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Abstract— Advances in sensor technologies and the 

proliferation of smart meters have resulted in an explosion of 

energy-related data sets. These Big Data have created 

opportunities for development of new energy services and a 

promise of better energy management and conservation. 

Sensor-based energy forecasting has been researched in the 

context of office buildings, schools, and residential buildings. 

This paper investigates sensor-based forecasting in the context 

of event-organizing venues, which present an especially difficult 

scenario due to large variations in consumption caused by the 

hosted events. Moreover, the significance of the data set size, 

specifically the impact of temporal granularity, on energy 

prediction accuracy is explored. Two machine-learning 

approaches, neural networks (NN) and support vector 

regression (SVR), were considered together with three data 

granularities: daily, hourly, and 15 minutes. The approach has 

been applied to a large entertainment venue located in Ontario, 

Canada. Daily data intervals resulted in higher consumption 

prediction accuracy than hourly or 15-min readings, which can 

be explained by the inability of the hourly and 15-min models to 

capture random variations. With daily data, the NN model 

achieved better accuracy than the SVR; however, with hourly 

and 15-min data, there was no definitive dominance of one 

approach over another. Accuracy of daily peak demand 

prediction was significantly higher than accuracy of 

consumption prediction. 

Keywords: energy prediction, energy forecasting, smart meters, 

Big Data, sensor-based forecasting, machine learning. 

1. Introduction 

Recent advances in sensor technology and the 
proliferation of smart metering devices that measure, collect, 
and communicate energy consumption information have 
created possibilities for development of sophisticated energy 
services. Big Data collected by smart energy meters have 
created opportunities to analyze energy use, identify potential 
savings, customize heating and cooling activities for savings 
and comfort, measure energy efficiency investments, provide 
energy cost estimates for real estate buyers, and educate about 
responsible energy usage and conservation.  

This potential has been recognized by governments and 
industries, which resulted in the Green Button initiative [1]. 
This initiative is an effort to provide utility consumers with 
easy and secure access to their energy usage data and the 
ability to share these data with third parties. Smart meter data 
are provided to consumers in a standardized Green Button 
format which facilitates data sharing, integration, and reuse. 

With the Green Button format, consumers can permit the 
access of their energy use data to take advantage of the 
growing range of energy applications, products, and services 
to help them conserve energy and manage their electricity 
bills. Presently, over 43 million households and businesses 
have access to their energy usage data in the Green Button 
format [2], which creates tremendous possibilities with 
respect to energy management. London Hydro, the local 
electrical utility involved with this project, has developed the 
first cloud based Green Button Connect-My-Data test 
environment to allow for data access to academic partners 
with the customer’s consent.  

A typical premise in data analytics, and especially in Big 
Data analytics, is that more data have the potential to lead to 
new insights and better business decisions. This is especially 
true with machine learning algorithms that can learn better 
with more data. However, massive data sets pose challenges 
due to their size and complexity [3, 4]. With sensor 
technologies, we can collect large data sets, but these sets 
might be difficult to process. This study considers different 
sensor reading intervals, investigates how more data impact 
energy forecasting accuracy, and looks into trade-offs 
between accuracy and processing time. 

Moreover, this work explores the opportunity to use Green 
Button data to predict electrical energy consumption for large 
commercial customers, specifically event venues including 
sports arenas, concert halls, theatres, and conference centers. 
Such consumers are especially interested in energy 
forecasting on the event level (a specific concert, game, etc.) 
because this affects pricing for use of the facility.  

Event venues can be expensive facilities to operate; the 
cost of electricity for sports arena can exceed $3,000 per day 
[5]. Ice rinks, by their nature, are large electricity consumers 
with standard arenas using around 1.5 GWh/year [6]. Thus, 
there have been significant efforts in improving efficiency in 
ice arenas: several projects provide recommendations on best 
practices and reduction measures to help reduce their 
operating costs [6]. Consequently, it is important to address 
this type of buildings in an energy prediction study. Moreover, 
forecasting energy consumption in the presence of different 
events, will assist venue operators to estimate energy cost of 
future events and it will enable them to include energy cost in 
the facility usage fee. 

This study was oriented to support energy management 
operations and decision making by Spectra Venue 
Management at Budweiser Gardens in London, Ontario. This 
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study estimates future energy consumption by considering 
past energy consumption available through Green Button and 
contextual information about future events such as event type 
and schedule. Although the focus is on event-organizing 
venues, the proposed approach can be used by any consumer 
that is impacted by some form of operating schedule, such as 
hotels, conference centers, and schools. Unlike typical sensor-
based approaches which rely on energy readings and 
meteorological information [7, 8], this work takes advantage 
of contextual information in the form of an event schedule and 
attributes. 

It is important to highlight the difference between energy 
consumption and demand: consumption is the total amount of 
energy used, expressed in KWh, whereas demand is the 
immediate rate of that consumption, often expressed in KW. 
Commercial consumers are typically charged for both 
consumption and demand, although the pricing models differ 
among distribution companies [9]. Consequently, in addition 
to consumption prediction, commercial consumers are 
interested in predicting energy demand peaks because 
lowering these peaks would result in a reduced electricity bill. 
Therefore, this paper considers consumption and peak 
demand prediction. 

The type of consumer, the event-organizing venue, makes 
prediction especially challenging. Energy consumption in 
office buildings [10] usually resembles a very distinctive 
pattern similar to that shown in Figure 1, with lower 
consumption overnight and on weekends. In contrast, the 
consumption variations of an event-organizing venue, as 
shown in Figure 2, are much larger and do not exhibit a strict 
pattern similar to those of office buildings. Consumption 
increases during an event, and the actual pattern and 
magnitude are related to the event attributes such as type 
(hockey, basketball, …) and seating configuration.  

