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A Measure of Correlation for Simultaneous

Equation Systems1

R. A, L, Carter and A, L. Nagar

I. Introduction

In single equation regression models the coefficient of multiple corre-
lation (Rz) is used as a measure of the proportion of explained variation in
the dependent variable, The sampling distribution of R2 is well known and
tests are available for testing

i) the significance of an observed multiple corrleation, and
ii) the significance of difference between two observed multiple corre-
lations,

In the case of a simultaneous equations model the multiple correlation co-
efficient computed from each structural equation does not follow the same proba-
bility distribution as in the case of a single equation model, In fact the sam-
pling distribution of the multiple correlation coefficient in the simultaneous
equations case is not known and is perhaps very difficult to derive.

As shown by Hooper [5] one may employ the theory of canonical correlations
(developed by Hotelling [6]) and use the vector correlation and vector alienation
coefficients in the context of simultaneous equations, However, besides other
difficulties pointed out by Hooper the sampling distribution of the vector corre-
lation is not known, Hooper also proposed a '"'trace correlation'" in this context,
and he analyzed the asymptotic sampling variances of this index which may be

used to apply some approximate tests of significance.

1Wé would like to express appreciation to the Canada Council and to IL.B.M.
for financial support and to T, H. Wonnacott for helpful discussions. Residual
errors are ours alone,
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The purpose of this note is to point out that Hooper's trace correlation
does not make use of the covariance structure of the reduced form disturbances and
in this sense it is not an efficient measure, Using the covariance structure of
these disturbances we arrive at an alternative measure--the asymptotic distribution

of which can be obtained in a straightforward manner,

2. Notation and Assumptions

We write the linear simultaneous equation system as

m YB+ X'+ U=0

where Y is a T x G matrix of T observations on G endogenous variables, X is a T x K

matrix of T observations on K predetermined variables, p and I" are G x G and K x G

matrices respectively of unknown parameters and U is a T x G matrix of unobservable

random disturbances, Y and X are measured in deviations from their sample means.
We make the following assumptions

(2) B is non-singular, Therefore, we can write the reduced form of (1) as

(3) Y =X+ V, where 1 =Tp ' and V = Up .

(%) The T rows of U are independent random drawings from a G variate normal
distribution with means zero and a positive definite covariance matrix 2
i.e., U ~ N(0,X).

(5) plim(1/T)X'U

]

0-

]

(6) plim(1/TH)X'X ZX’ a matrix of constants,
Assumption (4) implies

(7) V- N0,Q) with 0 = p" 'z .

(8) plim(1/T)X'v =0,

(9) Y ~ N@XIOLQ)

3. The Coefficient of Correlation

We define the population coefficient of correlation for the whole model to

be the positive square root of
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2 _ . tr(vQ vy’
1o %=1 - r@oy) ¢
An estimate of pi is provided by

4
(1) R:,=1 VO V)

where V and ) in (10) have been replaced by their consistent estimates. It is
then clear that Ri is a consistent estimator of pi. pi and Ri have the same
interpretation as the familiar coefficient of determination for single equations,
They show, for the population and the sample, respectively, what proportion of

the total variation in all the endogenous variables is accounted for by the
systematic variation in the reduced form, At one extreme, when there is no random
variation at all, V (or G) is zero and the measures go to their maximum value

of one, At the other extreme, when all the variation in the reduced form is

random V = Y (or V= Y)and the measures go to their lower limit of zero.

The measure defined in (10) is to be compared with those of Hotelling [6]

a3 2 =1ed1- @ vy

¢ L -
It is clear that the presence of Qu1 in (10) and its estimator 6—1 in (11) gives
our measure the advantage, over those in (12) and (13), of containing information

on the covariances of the reduced form disturbances.

. 2
For purposes of computation RW can be rearranged to

as =1 - er @ §9) _q (T @75 -1 - G
w er @) YY) tr(T (VY'Y 'Y) tr[(ﬁ'?/)"y’yj

a/mv'v .

where Q



4, Transforming the Model

In order to derive the asymptotic distribution of Ré it is useful to transform-
the model so that Q = I. As shown by Basmann [2] this can always be achieved,
without loss of generality,

Since ¥ (defined in assumption 4) is a positive definite matrix, we can
always obtain a nonsingular square matrix ¥ such that

as)y vy =gz

and then let us define
(16) P=pgvy’.
The transformed model may be written as

(17) Y, B, + X[+ U = 0 where Y, = YP and ;3*=P'1 B .

The transformed reduced form is
(18) Y, = XH* + V% where H* = [IP and V* = VP .

