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Abstract—As one of the Vs defining Big Data, data velocity
brings many new challenges to traditional data processing
approaches. The adoption of cloud environments in complex
event processing (CEP) systems is a recent architectural style
that aims to overcome these challenges. Validating cloud-based
CEP systems at the required Big Data scale, however, is often a
laborious, error-prone, and expensive task. This article presents
CEPSim, a new simulator that has been developed to facilitate
this validation process. CEPSim extends CloudSim, an existing
cloud simulator, with an application model based on directed
acyclic graphs that is used to represent continuous CEP queries.
Once defined, the queries can be simulated in different cloud
environments under diverse load conditions. Moreover, CEPSim
is also customizable with different operator placement and
scheduling strategies. These features enable researchers and
system architects to experiment with different configurations and
strategies and to promote research in this field. Experimental
results show that CEPSim can successfully simulate existing
cloud-based CEP systems.

Index Terms—complex event processing; cloud computing;
simulation; Big Data.

I. INTRODUCTION

Recent trends in Web technologies and the proliferation
of sensor networks and mobile devices have created massive
amounts of data that pose many new challenges to traditional
data processing approaches. This new Big Data world is
often characterized by 4 Vs that identify these challenges [1]:
volume, velocity, variety, and veracity.

The velocity dimension of Big Data refers to how fast data
are generated and how fast they must be processed. Therefore,
handling velocity requires applications with online processing
capabilities of fast and continuous streams of data. From the
business perspective, the goal is to obtain insights from these
streams and to enable prompt reaction to them [2]. Among the
technologies that can be used to achieve this goal, Complex
Event Processing (CEP) is one of the most prominent.

CEP-based systems interpret input data as a stream of
events and accept user definitions of queries (rules) to derive
semantically enriched “complex” events from a series of
simpler events. These complex events can then be used to
trigger actions or be fed back to the system and potentially
originate other events. Because of the enormous scale as-
sociated with Big Data, traditional CEP systems have been

replaced by newer systems that leverage cloud environments
to provide the low latency and scalability required by modern
applications [3], [4], [5].

Development of efficient query distribution and scheduling
strategies is essential to the good performance of cloud-based
CEP systems. Nevertheless, validating these strategies at the
required Big Data scale is a research problem per se. For
instance, setting up large cloud deployments is a laborious
and error-prone process. Moreover, cloud environments are
subject to variations that make it very difficult to reproduce
the environment and conditions of an experiment [6]. Finally,
the financial cost and time required by these experiments is
often very high and may hamper their execution.

A common approach used to overcome these challenges is
to use simulators. Many areas of computer science have been
using simulators as a fast and efficient way to experiment with
different strategies and algorithms without incurring the effort
of running large-scale experiments. This approach has also
been applied to cloud computing research, as confirmed by
the reasonable number of cloud environment simulators avail-
able [7], [8], [9]. Nevertheless, these existing simulators often
assume a simplistic application model that cannot represent
CEP applications running in the cloud.

This article presents a new simulator called CEPSim, which
can be used to simulate CEP applications in multi-cloud
environments. CEPSim extends CloudSim [8] with a new ap-
plication model based on directed acyclic graphs (DAGs) that
represent continuous queries processing fast streams of data.
Using CEPSim, execution of these queries can be simulated in
different environments, including private, public, and multiple
clouds. In addition, CEPSim can also be customized with
different operator placement and scheduling strategies. These
features enable researchers and system architects to experi-
ment quickly with different configurations and strategies, thus
encouraging research in this field.

This article is organized as follows: Section II presents back-
ground information and related work. Section III discusses the
design of CEPSim, and Section IV examines how it has been
integrated with CloudSim. Experimental results are shown in
Section V, followed by conclusions in Section VI.
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II. RELATED WORK

A. Complex Event Processing

The basis of CEP was established by the work of Luckham
on Rapide [10] and later on in his book [11]. At about
the same time, the database community developed the first
classical Data Stream Processing (DSP) systems, such as
Aurora [12] and STREAM [13]. CEP and DSP technologies
share related goals, as both are concerned with processing
continuous data flows coming from distributed sources to
obtain timely responses to queries [14].

This work adopts a terminology based on the Event Process-
ing Technical Society (EPTS) glossary [15], which originated
from the CEP literature. According to the glossary definitions,
CEP can be considered a superset of DSP.

B. CEP Query Languages

In CEP systems, users create queries (or rules) that specify
how to process the input event streams and derive “complex
events”. These queries have usually been defined by means of
proprietary languages such as Aurora Stream Query Algebra
(SQuAl) [12] and CQL [13].

This research uses Directed Acyclic Graphs (DAG) as a
language-agnostic representation of CEP queries, which is
a natural choice corroborated by many studies in the liter-
ature. For instance, many CEP systems also use DAGs to
represent user queries. This is the case with Aurora [12],
StreamCloud [5], Storm [16], and many others.

Systems that use declarative query languages, on the other
hand, transform user queries into query plans to make them
“executable”, which often leads to structures that can be
mapped into DAGs. The STREAM system and the CQL
language [13] are examples that use this approach, as well as
the TimeStream [4] project. Finally, some systems are based on
pattern-based query languages that cannot be directly mapped
to DAGs. Even in this case, however, previous studies [17]
have shown that is possible to transform these queries into
DAG structures.

C. CEP in the Cloud

The recent emergence of cloud computing has been strongly
shaping the CEP landscape. For instance, TimeStream [4] and
StreamCloud [5] are CEP systems that use cloud infrastruc-
tures as their runtime environments.