Because of the challenges described, it is expected that 
prediction accuracy will not be as high as for residential 
buildings or offices; however, it is important to address this 
category of consumers. 

The rest of this paper is organized as follows: Section 2 
reviews related work, and Section 3 introduces neural 
networks, support vector regression, and performance metrics. 
The methodology, including the data set, the prediction 
models studied, and model building, is described in Section 4. 
An evaluation is presented in Section 5, and Section 6 
concludes the paper. 

 
Figure 1: Building energy consumption [11] 

 
Figure 2: Event venue energy consumption 

2. Related Work 

A large number of research studies have addressed various 
aspects of electrical energy prediction such as a nation’s 
annual electricity consumption [12], the annual energy 
consumption of an industry sector [13], the annual energy 
consumption of the residential sector [14], and daily or hourly 
energy demand using smart metering technology [11, 15].  

Annual electrical energy consumption has been found to 
be related to population growth, economic growth, energy 
prices, energy intensity, and other factors [16]. Estimating 
annual energy consumption on a national or regional level is 
important for planning electrical production capacity; 
however, annual consumption does not account for demand 
peaks, and the generation capacity needs to be able to provide 
for these peak demands. Moreover, annual energy 
consumption prediction has very limited relevance to energy 
conservation efforts. Wholesale market prices for electricity 
are driven by a supply-demand relation, which further 
increases the need to predict demand variations.  

The interest in demand prediction together with the 
proliferation of smart metering has resulted in a shift in 
forecasting efforts to daily and hourly consumption prediction 
[11, 15]. This paper explores daily, hourly, and 15-min 
interval prediction for consumption and peak demand and 
compares their accuracy. 

The work of Jain et al. [11], like this paper, explored the 
impact of temporal granularity (daily, hourly, 10-min 
intervals) on the accuracy of electricity consumption 
forecasting. They achieved the best results with hourly 
intervals and monitoring by floor level. However, whereas 
Jain et al. studied a residential building, this research is 
concerned with large commercial customers, specifically 
event-organizing venues. To handle large variations in energy 
consumption caused by events, we include contextual 
information about future events such as event type and 
schedule. Moreover, in addition to consumption prediction, 
our work also includes peak demand prediction. 

To plan for demand peaks and to bill event organizers 
adequately for use of the venue, it is important to predict peak 
demand. Fan et al. [17] developed a prediction model for next-
day building energy consumption and peak power demand. 
Similarly, short-term forecasting has been considered in a 



 

 

number of other studies [18–20]. However, in the case of 
event organizing, the prediction timeframe is much longer, six 
month to one year or even two years, as the estimated energy 
cost needs to be included in early venue booking negotiations. 
Moreover, although the energy consumption of office and 
hotel buildings as explored by Fan et al. [17] exhibits 
weekday/weekend/holiday patterns, the energy use of an 
event venue is driven by event type and schedule. Quilumba 
et al. [8] recognized the importance of differences in energy 
consumption patterns and proposed a prediction approach 
which groups customers according to their consumption 
behavior. Our work explores the possibility of adapting 
approaches from residential and/or commercial settings to 
predict electricity consumption and demand for event-
organizing venues. Energy prediction is especially important 
for venue owners because they need to account for energy 
when they provide quotes for use of the venue. 

Various techniques have been used to predict electrical 
energy needs, including neural networks (NN) [21], support 
vector machines (SVM) [11], autoregressive integrated 
moving average (ARIMA) models [17], clustering models 
[22], decomposition models, gray prediction [10], and 
regression models [23]. Suganthi and Samuel [16] reviewed 
models for energy demand forecasting and observed that the 
focus had shifted from residential to commercial and 
industrial domains. They noted that neural networks have 
been used extensively for electricity forecasting and 
considered them suitable for industrial energy prediction. 
Support vector regression (SVR) was considered as an 
emerging technique, together with genetic algorithms and 
fuzzy logic. 

Ahmad et al. observed that NN and SVR are widely used 
in electrical energy forecasting, and therefore their review 
[24] focused on the use of NN and SVR for building energy 
prediction. They concluded that the two models each have 
their own advantages and disadvantages and that it is 
inconclusive which one is the best for energy forecasting. 

Tso and Yau [25] compared the performance of three 
energy prediction models: regression analysis, decision trees, 
and NNs. In the winter phase, NNs performed slightly better, 
whereas in the summer phase, the decision tree model 
performed somewhat better than the other two. As in the work 
of Ahmad et al. [24], it was inconclusive which model was 
best overall. 

Kialashaki and Reisel [14] evaluated regression models 
and neural networks with respect to predicting the annual 
energy consumption of the residential sector in the United 
States. In terms of accuracy, the models studied were not 
significantly different; however, the authors observed that due 
to their sensitivity to economic crises, NNs are likely more 
realistic. 

Because a number of studies have highlighted the 
significance of NNs and SVRs in electricity demand and 
consumption prediction, this work explores the use of NNs 
and SVRs in the context of Green Button and of event-
organizing venues. 

