Western University

Scholarship@Western

Department of Economics Research Reports Economics Working Papers Archive

1972
Exact Moments of the Two-Stage Least-Squares
Estimator and Their Approximations

A. L. Nagar

Aman Ullah

Follow this and additional works at: https://ir.lib.uwo.ca/economicsresrpt

b Part of the Economics Commons

Citation of this paper:

Nagar, A. L., Aman Ullah. "Exact Moments of the Two-Stage Least-Squares Estimator and Their Approximations.” Department of
Economics Research Reports, 7202. London, ON: Department of Economics, University of Western Ontario (1972).


https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/econwpa?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages

Research Report 7202

EXACT MOMENTS OF THE TWO-STAGE
-SQUAR
LEAST-SQUARES ESTIMATOR \%@\\

A\
AND THEIR APPROXIMATIONS™ 3
@ (\@
by aD
@%

A, L, Nagar and Aman Ullah

February, 1972

0 SO60



<«

EXACT MOMENTS OF THE TWO-STAGE LEAST-SQUARES ESTI-

MATOR AND THEIR APPROXIMATIONS

by
A, L, Nagar and Aman UllahA

University of Western Ontario and Delhi School of Economics

February, 1972 Preliminary



EXACT MOMENTS OF THE TWO-STAGE LEAST-SQUARES ESTI-
MATOR AND THEIR APPROXIMATIONS

by
A, L, Nagar and Aman Ullah

University of Western Ontario and Delhi School of Economics

1. Introduction

In a system of simultaneous structural equations, if the equation
to be estimated has only one jointly dependent variable on the right hand
side, the scalar coefficient of the right hand jointly dependent variable
can be estimated by the two-stage least-squares (2SLS) estimation pro-
cedure proposed by Theil (1961), The exact sampling distribution of this
estimator has been analyzed by Richardson (1968), Anderson and Sawa (1971)
and Mariano (1969), The density function obtained is extremely compli-
cated and is in terms of special mathematical functionms,

In this paper we propose to analyze the form of the sampling distri-
bution of the 2SLS estimator of the same scalar parameter by considering
its exact moments and their approximations. The exact moments are compli-
cated functions again, but useful approximations to them (for small sample
analysis) can be obtained in a straightforward manner. The advantage of
this approach is that it opens the way to anaiyzing exact moments in more
general cases where ther: are two or more endogenous variables on the right
hand side of the equation to be estimated. In fact, in a separate study
Aman Ullah (1970) has already provided the exact means of the 2SLS esti-
mators of coefficients of two endogenous variables on the right hand side

of the equation, The upproximations of moments (to order 1/ for mean and
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1/92 for variance etc,, where © can be interpreted to be order T which
is the number of observations)have been obtained by employing asymptotic
expansions of confluent hypergeometric functions involved, These approxi-
mations turn out to be identical with those obtained by Nagar (1959).

The main results of this paper can be summarized as follows, Up
to a certain order of approximation, the sampling distribution of the
2SLS estimator of the scalar coefficient estimated tends to be asymmetric
and leptokurtic, The extent of departure from normality depends on the
true value of the scalar coefficient--called v, If y is positive the dis-
tribution will tend to be positively skewed and negatively skewed if y is
negative, If y = 0 the distribution will be symmetric up to the order of
approximation considered. Similarly the extent of departure from
mesokurticity toward leptokurticity will depend on the true magnitude of
Y. It is interesting to note that the number of excluded exogenous vari-
ables (called Kz) from the equation being estimated does not affect the
skewness and kurtosis coeificients up to the order of approximations con-
sidered. Finally, it should be noted that in the special case considered
if K2 =2, i,e,, if two exogenous variables have been excluded from the

equation, the 2SLS estimator of the scalar coefficient being estimated is

unbiased,

2, Model Specification and the Two-Stage Least-
Squares (2SLS) Estimation Procedure

2,1, The Complete Structural System

Let us write a complete system of M linear structural equa-
tions, in matrix form, as
2.1 YWF + XB = U,

where Yw and X are T x M and T x K matrices of observations on M jointly
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dependent and K predetermined variables, respectively; I and B are M x M
and K x M matrices of structural coefficients, respectively; and U is a
T X M matrix of structural disturbances,

The reduced form of this system is obtained by post multiplying
both sides of (2.1) by T-1, provided I' is non-singular:

(2.2) Y =Xl +V, where Il = - Bfrl and V. = UT-1 ’
w W w W w

so that Hw and Vw are K x M and T x M matrices of reduced form coefficients
and reduced form disturbances, respectively.

