and (17), except now we will have to select different "restricted"

2 2
§1 and ?2 to satisfy (20); this of course will give risc to a new restricted

- .
2 2
set of errors v, and vy, as shown in Figure 9. Estimation involves mini-

mizing some function of the residuals; in the spirit of least squares we
might

2

. o 2
minimize “31“ + “62" (21)

with each of these components representing the squared length of that
vector in Figure 9. However this would be appropriate only if we had
prior knowledge that the true errors in ?1 and ?é (namely ?i and ;é)

had equal (or very similar) variances. If we know that they don't, then
following the familiar heteroscedasticity analysis, a form of weighted
least squares is preferred, with the less reliable (higher variance) ob-
servations accorded less weight than the more reliable (lower variance)
ones. In the'abéence of prior information we might ask what the data
tell us; in our example, the vector §é seems to provide more reliable

information than ;i. This follows because each §, having its expected



2l

Figure 9

A weighted least distance estimator (LWV)
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. 1 . . P .
value in the instrument plane,” will give some indication of its variance
by its distance from the instrument plane. Accordingly, since ;é is

-—

observed relatively close to the instrument plane (the length of 62 is

= -
less than Vl)’ Yo seems to yield more reliable information on the popu-
lation than §1. This leads us to suggest weighting the components in (21)

by their observed reliability, i.e.,

- 2 - 2
A !
O

32 32
1 | 119, |

(26)

minimize

which is the criterion used in Least Weighted Variance (LWV).

Unlike 2SLS, LWV does not depend on any normalization rule, since é

b d

is read off a unique2 estimated line L ; (§ is the length of ?1 relative
—)

to g}. But like 2SLS, LWV may be interpreted as a least distance estimator:

1The population assumptions about the ?'s include (19), and

—p - -—) —_ +-—)
Vi T omp % Ty %ty | (22)
- = - bad +"
1 Mgy 2 Ty, 2, T, (23)

which are of course the population statements from which (16) and (17) derive.
Taking expected values yields

-~ = b d -|' b d
E(y;) ™1 % T Mo % (24)
- — -
= +
Ey,) M1 21 T Ty %

Thus the expected value of each ; can be expressed as a linear function of
the z's, i.e., each lies in the instrument plane.

2The same interpretation of course may be made for all normalization—
free limited information techniques, like Maximum Likelihood and Least
Generalized Variance.



-26~

»l

we are minimizing the squared lengths of vy and 3;, with each being a_l_
least-distance projection. The only twist is that each is weighted; but
once again, this is according to a least-distance set of weights. Moreover,
like 28LS, LWV is a consistent estimator because it may alternatiwvely be
vieved as first a projection of all variables (;i and ;é) into the instru-
ment subspace (at ?i and 55), then followed by a procedure within that

instrument subspace that would be appropriate had the problem of dependence

between the errors and regressors not existed.1

Other Least Distance Estimators

Malinvaud's least distance estimator2[6], does not have a simple
geometric interpretation,3 but it is a useful point of reference in com-
paring various other suggested methods. But first, we must clearly dis-
tinguish between the estimated covariance matrix of errors, which may be

written

"? = 4 —: 2
W o= lv v:] vl,vz:' 27

1This interpretation would involve using the criterion (26) except that

<»l

¢
1 and v2

R = 2
_l_ projection of Yy onto L. Because v, and v, are constant regardless of

would be replaced by ai and Eé, with ai, for example, representing the

-~

which method is used, estimation using this criterion yields the same results
as estimation using (26).

2He originally formulated this as a full information technique, but
we consider its single equation analogue. The following discussion, of
course, could easily be cast in a full information context: many of the
estimators like LWV, originally suggested in a limited information context,
can be applied as full information techniques.

3The reason it doesn't is because it is least distance estimation only
in a transformed space, the transformation involving the matrix Q in (29) below.