While energy consumption in office buildings exhibits 
repetitive, and a quite stable pattern, consumption of an event-
organizing venue varies greatly and does not follow time-

based pattern; this makes energy prediction for such 
consumers difficult. Sensor-based approaches typically use 
historical energy readings and meteorological information [7, 
8]; in addition to those attributes, our approach also 
incorporates event contextual information such as event type 
and schedule. Several mentioned studies consider short-time 
forecasting [18–20]; in contrast, long-time forecasting is 
needed for event venues. Moreover, we also explore the 
impact of data granularity to evaluate when it is important to 
use shorter interval readings. 

3. Background 

This section introduces the two machine learning 
approaches used in this study, neural networks and support 
vector regression, and describes the performance metrics used 
to compare the prediction models. 

3.1. Neural Networks 

Neural networks (NN) [26] are a family of machine 
learning models inspired by the human brain and used to 
approximate functions that are generally unknown. Like a 
human brain, neural networks consist of interconnected 
neurons. There are many types of neural networks such as 
radial basis function networks, Kohonen self-organizing 
networks, and recurrent networks; however, here the focus is 
on feed forward neural networks (FFNNs) because the FFNN 
is one of the most frequently used NNs for energy forecasting 
[27] and, as such, is used in this study as well. 

Figure 3 shows a three-layer FFNN that can be used to 
approximate non-linear functions without assuming 
relationships between inputs and outputs. The information in 
the FFNN moves in one direction, from the input layer 
through the hidden layer(s) to the output. In such a network, 
there are no connections between neurons in the same layer. 
The number of neurons in the input layer corresponds to the 
number of input features, and the number of neurons in the 
output layer is equal to the number of outputs. An FFNN can 
have more than one hidden layer, but often a single layer is 
sufficient. The number of hidden layers and the number of 
neurons in each hidden layer are chosen by the user. 

 

 
Figure 3: Feed forward neural network 

 
 



 

 

The output of each neuron in the hidden layer is 
determined as follows: 

𝑦𝑗 = 𝜑 (∑ 𝑤𝑖𝑗𝑥𝑖

𝑁

𝑖=1

+  𝑤𝑖𝑜), 

where the xi are neuron inputs, the 𝑤𝑖𝑗  are synaptic weights 

connecting the i-th neuron in the input layer to the j-th neuron 
in the hidden layer, and 𝑤𝑖𝑜 is a bias which shifts the decision 
boundary, but does not depend on any inputs. 𝜑  is an 
activation function which is usually modelled as a step or 
sigmoid function. The output of the neurons in the output layer 
is modelled in the same way, with the weights corresponding 
to connections between the hidden and output layers. 

FFNN weights are learned during the training phase, using 
backpropagation in conjunction with an optimization method 
such as gradient descent. To start the learning process, the 
weights are randomly initialized. Next, the input is applied 
and the output calculated according to the feedforward 
process described earlier. The calculated output is compared 
to the known output, and the calculated error is propagated 
backwards through the network. During this backpropagation, 
the weights are adjusted according to the optimization method 
to reduce the error for that specific input. The process is 
repeated for all training examples, and the overall process is 
repeated until the error drops below a pre-defined threshold. 

 

3.2. Support Vector Regression 

Support vector machines (SVM) [26][28] are supervised 
learning models used for classification and regression 
problems; a version of SVM for regression is referred to as 
support vector regression (SVR). SVR is characterized by a 
high degree of generalization, which indicates the model’s 
ability to perform accurately on new, previously unseen data. 
In SVR, support vectors are training samples which lie on the 
𝜀-tube bounding decision surface, as illustrated in Figure 4. 
Observations within the 𝜀-tube do not influence predictions; 
in other words, residuals less than 𝜀 do not get penalized. 

Suppose that an output Y is modelled as a function of input 

variables X, given a training data set {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑖=𝑁. The SVR 

approximates the relationship between input and output as: 

 
Figure 4: Nonlinear SVR, adapted from [8] 

𝑌 = 𝑊 ∙ 𝛷(𝑋) + 𝑏, 

where 𝛷(𝑋) is a nonlinear kernel function which non-linearly 
maps from the input space X to the feature space. Coefficients 
W and b are determined by minimizing the following function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝑤‖2 + 𝐶

1

𝑁
∑ 𝜉𝑖

𝑁

𝑖=1

+ 𝜉𝑖
∗ 

subject to constraints: 

𝑌𝑖 − 𝑊 ∙ 𝛷(𝑋𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖 

𝑊 ∙ 𝛷(𝑋𝑖) + 𝑏 − 𝑌𝑖 ≤ 𝜀 + 𝜉𝑖
∗ 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0 

where W is a weight vector which needs to be as flat as 
possible to achieve good generalization. Terms 𝜉𝑖   and 

𝜉𝑖
∗  capture residuals beyond the 𝜀 boundary (Figure 4), and 

cost C is the regularization parameter that determines the 
penalty for errors greater than 𝜀. 

The radial basis function (RBF) is a widely used kernel for 
mapping the input space to a high-dimensional feature space. 
The RBF is also efficient to compute and has only one 
parameter that needs to be determined; hence, this work also 
uses the radial basis kernel. The RBF kernel is expressed as: 

𝐾(𝑥, 𝑥′) = exp(−𝛾‖𝑥 − 𝑥′‖2), 

where parameter 𝛾 specifies the influence of each data point.  

3.3. Performance metrics 

To assess model accuracy, this work uses two metrics: the 
mean absolute percentage of error (MAPE) and the coefficient 
of variance (CV). 

The MAPE metric has been used in a number of electricity 
prediction studies [17] [29]. It expresses average absolute 
error as a percentage and is calculated as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖 − �̂�𝑖|

𝑦𝑖

𝑁

𝑖=1

× 100, 

where 𝑦𝑖  is the actual consumption, �̂�𝑖  is the predicted 
consumption, and N is the number of observations.  