We shall assume that the elements of X are nonstochastic and fixed
in repeated samples, thus there are no lagged endogenous variables present

in the system, Further,
(2.3) rank of X =K =sT,

i.e., the columns of X are linearly independent of each other, and XX is non-
singular, We require lim-% X’X to be a positive definite matrix,
T—0
We also assume that the T rows of U are independent random drawings

from an M-dimensional normal population with mean vector zero and covariance

matrix X, thus
(2.4) E ui(t) =0 for alli=1,,,.,,M and t =1,,..,T,

and

2.5 T E@D) =%,

ui(t) being the element in the tth row and ith column of U .,
We assume that I is positive definite,

It follows that

2.6) % E(Tr' Vys=a=r"3s rl
: T w oW

is also positive definite,



b

It can be shown that it is always possible to transform the vari-
ables and parameters of the given structural system (2,1) such that the co-
variance matrix of the transformed reduced form disturbances is an identity
matrix, Since X is positive definite we can obtain a non-singular square
matrix ¥ such that

1=\11"1/.

2.7y =
Let us then define
(2.8) P=TY’

and observe that P is an M x M non-singular matrix if I' is non-singular,

The transformed strictural system may now be written as
*
2.9) Yw I* + XB =10

where

(2.10) Y =Y P and T¥ =P 'r =y’
W w

are the matrices of transformed jointly dependent variables and their coeffi-
cients,

We note that the predetermined variables and their coefficients are
unaffected by the above transformation,

The transformed reduced form equation is

k3 * —
(2,11) Y =X1 + 7
w w w
where
% 3 - —
12) T' =-BIF ' =P and V =01 =7 p
w w w w

are the K x M and T x M matrices of transformed reduced form coefficients and

disturbances, respectively, We get

*

1 =

LA—> - -
E.E(V V)=P'QP=P'1’"1 1
w

(2.13) Zr p=1,

g
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2,2, Single Equation of the System

Each structural equation of the complete system represents a
certain economic hypothesis, It is then obvious that not all variables
of the complete system will be represented in every equation, In fact
the order condition of identifiability--which is in terms of exclusion of
some variables from every equation--states the maximum number of variables

that can be included in the equation:

"the number of variables excluded from
the equation must not be smaller than
the number of equations in the system
less one'.

Let us suppose m+ 1 <M jointly dependent and K1 < K predetermined
variables enter the equation under consideration, Then after omitting the
excluded variables and normalising the coefficients, we may write the equa-

tion as
(2.14) y=Yv+Xp+u

where y is a column vector of observations on the left hand jointly dependent
variable, Y is a T x m matrix of observations on the right hand jointly de-
pendent variables, X1 is a T x K.I matrix of observations on the right hand
predetermined variables, y and B are coefficient vectors and u is the dis-
turbance vector,

The complete reduced form (2,2) of the system may now be written as

(2.15) y=Xm+v= X.lrr1 + inz +v
(2.16) Y=XN1+7V =X +X0, +7
2.17 =X+ 7V, =X + X1 +7
2.17) LEXF+V, = X500+ X0, + 7,



where
*\
7\ s /m
1T =\ by T = and I = | ]
l 4
2/ \1 Qg/
(2.18)
X = (X] X2) .