4Except for a common degrees of freedom divisor, which can be ignored
in the minimization procedure, and is hereafter dropped in this and other
similar contexts.
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and the equivalent covariance matrix of true errors

- _ - 2 241 - - = 17> 21
Q var(vl), cov(vl,vz) E [vl,vz] [v ,V2J (28)

- >
cov(vl,vz), var(?&)

Malinvaud's method is to select the fi's subject to the structural restric-

tion1 (19), in such a way as to
td -
minimize tr(@ " W) (29)

In other words, if 3'were known, then this would provide information on

the reliability of the various observed errors in ﬁi and hence could be

used as in (29) to weight the elements of ﬁ'in the minimization procedure.
The problem, of course, is that the true 3 is generally not known,

and must be replaced by an estimated 3 3 thus (29) becomes

21
minimize tr(Q W) (30)

2
with the method of estimating  being crucial. Zellner's suggestion (first

proposed in a somewhat different context—see [9]) was to use the covari-
ance matrix of freely fitted reduced form residuals, i.e., in our notationm,
let

2 2 2ar2 2
o [

V.9, _Vl’GZJ (31)

On the other hand, LWV in (26) can be interpreted as a special case of

1Since this, of course, applies to all methods discussed below, we
do not repeat it again.
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this, where all off-diagonal terms in (31) are set equal to zero1
(corresponding to the assumption that the true error terms are uncorre-
lated), and the diagonal terms in 3 are retained as the best available
initial estimates of the error variances.2

T. M. Brown's simultaneous least squares (SLS), also originally
presented as a full information method, (see [1]) similarly has an in-
teresting limited information analogue.3 Whereas LWV involves minimizing
the weighted trace of ﬁ; Brown's method involves minimizing its unweighted
trace, (i.e., setting a = ? in (29)). 1In line with our earlier observa-
V. and V. are known to

1 2

have (approximately) the same variance (and their covariances can be

tions, this is appropriate if the true errors

assumed to be zero). This, of course, implies a scaling problem, as

li.e., in (31), set

Py 22
Q = |[II%l 0

e
22
0 17,

-9 ~
and note that the trace elements of W in (27) are, as always "vl"2 and

2 2
”32” . Under these circumstances (30) is equivalent to (26).

2R. A. L. Carter has %pggestgg that this might be extended into an iter-

% A X .
ative procedure;yith the vy and v, falling out of each iteration being used
to provide the ﬁ for the next iteration. In such a procedure, it would be
-
clear how fast convergence is occurring, since in the iterative limit,  should

approach W, hence (30) should approach m (the dimension of this matrix)

3whicli is, of course, free of some of the controversy that has arisen
about whether or not SLS is a '"full information' method.

4 . . .
Since part of ? is an error, ?’cannot be rescaled without rescaling
the error. But then Brown's assumption of equal error variances would

no longer hold.
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pointed out by Theil, and recognized by Brown, who also suggested a possible
cure, (see [2]). The scaling problem of course does not apply to Zellner's
technique or LWV, since both have their own scaling "built in'" in the form
of an appropriate set of weights 3 .

Finally, LGV (Least Generalized Variance, which yields a solution
identical to Limited Information Maximum Likelihood) can be interpreted
as minimizing

f (32)

Although there is no weighting of elements in this determinant this method
is invariant to changes in scale: although rescaling a ? variable does
involve rescaling its error, this would result in a proportionate change
only throughout one row and column of this determinant, and minimizing a
determinant remains invariant to such changes. Goldberger and Olken have
shown that this is also equivaient to Zellner's method in (30) and (31).

Geometrically, LGV may be viewed in Figure 9 as a procedure (like
LWV) in which the ¥'s are selected in a line like f—the difference now
being that these fitted g}s do not represent an_ projection of each §'into
L. Such a free-swinging set of projections suggests (but of course by no
means proves) that the resulting estimate of B (i.e., the relative lengths
of the 5}8) may be somewhat unstable — especially in small samples. This

view has received some very tentative support in recent preliminary Monte

Carlo results [3].
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