Like MAPE, the CV metric has often been used in energy 
prediction studies [8,26]. It evaluates how much error varies 
with respect to the actual consumption mean and is calculated 
as follows:  

𝐶𝑉 =
√

1

𝑁−1
∑ (𝑦𝑖−�̂�𝑖)2𝑁

𝑖−1

�̅�
× 100, 

where 𝑦𝑖 , �̂�𝑖, and N represents the same elements as in MAPE 
and �̅� is the average actual consumption.  

Additionally, the difference in cumulative daily 
consumption between the different models and methodologies 
is evaluated. The same MAPE and CV metrics are used, with 
the exception of 𝑦𝑖  and �̂�𝑖 ,  which represent the cumulative 
actual consumption and the cumulative predicted 
consumption for the i-th day, and N, representing the number 
of days. 



 

 

With respect to demand prediction, the focus here is on the 
accuracy of the predicted daily demand peaks because these 
peaks drive overall electricity cost. In other words, the main 
interest is not in evaluating overall demand prediction 
accuracy, but in the accuracy of demand peaks. Accuracy is 
still evaluated using the same MAPE and CV formulas, with 
the exception of 𝑦𝑖 , which represents the actual peak demand 
for the i-th day, �̂�𝑖 , which is the predicted peak demand for the 
i-th day, and N, representing the number of days. 

4. Methodology 

This work uses two machine learning approaches for 
electricity forecasting: a neural network and support vector 
regression. For each machine learning approach, several 
model variants are investigated, and their accuracy is 
evaluated. 

Because the choice of prediction model and its input 
variables depends on the actual prediction scenario, this 
section first introduces the data set with the corresponding 
prediction scenario. Next, the studied prediction models are 
described. Each prediction model is generic so that it can be 
used with both NN and SVR. Finally, this section describes 
how the prediction models are built, optimized, and tested. 

4.1. Data set 

Because this study is concerned with energy prediction for 
event-organizing venues, the data set includes energy 
consumption and demand readings for an event venue. Figure 
5 shows hourly consumption readings over the two-year 
period acquired through the Green Button program. There is 
no easily visually notable seasonal pattern; however, drops in 
consumption can be noted in Jun and August which coincides 
with the venue maintenance schedule.  

Throughout the year, there are large consumption spikes 
coinciding with occurrence of various events. This highlights 
the importance of including event schedule data and event 
attributes in prediction. Thus, the data set consists of two 
parts: the first part contains energy data obtained from smart 
meters and the second part includes event-related attributes. 

To analyze consumption patterns further, Figure 6 
displays energy consumption over a few days, with vertical 
bars indicating event duration. Note that an increase in energy 
consumption on the day of an event starts in the morning, 
coinciding with the start of set-up activities for that event. 
Electricity consumption drops sharply upon event completion. 
During non-event days, consumption generally increases 
during the day and drops overnight; however, there are 
additional variations throughout the day. To capture high  

 
Figure 5: Energy consumption over two years 

 

Figure 6: Energy consumption and events 

energy consumption during events, the prediction model will 
rely on event date and time, and to account for the increase on 
the morning of the event, the hour of the day and the event day 
indicator will be used as input variables. 

4.2. Prediction Models  

All prediction models are designed to work with both NN 
and SVR. Each model will be evaluated with NN and SVR as 
well as with different data granularities. Because this work 
aims to develop an approach to be integrated into a 
commercial product, special attention is paid to ease of use. 
This especially pertains to event data; an effort is made to keep 
the required event data limited and simple to collect to reduce 
the barrier to entry. 

For each model, and for each data granularity, one 
observation is associated with one energy reading. Other 
features, including event-related attributes, were added to the 
energy reading data set. 

Model 1 (M1): The base model defines the set of core 
input features that impact the energy consumption and 
demand of an event-organizing venue; it is a base for accuracy 
comparisons. Specifically, the base model includes the 
following input variables: 

 Event Type: basketball, hockey, and other. From the event 
history, it is possible to distinguish basketball and 
hockey, but classifying other events would require 
extensive manual annotation, and therefore they are 
placed in the “other” category. Because there is no 
specific order of categories with respect to energy 
consumption, each one is treated as a separate model 
input with possible values of 0 and 1. The event schedule 
is also indicated in this way: it is 1 for energy readings 
during which an event is occurring and 0 for all other 
readings. 

 Day of the year: 1 to 365. Outside temperature is often a 
factor in energy prediction models [24], but in the case of 
event organizing, due to long prediction timelines of up 
to a year or even two, accurate temperature prediction is 
limited. Therefore, to account for temperature changes 
and seasons, this model uses day of the year as an input. 
This prevents weather forecasting errors from affecting 
energy prediction error. 

 Event day: 0 or 1. As previously mentioned, on event 
days, energy consumption increases early in the day due 
to event set-up. This parameter, together with hour of the 
day, will help the model to predict this increase. 



 

 

 Hour of the day: 1 to 24. This input will account for 
day/night consumption variations and with addressing the 
energy increase due to preparations for an event. 

 Seating configuration. This accounts for different venue 
configuration with different seating capacities. 

 
In an attempt to improve the accuracy of the prediction 

model, the following additional models were explored:  

 Model 2 (M2): The base model with hours before an 
event. Set-up for events typically occurs a number of 
hours before the event and results in an increase in energy 
demand; the demand continues to increase until the peak 
value, which typically occurs during the event. To try to 
capture this increase due to set-up activities more 
effectively, the hours before event variable has been 
added as a model input. 