Thus (2.15) represents that part of the complete reduced form which corre-
sponds to the left hand jointly dependent variable of (2,14), (2.16) gives
the reduced form corresponding to the right hand jointly dependent vari-
ables of that equation, The last equation (2,17) is that part of the com-
plete reduced form which corresponds to jointly dependent variables of the
system excluded from (2,14),

The identifiability requirement of the equation (2,14) may be ex-
pressed as
(2.19) m, = HZ Y
and the rank condition of identifiability of (2,14) as
(2.20) rank HZ =m,

It should be noted that the transformation of the structural equations,
discussed in the preceding section,leaves the identifiability requirement

(2.19) unaffected.

2.3, Two-Stage Least-Squares (2SLS) Eétimation

The 2SLS estimator of the parameter vector (E) of (2.14) is

given by

—-— Vd
Yvy-vlv ¥%X

@2 = , 1



where
(2.22) vey-xx® ' x'y

is the least squares estimator of V defined in (2.16), It follows that

(2.23) Y'Y - ViV = Y/MRY, Mk = x(x’X)"]x'
and
(2.24) Y - V= MY,

If we premultiply both sides of (2,21) by

Y’y - vy Y'x1
(2.25) , ,
XY XX,

and solve for ¢ and b we get

@' vyt v Ny

(2,26) c =
’ _-l 7
(2.27) b= (XX) X - Ye)
where
% ) -1 ’ * / -1 ’
(2.28) N = M*-Ml’ My = X(XX) X and M.I = X.' (X.IX.I) X.l N

Further, since N is a T x T idempotent symmetric matrix with

(2.29) rankN=trN==K-l(1=K2,

there exists a T x K2 orthogonal matrix R such that
(2.30) N=RR’ and R'R=1,

where I is a K2 X K2 unit matrix,

Then the 2SLS estimator ¢ of y can be expressed as

(2.31) c = (z’z)'1 z'z

where
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Ry ,

(2.32) Z=R'Y and =z

are linear orthogonal transformations of Y and y, respectively.

The corresponding estimator b of B is obtained from (2.27),

3. Exact Moments of the Two-Stage Least-Squares (2SLS)
Estimator - Special Case m=1) '

Suppose there is only one jointly dependent variable included on the
right hand side of the equation to be estimated (2.14); that is, Y is a
column vector, say ¥q2 and then y is simply a scalar coefficient, In this

case let us write the equation (2,14) as

3.1) Y=Yy, +XB+u.

The 2SLS estimators of y and B are
? 4
y.I Ny z1z
(3.2) c = 7 = 7
WY 3%y

and
I "1 4
(3.3) b = (X1X]) XI(y - cyT)
where
3.4) zy = R’y1 and z =R’y

as in (2.32),

Let us write the reduced form corresponding to y and y, as

(3.5) y = X1n* + in +v=y+v, y=Ey-= XTH* + in

and

3.6 =X +X v, =¥ v 7. =Ey. = X.m +X
(.6) vy =X X, M AV =Y Vs Yy SRy S XM r X, W
where

3.7) Ev =Ev, =0 ;
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and assuming that the structural system has been already so transformed
that the covariance matrix of the reduced form disturbances is unity, we

have

(3.8) Ew’=1I, E 515; =1 and E 515' =0,

I being a T x T unit matrix and 0 is a T x T zero matrix,
In this special case the identifiability requirement stated in

(2.19) can be expressed as
3.9 TEY

where m and ™, are column vectors defined in (3,5) and (3,6) and y is the
scalar coefficient of (3.1),

According to the assumption of normality of structural disturbances
(mentioned in Section 2.1) we observe that the elements of y and y, are in-

dependently normally distributed with means specified in (3.5) and (3.6),

and
(G.10) EG-NG - =I=EQ -y, - ¥’
and
GBI EG-NG, -y =0,
Also the elements of z and zqs being linear functions of those of y

and Yqs respectively, are independently normally distributed with means

given by

Ez=R(Ey) =R’y=2z and

(3.12) , , - -
E 2y = R(E y1) =R Yy =2

and covariances

(E(z -2)(z~-2) = E(z.l - 21)(21 - 51 =1 and
(3.13)

EE(Z - 2)(z1 - 51)' =0 ..
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If we write zg and 294 for the ith i-= 1,...,K2) elements of z
and Zqs respectively; and correspondingly, Ei and Eli for the ith elements
of the mean vectors z and 21, we have