It follows that for the transformed model

=1 gy
(19) Q, =3 EVY,

=—]T- EPVVP =p0P = 9’5“12,3"’p= viy'=1.
The derivation of the probability distribution of Ri will be considerably
simplified if we write the reduced form of the system in a slightly different

form as below. First we define

- - - -
Va1 M1 r"m—l
Y*z Tr* V*

(20) y, = | .7} m, = 2] v, = w2
%G MG VG

¥4 and v, are TG order column vectors made up of the stacked columns of Y, and V,.

T, is a KG order column vector of the stacked columns of H*
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is a GT x GK matrix with X in the main diagonal blocks and zero elsewhere,
Now we write the reduced form as

21 Vs =Fm, +v,

Assumption (6) implies
(22) plim(1/GT)F'F = ZF, a matrix of constants,
From (7), (9) and (19), we see that
(23) V, ~ N(O,IG)
(24) Y, ~ N(XH*,IG)
so that
(25) v, ~ N(O,I..)
(26) v, ~ N(Fm,, T )
Now we can consider the numerator and denominator of the second term on the

right side of (10)

@7) tr (W Q Wh=tr@ V) = tr(@ T BV = tr(@ Y¥BVY) = tr(P P'VV)
= tr(P'v'VP) = tr V;V* = v;v*

Similarly

(18) tr(¥ @ '¥’)= tr(2'Y'¥P) = tr Y,:Y* = y,;y,,c

Therefore, we now rewrite (10) and (11) as

7

v, Vv
* %
29) ol =1-r
w Y Ya
and
tr(T I.)
2 _ G’ _ TG
(30) RW-1- A’A —1-0\'4\
Y% Vs Vo Ve
. . . . 2
5. The Asymptotic Distribution of R,

It is convenient here to consider the asymptotic distribution of:
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Gy 1-x2 =L

Voo I
If we restrict ourselves to consistent estimators, the asymptotic distribution
of §* will be the same as that of y, as given in (26). Therefore, ?;f* has the
same asymptotic distribution as y;y*, which is non-central xz with GT degrees

of freedom and a non-centrality parameter A given by
_ 1 ’ 21,

(32) r=75Ey,) Ey, = 5 mF Fr,

Then the probability limit of 1 - Ri is

GT

= 3 = 7
GT + 2) 14, S,

and its asymptotic variance is (cf. [7])

(33) plim(1 - ) = plin(l - p2)

GT 1

T 26T + 8N 7 .
2 + 411* an*

(34) VA - Ri)

We can make probability statements about Ri by using
! _ 2 .EI
(35) Pr(y*y* < k) = Pr(Rw <1 - k)

It is useful to rewrite the non-centrality parameter A in terms of the original

model

(36) 1 =1 tr(EY. EY,) = 1 tr(P’EY'EYP) = 1 tr(Q']EY’EY) =1 tr(ﬂ-]H'X'XH)
2 * % 2 2 2 .
An estimate of A\ is provided by
Ll T A -1 A .Y
(37) A =5 tr[(VV) i1 % ‘xiil

6. Applications

In practical work with small samples equations (33) to (35) are approximations
which can be expected to improve as the sample size increases.

Consider, as an example, Tintner's model of the American meat market [10],
We will follow Hooper's procedure and use least squares on the reduced form to

obtain:
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L00484  ,00422]
38) @' =
.00422  .00522

2 2
(39) RW =1 - 1.9 = .832

4 12

40) $,9, =x'° = 262

(41) £ = 44 degrees of freedom
(42) A =109
Using Pearson's approximation [8] we see that approximately 95% of a non-central

2

X2 distribution with the )\ and f given above lies left of X' = 193 and approxi-

mately 99% lies left of X,Z = 211, These points translate into values of
Ri = ,772 and Ri = ,791 respectively. Therefore, our computed value of Ri = ,832
is significant at both the 5% and 1% significance levels,

A second example is provided by Klein's Model I [4]. Using the moment ma-
trices and two stage least squares coefficient estimates supplied by Goldberger [3]

we obtain a value for Hooper's coefficient of

(43) R = 869

In contrast, our coefficient is

2
(44) Rw = ,999

45) $,9, = %2 = 60000

(46) £ = 60 degrees of freedom

(47) A = 33456

Because the value of X is so high in this case we must use, in addition to Pearson's
approximation given above, the approximation given by Pearson and Hartley ([9],

p. 137) to obtain the critical values of X,Z. In this case we see that approxi-

2

mately 95% of the distribution lies left of x’® = 34061 and approximately 99% lies
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left of X'Z = 34438, These pdints correspond to values of Ri = ,99824
and R; = ,99826 respectively., Once again the computed Ri = ,999 is signié

ficant at both 5% and 1%,
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