 Model 3 (M3): One step ahead. A number of energy 
prediction models use the known electrical consumption 
values from the previous time step (t-1) to predict 
consumption at time step t [11, 29]. This approach is 
iterative because to predict consumption at time tn, 
consumption needs to be predicted for t0 to tn-1, where t0 
is the last known consumption. The drawback of this 
approach is that the addition of a single future event 
requires recalculating consumption values for the 
complete prediction timeline. 

 Model 4 (M4): Two separate models for event and non-
event days. Energy use patterns are very different for 
event and non-event days; overall daily consumption is 
much higher on event days, and peak demand on an event 
day can be several times higher than on a non-event day. 
Hence, in this approach, two separate models are created, 
one for event days, and one for non-event days. 
 

To observe the impact of data granularity, the prediction 
models described above were evaluated with daily, hourly, 
and 15-min data. In the case of daily and hourly data 
granularity, the Green Button 15-min data were aggregated as 
follows: 

 Daily/hourly energy consumption is the sum of 15-min 
energy consumptions: 

𝐸𝐶 = ∑ 𝐸𝐶𝑖

𝑛

𝑖=1

, 

where 𝐸𝐶𝑖 is the energy consumption for the i-th interval, 
and n is the number of intervals.  

 Daily/hourly energy demand is the highest demand 
reading for the observed day/hour:  

𝐸𝐷 = max
𝑖

(𝐸𝐷𝑖)  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … 24  , 

where 𝐸𝐷𝑖  is the energy demand for the i-th 15-min 
interval. 

 
Results obtained with daily, hourly, and 15-min data were 

compared to evaluate the significance of data granularity. The 
time period considered was always the same, independent of 
data granularity. Therefore, the ratio of daily, hourly, and 15-

min data set size is 1:24:96. Working with a 96 times larger 
data set (15-min in comparison to daily) is much more time-
consuming and resource-intensive; hence, the results obtained 
should justify the use of bigger data sets. 

In Big Data research, having more data is associated with 
higher accuracy and increased business value. This work 
explores the impact of data granularity on the accuracy of 
electricity prediction models in the context of an event-
organizing venue. Model 2, the base model with hours before 
an event, was not considered with daily data because the 
samples represent daily values and there is no concept of 
“hours before an event”.  

4.3. Model building 

Model building here refers to choosing the model 
configuration suitable for the prediction problem at hand and 
training the chosen configuration. Each technique, NN and 
SVR, has parameters that need to be determined during the 
learning phase. For NNs, a single hidden layer is typically 
sufficient, but the number of hidden neurons and the learning 
rate need to be chosen according to the prediction problem. 
For SVR with a radial basis kernel, two parameters need to be 
determined: the cost C, which determines the penalty for 
errors greater than 𝜀  (Figure 4), and the 𝛾 parameter of the 
radial basis function. 

Each combination of model parameters constitutes a 
model configuration. For each technique, NN and SVR, for 
each model described in Section 4.2, and for each data 
granularity, the best model configuration needs to be chosen. 
Estimating the performance of different model configurations 
to choose the best one is referred to as model selection. Once 
the best model is selected, model assessment estimates its 
prediction error on new data.  

The model selection process is described in Figure 7. The 
process is the same for NN and for SVR, as well as for all 
models described in Section 4.2 and all data granularities. 
First, the data set is divided into a training set and a testing set. 
The testing set is a portion at the end of the data set reserved 
solely for model assessment; this set is not used for model 
building or model selection. The remainder of the data, the 
training set, are used for model selection and for supervised 
learning. 

Model selection was carried out applying blocked cross-
validation, a variant of k-fold cross validation, on the training 
set, as suggested by Bergmeir and Benítez [30]. In k-fold 
cross-validation, a data set is randomly partitioned into k 
subsets of equal size. One subset is reserved for validation, 
and the remaining subsets are used for training. The process is 
repeated k times (k-fold), each time using a different subset 
for validation. The results from k repetitions are averaged to 
form a final error estimate. Blocked cross-validation is 
different from k-fold cross-validation in the way that the data 
are partitioned: instead of random data points, each subset 
consists of continuous data points from the time series. 

As illustrated in Figure 7, step 3, a set of configurations C 
is formed by assembling a grid of parameters. In the case of 
SVR, these configurations consist of various combinations of 
C and 𝛾 parameters, whereas with NN, the number of hidden 
neurons and the learning rate are varied. The training set is 



 

 

 
Figure 7: Model selection process 

split into K subsets (step 4), where the number of splits equals 
the number of folds in k-fold cross-validation. Steps 5 to 7 
represent the folds of the cross-validation, and step 8 estimates 
the overall error for the c-th configuration.  

The process proceeds from step 9 by processing the next 
configuration. After all configurations have been processed, 
the configuration with the lowest error 𝜀𝑐 is selected (step 10), 
and the model is trained using the complete training set (step 
11). This model is then evaluated on the previously unseen 
data from the testing set. 

Figure 8 illustrates parameter optimization for SVR. The 
cost C was varied from 1e-5 to 10,000, and 𝛾 was varied from 
1e-7 to 100. For each parameter, ten values were considered; 
hence, the total number of configurations evaluated was 100. 
Colours indicate different error values.  

Figure 8: SVR parameter optimization 

5. Evaluation  

This section describes empirical data sets and 
implementation, presents experiments and results, and 
discusses findings and limitations. 