Ezi=z:L
2 -2
E zi =14 z;
(3.14) _ -
E 23 =3z, + 23
i
kEzzf=3+6§2.+§4
\ i i i
and
/Ez1i=z1i
\ 2 -2
3.15) /.
3 _ .- -3
i E Z14 = 3 244 + 2%
TS

The first four moments of the 2SIS estimator c of the scalar coeffi-

cient y are given by

f? 211 %y J2q4 N
(3.16) Ec=E" V) =Z(E21)Ef-——2—;
L X 2., i Lzl
' . 11 ; Y 11:
\1 ! '\i. /

1]
e ™M
N
1
T
N
—
[y
e



(3.17) Ec =E}

\ &2y
. i
2 2 \
Xz, .z, 4+ T 2z
=E(1 15T 1;211 i%j
2
Lok
/z z \
=Z(Ez)E + B EzFa, .ﬁ._l%\
i 1#5 ! 2 ¢
-(Zzn)
\'.i /
Z Z
=>:(1+z) / \ 2 'E,/—’-i—-‘-% ,
ErERt
i
/= z. z z\'\
211 % i Kk
(3.18) B o =g |Ledek js i ;

i f
\ 2y
i

3 3 2 2
2 Z:. +3 Z z z zz,+ X =z, .2..2,.2.2.2
- ‘l Py 'y Py Py
H 3 N

L}

3
11 \

(Zzi/

+3 Z(Ez)(Ez)E —-—li:.,.

t

i#j
(Z z i)/

Z(E zi) E
1

\

2 \
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N,
N

Z Z,. 2 \
S TCERICERTCERE L s
ifjfk NG z?i) /

i /
and
/ M z z z z zZ,2,.2, 2 \\
! o ry Py
4 14,9,%,4 14 715 "1k "14 "1 "3 "k "4
(3.19) Ec =E!: % !
2
g\\ (Z z'li)
b \
=% &2 E | —1L +
i + 2 45
Ez)
L
3 / z?. 21.\
*4 Z(E2)Ez)EI——] 4
1#] Lz z?i) ]
\i ‘
/22
+3 = (E zi)(E z?) E. “li“l% +
3 L3 : 2
i3 \ @)
\.‘ i r
/2
22, z. .z
+6 I (Ez2)(E 2)(E z,) E {_li__llzf15:+
ifge T @22y
C22)
i A
‘I
[ Zy. 2., 2 z
¥ 5 Bz )Ez)Ez)Ez)E| b 11 Tk 14
. i j k ) 1 4
i#jFk#AL \ 2
\ (Z Z-li)
.
where i,j,k,4 =1 K

9eece) 2 L4
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The moments of zg required in (3.16)-(3,19), are already given in

(3.14), Further, let us observe that

/ - -
z_ ., ;z -z z
11 i 11 11 11
(.20)  E[——51=E} , T
Ez7,.)/ Y (S 27y)
11 / \\ 1 11

‘ r 9 T ?
' (02 z-l i) “ (02 z-l i)
\ \ 1
and
/- 11~11\‘ Kyl 25754 -3 i(z”-;“)z
(3021) E {_—_; .‘= (Zﬂ) ;[...I ——'_'2___; e dz.” s oo dz.‘Kz
{27, / zZ,.. 2 (z z;.)
‘\i 1i / 11 1K2 1 14

-3 Gy’
=(2) 2/2 Jj {J ENaES “ e ? R TI

; G Z )
211 2 1
(excluding z1i)
- 2
A2z mzy)
X e 2 3H dz dz
11 *°° IKZ
(excluding dz]i)
Where‘ 0L Z 900032 < o,
11 1K2

" The integral within curl brackets in the second equality of (3.21) can be written

as

1It can be easily verified that the conditions for inverting the order
of integration and differentiation are met in this case.
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z z - l(z z )2
12~ %11 T 2% T B -
(3.22) I 1. dz
23 2y
1
1 - 2
r ”""(Z -z )“
=I 2 )\ : r‘*21i 1 }dzu
2. 2 %11 (222
11i 11
i
- 2
__3 0 I A PRl PO
aa 'J 2 X 11’
iz Gy
and in turn
/. -\ / 3\
zZ., - Z. .\ ( : \
(3.23)  E] “2 e R L > :
i dz v 2
\ €z 1o 1@z
N T K \1 s
Y
Thus, essentially, to evaluate (3.20), we require E[1/(Z zfi) ] and its

i
partial derivative with respect to Eii .