5.1. Empirical data sets and implementation 

The proposed approach has been evaluated on data from 
Budweiser Gardens, a large event-organizing venue with a 
capacity of over 10,000, located in Ontario, Canada. The 
venue is the home arena for a basketball and a hockey team. 
In addition, it hosts a variety of other sport events, concerts, 
and entertainment shows, ranging from small intimate shows 
to very large productions. 

Energy data were obtained through the Green Button 
standard interface. London Hydro, the local electrical utility 
involved with this project, has developed the first cloud based 
Green Button Connect My Data test environment to allow for 
data access to academic partners with the customer’s consent. 
The data consisted of 15-minute electricity consumption and 
demand readings from revenue grade smart meters. The data 
set spans from January 1, 2013 to March 31, 2014, for a total 
of 43,680 data points. Each data point includes the reading 
date, time, consumption, and demand. Hourly and daily data 
sets were created by aggregating the 15-min data. The hourly 
and daily consumptions are sums of 15-min consumption 
readings, and demand was calculated as the maximum of 15-
min demand. 80% of the data were used for model selection 
and training, and the remaining 20% were used for testing. 
The training data set contained readings for the full 2013 
calendar year so as to account for all seasons. 

Because energy consumption in event-organizing venues 
is driven by the events hosted in the venue, event-related data 
have been added to the energy readings. Section 4.2 described 
the four prediction models evaluated, with their input 
variables. 



 

 

The prediction models were implemented in the R 
language [31]. Specifically, the FFNN models were 
implemented using the “RSNNS” package and the SVR 
models using the “e1071” package.  

Experiments were carried out on a small cluster consisting 
of two nodes, each with 24 Intel Xeon CPUs and 96 GB 
memory. To take advantage of the large number of processors, 
the code was parallelized so that different model 
configurations and different cross-validation folds could run 
in parallel on different nodes. Communication between the 
two nodes was established using a message passing interface 
(MPI). 

5.2. Experiments and results 

As already mentioned, two machine learning approaches, 
NN and SVR, and four different prediction models were 
considered. The process described in Section 4.3 and Figure 7 
was carried out for each combination of prediction model and 
machine learning approach. Moreover, a similar process was 
repeated for daily, hourly, and 15-min data. This means that a 
total of 22 models were evaluated for consumption prediction 
and the same number of models for peak demand forecasting. 
For each experiment, two error measures were calculated: 
MAPE and CV. 

Figure 9 illustrates the actual energy consumption and the 
predicted values obtained by NN and SVR for one month from 
the testing data set. In this example, the base model with 
hourly data was used. Vertical lines indicate the occurrence of 
different events. Note that the prediction models can estimate 
the rise in electricity consumption just before an event and the 
peak during the event. However, for non-event days, the 
prediction model does not closely follow actual consumption. 
This occurs because during those days, there are random 
hourly variations that are not captured in the prediction model. 
For the period observed in Figure 9, for non-event days, the 
predictions produced by the NN were higher than those 
generated by the SVR 

Table 1 shows the consumption prediction errors for each 
of the four models: the two machine learning approaches, and 

the three data granularity levels. Model 2 was not considered 
with daily data because the “hours before event” concept does 
not apply with daily readings. Cumulative daily consumption 
errors are also evaluated; the results are presented in Table 2. 
Here, the consumption values, actual and predicted, are first 
aggregated for each day and then MAPE and CV are 
calculated. For daily models, MAPE and CV are the same 
with (Table 2) and without (Table 1) aggregation. For 15-min 
and hourly intervals, cumulative daily consumption errors 
(Table 2) are significantly lower than errors calculated without 
aggregation (Table 1).  

Whereas Table 1 includes consumption errors, Table 3 
shows peak demand errors for the same prediction models, the 
same machine learning approaches, and the same data 
granularity levels. In the context of demand-driven pricing, 
the accuracy of the peak demand predictions is important 
because these peaks drive the overall electricity cost. 

Overall, the accuracy obtained was not as high as in some 
other studies of residential buildings or offices. For example, 
Jain et al. [11] reported CV values as low as 2.16 for a 
residential building using SVR with hourly data. However, 
Jetcheva et al. [32] showed that prediction model accuracy 
varies greatly when applied to different buildings. They 
also noted that commercial and industrial sites present a 
modelling challenge. An event-organizing venue is 
especially challenging due to large variations in 
consumption caused by events. 

5.3. Discussion 

To compare the accuracy of NN and SVR in predicting 
electricity consumption, Figure 10(a) shows MAPE and 
Figure 10(b) shows CV for the four prediction models and the 
three data granularities. It can be seen that no single machine 
learning approach, NN or SVR, is better with all prediction 
models; however, NN either outperforms SVR or is slightly 
inferior. It is interesting that both machine learning 
approaches, NN and SVR, are significantly more accurate  

 
Figure 9: Predicted vs. actual energy consumption 
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Table 1 

Consumption MAPE and CV errors for the five models and the two approaches: NN and SVR 

Models Neural networks (NN) Support vector regression (SVR) 

MAPE CV MAPE CV 

15-min intervals     
 1 - Base Model 22.78 26.21 22.29  24.88 
 2 - Base Model + hours before event 22.88 25.87 21.58  23.84 
 3 - Step ahead 27.96 32.74 26.96  35.40 
 4 - Two models (event/non-event days) 23.27 23.41 31.63 35.31 
Hourly     
 1 - Base Model 20.42 23.32 19.26  22.12 
 2 - Base Model + hours before event 19.52 22.78 19.22  21.89 
 3 - Step ahead 19.87 23.60 22.74 29.67 
 4 - Two models (event/non-event days) 20.67 21.92 29.66 34.13 

Daily     
 1 - Base Model 10.25 16.72 16.44 21.30 
 3 - Step ahead 8.61 10.55 10.72 13.05 
 4 - Two models (event/non-event days) 9.37 10.84 14.06 17.52 

 

Table 2 

Cumulative daily consumption MAPE and CV errors for the five models and the two approaches: NN and SVR 

Models Neural networks (NN) Support vector regression (SVR) 

MAPE CV MAPE CV 

15-min intervals     
 1 - Base Model 9.86 12.06 11.40 14.90 
 2 - Base Model + hours before event 12.19 16.36 11.70 15.72 
 3 - Step ahead 18.99 25.30 14.16 16.70 
 4 - Two models (event/non-event days) 10.31 12.09 13.11 15.38 
Hourly     

 1 - Base Model 12.05 15.22 10.48 13.32 

 2 - Base Model + hours before event 11.62 14.66 11.47 15.31 
 3 - Step ahead 12.39 16.78 12.72 15.71 
 4 - Two models (event/non-event days) 11.27 14.26 13.13 15.39 

Daily     
 1 - Base Model 10.25 16.72 16.44 21.30 
 3 - Step ahead 8.61 10.55 10.72 13.05 
 4 - Two models (event/non-event days) 9.37 10.84 14.06 17.52 

 

Table 3 

Peak demand MAPE and CV errors for the five models and the two approaches: NN and SVR 

Models  Neural Networks (NN) Support vector machine (SVR) 

MAPE CV MAPE CV 

15-min intervals     
 1 - Base Model 7.19 9.43 8.85 11.22 
 2 - Base Model + hours before event 13.32 14.89 11.52 13.8 
 3 - Step ahead 21.79 27.67 30.34 36.37 
 4 - Two models (event/non-event days) 9.28 10.70 26.82 34.82 
Hourly     
 1 - Base Model 10.39 11.19 7.65 10.04 
 2 - Base Model + hours before event 12.68 14.40 9.17 11.61 
 3 - Step ahead 17.30 22.90 26.17 39.80 
 4 - Two models (event/non-event days) 12.67 14.66 25.01 31.64 

Daily     
 1 - Base Model 7.64 9.36 21.81 27.20 
 3 - Step ahead 8.02 10.61 21.79 27.24 
 4 - Two models (event/non-event days) 8.51 10.52 17.21 23.18 

 



 

 

with daily data than with hourly or 15-min readings: all three 
models, M1, M3, and M4, show considerably better accuracy 
in terms of MAPE and CV errors with daily data. While 
MAPE and CV errors for daily data were as low as 8.61 and 
10.55 respectively, MAPE errors for hourly and 15-min 
reading were over 19 and 21, respectively. 

This can be explained by the fact that with hourly data, the 
model cannot capture random consumption variations, 
especially during non-event days, as illustrated in Figure 9. In 
contrast, with daily readings, the aggregation process 
dampens the impact of the hourly consumption variations. As 
shown in Figure 10, with daily data, NN accuracy is better 
than that achieved by SVR.  

The accuracy is also evaluated on a daily level; MAPE and 
CV errors for cumulative daily consumption are displayed in 
Figure 11. While errors varied greatly when the evaluation 
was done on the input data granularity (Figure 10), cumulative 
daily consumption prediction errors were much more 
consistent across different granularities (Figure 11). 
Moreover, error rates are much lower when observed on a 
daily level: for hourly and 15-min readings MAPE and CV 
errors were under 15 and 17 respectively for most models 
while without aggregation all MAPE errors were over 19 and 
CV errors over 21. As illustrated in Figure 11 the best 

accuracy was obtained with NN and M3 model with MAPE 
error 8.61 and CV error 10.55. 

While Figure 10 and Figure 11 present the consumption 
prediction errors, Figure 12 depicts the peak demand errors, 
11(a) displays the MAPE, and 11(b) the CV. Similarly to 
consumption prediction, no single approach, NN or SVR, was 
better for all prediction models; nevertheless, NN either 
outperformed SVR or came relatively close. Although 
consumption prediction was much more accurate with daily 
data than with other granularities, the difference was not very 
large for peak demand prediction. Moreover, the overall best 
result, MAPE error 7.19, was achieved with NN, model M1, 
and 15-min data, whereas the lowest CV error 9.36 was 
achieved also with NN, model M1, but with daily data. 
Although consumption prediction with the 15-min interval 
data suffered from an inability to capture random variations, 
peak demand prediction did not have the same issue because 
it is concerned with predicting the highest daily peak.  

In the case of NN, good results with MAPE error 8.51 or 
lower and CV error 10.61 or lower, were achieved with all 
three models, M1, M3, and M4 with daily data, but also with 
models M1 and M4 with 15-min data, MAPE errors 7.19 and 
9.28 and CV errors 9.43 and 10.70 respectively. Because the 
15-min data set contains 96 times more data than the daily data  

 
a) Consumption MAPE errors 

 
b) Consumption CV errors

Figure 10: Consumption MAPE and CV errors 

 
a) Cumulative daily consumption MAPE errors 

 
b) Cumulative daily consumption CV errors 

Figure 11: Cumulative daily consumption MAPE and CV errors 
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a) Peak demand MAPE errors 

 
b) Peak demand CV errors 

Figure 12: Peak demand MAPE and CV errors 

set, the hourly data set is more suitable for peak demand 
prediction.  