It can be shown (the results are stated in the Appendix C) that all expecta-

r
tions required in (3.17)-(3.19) can be expressed in terms of E[1/(Z z%i) ] and
i

its partial derivatives, with respect to ;1i’ of higher order.

Since ZyqreeeaZqg BT independent normal variates with
2

(3.24) Ezy; =24 and Var 214 = 1, 1=1,...,K,
K2
W= i§1 zfi is distributed according to 'non-central chi-square' distribution with

K2 degrees of freedom and
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(3.25) 8 =

as the parameter of noncentrality, Using (3.12) we have

(3.26) e—lz'; =l"RR" -l"N'
. =2%% T2 1=
1 * 4 *
--E(X1 s -i-X2 111) N(X1 us +X2 ﬂ.‘)
=1,
2™ ™
1

provided XX = I.

It is well known (cf. Rao (1965), p. 146) that

X
I'G= - 1) K K
-r _ =T 2 -9 2 . 2,
(3027) EW = 2 —"Tz'— 1F-' (—2'— -5 2 H e)
'™
X
provided 3 > r, where .'F1 ( ) is a confluent hyper-gecmetric function,

Using a result of Slater (1960), p. 15:2

]Thus, in general, 6 is of order T ,
2
s -
E—; [e* 1F @ e x)] =
dx

_ sT'(c - a+ s) I'(c) X
=D T'(c - a) T(c + 8 ©

1F1 (a; e¢; x),

fOr s=1’2’3’oc. .
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K
2
8 I'z= - r) K K
d _ -r _ s _~-r T'(x+8) 2 -0 2 2 .
(3028) des EW = ("1) 2 l-(r) K2 e .IF.I (2 r; 2' + 83 e)
et + o)

for r = 1,2,3,,,.. and s =1,2,3,... .
From this we obtain the results stated in the Appendix B,
Finally the expectations required in (3,16)-(3,18) are stated in Appendix C.

Using these results given in respective appendices, we have:

(3.29) Ec=vy0 e ® £3y
2 _ -0 1 2.2 1.1 2
(3.30) Ec =e | GO+YONE, 3G K +Y e)f_],]]
3.1 -or 2 2 ]
(3.31) Ec” =7 Bye Lz 83+ 20y )f03 + 3(K2 +2+20y )1:'_1,2
4 1 .2 -6 2 2
(3.32) Ec =70 e @Oy +3) -6:|f04+
3 - 2 4 2 7
2 4 !
+7 0 e [ 87y + 2(K2 +5)0y + (K2 + 2)_}4‘."1’3
3 -er, 24 2 7
+3g e L4 Oy + 4K, +2)0 Y + K2(I<2 + 2)_lf__2’2 s
where
K
1"(‘2-+ W) K2 K2
F(2—+ V)

and writing p =0, v =1 we get fO]’ and so on,
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4, Approximations to the Exact Moments of the 2SLS Estimator
of the Scalar Coefficient y in (3.1) .