SVR errors were much higher than NN errors for daily 
data (Figure 12); however, the SVR achieved similar error 
rates, in terms of both MAPE and CV errors, to NN when the 
M1 model was used with 15-min data. Nevertheless, in terms 
of peak demand prediction, NN is considered to be a better 
solution than SVR because errors were much lower than with 
SVR with the smallest data set (daily data): MAPE error 7.74 
and CV error 9.36 for NN, compared to MAPE error 17.21 
and CV error 23.18 for SVR. 

To determine which model, M1, M2, M3, or M4, and 
which data granularity achieved the best accuracy for each 
machine learning approach, Figure 13 shows the MAPE and 
CV errors for NN, and Figure 14 depicts the MAPE and CV 
errors for SVR.  

Figure 13 shows that the accuracy of predicting peak 
demand with NN is generally higher than the accuracy of 
consumption prediction. Daily data resulted in overall better 
prediction of consumption and demand than the other data 
granularities. 15-min data with the M1 model showed very 
good accuracy in peak demand prediction, but had the 
disadvantage of a much larger data set. 

Although NN achieved the best results with daily data 
(Figure 13), the situation was very different with SVR, as 
illustrated in Figure 14; the errors varied greatly among 

models and data granularities, and there was no single model 
that outperformed others in terms of consumption and peak 
demand prediction.  

In terms of MAPE and CV, the best consumption 
prediction was obtained with model M3 and daily data, but 
good peak demand predictions were also obtained with 
models M1 and M2 with hourly data, and with model M1 with 
15-min data. Due to the data set sizes, daily and hourly data 
sets are preferred over the 15-min data set. Therefore, SVR 
models M1 and M2 with hourly data are options for peak 
demand prediction and M3 with daily data for consumption 
prediction.  

Another important aspect that needs to be considered in 
evaluating a prediction model is execution time. As with each 
data granularity, the same time periods were always 
considered, the ratio of data in daily, hourly, and 15-min data 
sets was 1:24:96. NN and SVR execution times for different 
data granularities and the observed models are shown in 
Figure 15. Because the variations in execution time are large, 
the results are shown on a logarithmic scale. The times shown 
include model selection, model training with a training data 
set and prediction with a test data set. For each NN and SVR, 
two parameters with 10 values each were considered, for a 
total of 100 configurations.  

 

 
 

a) MAPE error b) CV error 

Figure 13: Consumption and peak prediction errors for neural network 
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a) MAPE error

 
b) CV error 

Figure 14: Consumption and peak prediction errors for SVR 

 
Figure 15 shows that for hourly data, the NN models took 

much less time; however, with daily data, the time required 
was shorter for SVR. In terms of accuracy, NN outperformed 
SVR with daily data; hence, longer execution time is 
outweighed by better accuracy.  

Overall, in terms of consumption prediction, daily data 
sets achieved better accuracy than the other data sets 
regardless of the machine learning approach. NN achieved 
considerably lower error rates, and therefore NN with the 
daily data set was considered the best option for consumption 
prediction. 

In terms of peak demand prediction, specific models with 
15-min or hourly data achieved slightly better accuracy than 
the same models with daily data. However, because model 
selection and training time with these data is longer and error 
rates only slightly lower, prediction with daily data is still a 
very good solution. As with consumption prediction, NN 
achieved better results than SVR for peak demand forecasting 
with daily data. 

The results could be improved by adding new attributes to 
better describe events. We are currently in the process of 
discussing with Budweiser Gardens possible new attributes; 
examples include separating “other” category into specific 

 

Figure 15: Execution time 

event types, creating subcategories for each event type and 
quantifying electricity-related equipment brought into the 
venue by event organizers. As those attributes are not known 
for past events, the extensive data collection process will have 
to take place before they can be used for prediction. 

6. Conclusions  

Smart meters and sensors have created possibilities for 
collecting more detailed and finer-grained data related to 
energy consumption. These Big Data promise a foundation for 
development of new energy services and better energy 
management and conservation. Although a typical premise in 
data analytics is that the availability of more data has the 
potential to enable new insights and better decisions, it is 
important to distinguish for which applications these Big Data 
are truly needed.  

This study explores the importance of more data, 
specifically the impact of temporal data granularity on the 
accuracy of electricity consumption and peak demand 
prediction. Unlike the large number of studies that have 
considered offices or residential buildings, this paper has 
studied an event-organizing venue, which is an especially 
difficult problem due to large consumption variations and the 
impact of event attributes on energy use.  

Two machine learning approaches were considered, NN 
and SVR, and four prediction models were explored with 
each. In terms of consumption prediction, daily data achieved 
better results than 15-min or hourly data: the lowest MAPE 
error of 8.61 and CV error of 10.55 was achieved with NN. 
Cumulative daily consumption for daily and 15-min intervals 
has shown lower error rates than the evaluation done without 
aggregation; nevertheless, the accuracy with daily data was 
still better than the accuracy with other data granularities. 
With regard to peak demand prediction, the best model with 
daily data resulted in MAPE error of 7.64 and CV error of 9.36 
which is slightly worse results compared to specific 15-min or 
hourly models, but the processing time was much shorter. 
Overall, with daily data, NNs achieved better results than 
SVR. 

Future work will explore the applicability of the methods 
to other building categories. The possibility of providing 
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energy forecasting as a service and incorporating it into 
business flow [33] will be investigated.  Moreover, use of Big 
Data technologies such as Hadoop, MapReduce, and NoSQL 
in energy prediction will be explored. 
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