If 6 is positive and large, using the asymptotic expansion of the con-

fluent hypergeometric function, we get

K K K
1
@1 Ee=yl+ -0+ 0-HC- P ]
C
and

2 K K
2 _ .2 1+ _ 2,27 _ 2
4.2)  Ec =y 4 |—E+20 -2 [0 -5+

K K K
2 271
FR-FW +30-PC-PD Y| F+ .
)

Therefore, the variance of c is

(4.3) Ve=E c2 - (E c)2
1+v> 1.1, % 271
=L S+ -G G+
-6

and the second moment of c about the true parameter value y is

(4.4) E(c - y)2 =Ect-2 y Ec + yz
14401 K Ky 271

Further, we have the following results on the third and fourth moments of

2 K
(4.5) E ¢ = y3 + 3(7 l—%;}L + (1 - 52)73] % +

K K K K, -
rde-Dr+Padr20-He-DY )5
2

and



te

2
4.6) Ee-Eo)’=3yEX L.,
0
4 3 2.2
4.7 E(c - E ¢) =-Z(1 +v) -5 +
0

3 2 2 1
+Z(1+Y)(1+4y)(6-KZ)g§+... .

The Pearsonian coefficients of the skewness and kurtosis of the distri-

bution of c are as follows:

3/-5__1____1_

57

(4.8) /By (c)
and

34+ 6 l_i_é_xf 1
+ 2'6,
T+ vy

4.9) B, (©

up to order 1/6.

As should be expected

(4.10) fe._] () =0 and B, (c) -3

as f - =, It follows that (up to the required order of approximation) the de-
parture from symmetry and mesokurticity of the distribution of c depends on Yy

and 6 but not on K, (number of excluded exogenous variables in (3.1)). The dis-

2
tribution of ¢ will tend to be positively skewed if true y is positive and
negatively skewed if y is negative. Further the distribution of c¢ will tend

to be leptokurtic in small samples,
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APPENDIX

A, Confluent Hypergeometric Functions

A confluent hypergeometric function is defined as

@ n
(A.1) 1F.l(a; cs x)=£—§9-Z z I(a+n) x

[
T'(a) n=0 I'(c + n) n!
and it is an "absolutely convergent" series for all values of a, ¢ and x
1

excluding ¢ = 0, -1, -2,,.. .
Since 1F1(a; c; =x) is absolutely convergent we can differentiate
the right hand side of (A.1) term by term, Thus
s

@.2) S0 Fas e ] =
dx

_ § T(c-a+8) T() -X . )
= (-1) T(e -~ a) Tle 1 5) © lFl(a’ c+s;  x)

fOI‘s =1’2’3,coo 02

The following recurrence relations should be noted:

(A.3) c[]F1(a; c; x) - 1F1(a-1; c; x)] =x 1F (a; ct+l; x),

1

(A.4) (1 +a-c) 1FT(a; c; X))+ (ec-1) 1F] (a; c-1; x)

(A.5) (O +a--c)(a-c) 1F1 (a; c+l; x) + 21 + a - ¢)e 1F1 (a; c; x)

+ c(c-1) 1F](a; c-1; x) = a(a+l) 1F (a+2; c+1; x),

1

1Cf. Slater (1960), p. 2.

20f. slater (1960), p. 15.
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(A.6) (1 +a-c)@a-c)@a-c- 1)]F1(a; c+2; x) +

+3(0+a-¢c)la-c)(c+1) 1F1 (a; c+1; x) +

+ 3(1 +a--c)(+ 1)c.|F1 (a; c¢; x) +

+ (c+1)c (c-1) 1F1 (a; c-1; x)

=a(@a+ 1)@+ 2) F, (@a+3; c+2; x),

1
A.7) Q+a-c)a-c)a-c-T)a=-c=-2) 1F1 (a; c+3; x)

+4(1+a-c)(a-c) (a-c-1) (c +2) 1F1 (a; c+2; x)

+6(1 +a-c)@@a=-c)lc+ 2)(c+1) 1F (a; ct+l; x)
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The relations (A.3) and (A.4) are given in Slater (1960), p.19--equa-
tions (2.2.4) and (2.2.3), respectively, The relations (A.5)-(A.7) can be
verified by substituting relevant confluent hypergeometric series and equa-

ting coefficients of xn/n! on both sides of the respective relations,
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c. Evaluation of Mathematical Expectations Required in Section 3

In Section 3 we demonstrated the relationship
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and we stated that all expectations required in (3.17)-(3.19) can be ex-
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and its partial derivatives with respect to z Let us state the following
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The expectations required in Section 3 may now be stated as follows,
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