Similarly, the discussion around Big Data, and, more specif-
ically the rise of the MapReduce platform [18], have also
had a great impact on CEP. The prevalence and success
of MapReduce has motivated many researchers to work on
systems that leverage some of its advantages while at the
same time trying to overcome its limitations when applied
to low-latency processing. StreamMapReduce [19], M3 [20],
and Twitter’s Storm [16] are examples of MapReduce-inspired
systems aimed at stream processing.

D. Simulator

The use of simulation in research of large-scale cloud
applications has motivated the development of a number
of simulators such as GreenCloud [7], CloudSim [8], and
iCanCloud [9]. None of these, however, can effectively model
CEP applications.

GreenCloud [7] targets packet-level simulation and energy
consumption of network equipment, which are not the focus
of this research.

CloudSim [8], on the other hand, is a well-known cloud
computing simulator that can represent various types of envi-
ronments, including private, public and multiple clouds. It pro-
vides customizable virtual machine allocation and provisioning
policies and also supports a number of energy consumption
and network models. The major drawback of CloudSim is
its simple application model, which is more appropriate for
simulation of independent batch jobs. This work circumvents
this limitation with a new model based on DAGs.

Because of its flexibility, CloudSim has originated many
different extensions in the literature [6], [21], [22]. Garg and
Buyya [6] created NetworkCloudSim, which extends CloudSim
with a three-tier network model. Guérout et al. [21], on
the other hand, focussed on implementing the DVFS model
on CloudSim. Finally, Grozev and Buyya [22] presented a
model for three-tier Web applications and incorporated it into
CloudSim. These extensions are orthogonal to those presented
in this paper because they do not focus on CEP.

The iCanCloud simulator [9] is similar to CloudSim, but it
can also parallelize simulations and it has a GUI to interact
with the simulator. The choice of CloudSim over iCanCloud
in this article was motivated by its more mature codebase,
the authors’ previous experience, and the larger number of
extensions available.

III. CEPSIM

CEPSim has been built to simulate multiple CEP queries
running on multiple virtual machines deployed in cloud envi-
ronments. Its main design principles are:

o Generality: it can simulate different CEP cloud-based
systems independently of query definition languages and
platform specificities;

o Extensibility: it can be extended with different operator
placement, operator scheduling, and load shedding algo-
rithms;

o Multi-Cloud: it can run the simulation on multiple clouds
at the same time;

o Self-containment: it can be integrated with cloud simula-
tors other than CloudSim.

e Reuse: it can reuse capabilities that are present in
CloudSim and comparable simulators.

Figure 1 shows a component view of CEPSim. The CEPSim
Core component, described in this section, is responsible for
most of the CEP-related logic whereas the CloudSim com-
ponent manages the simulation infrastructure and execution.
The CEPSim Integration component implements the pieces
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necessary to integrate both and is described in Section IV.
This design guarantees a loose coupling between CEPSim and
CloudSim and enables future integration with other simulators.

The CEPSim Core is composed of four main subcompo-
nents: the query model, which contains the base classes used
to describe queries; the query executor, which implements
most of the simulation logic; logging, which provides logging
facilities for the simulation; and metrics, which calculate the
metrics of interest to the simulator. The next subsections detail
these subcomponents.

A. Query model

In CEPSim, each user-defined query @ is represented by
a directed acyclic graph (DAG) Gg = (Vg, Eg), in which
the vertices Vg represent query elements and the edges Eg
represent event streams flowing from one element to another.
Figure 2 shows an example of a query (). The numbers on the
event producers represent their event generation rates, whereas
the numbers on the edges are their selectivities. These concepts
are described in detail in the following paragraphs.

Figure 3 shows a diagram of the classes used to
represent query graphs in CEPSim. The Vertexr class
is at the top level of the hierarchy, and two subtypes
of this class have been identified: OutputVertex and
InputVertex. The former represents vertices with outgo-
ing edges, and the latter represents vertices with incoming
edges. FventProducer describes event producers (sources)
and therefore is a subclass of OutputVertex only. Similarly,
EventConsumer characterizes event consumers (sinks) and
is a subclass of InputVertex. Finally, an Operator is both
an QutputVertex and an InputVertex because it receives
events from some vertices and sends them to others.

1) Vertex: Every Vertex has a unique identifier (¢d) and
an attribute instructions per event (ipe), which represents the
number of CPU instructions needed to process a single event.
For EventProducers, this attribute estimates the number of
instructions required to take events from the system input
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Fig. 3. CEPSim class diagram.

queues and forward them to query execution. A similar
observation applies to EventConsumers: the ipe attribute
measures only the effort required to forward the resulting
events to external systems or servers that effectively consume
the events.

2) Edge: A graph Edge connects an origin QutputVertex
with a target InputVertex, and has an associated selectivity
attribute. The selectivity determines how many of the events
that are input to the origin vertex are sent to the target. For
example, the outgoing edges of operators that only transform
events have selectivity = 1, whereas operators that filter or
combine events have selectivity < 1.

3) Query: A Query is defined as a simple composition
of vertices and their associated edges. Similarly to vertices, a
query also has an ¢d which uniquely identifies it in the system.

4) Operator: The base Operator class can be used to
simulate stateless operators. For example, an Aurora filter is
an operator that routes events to alternative outputs based on
event attributes [12]. This operator is represented in CEPSim
by an Operator instance op connected to m neighbours op,,.
Each edge (op — op,,) has a selectivity that determines the
percentage of all op input events sent to op,,.

To simulate stateful operators, two Operator subclasses
have been created: JoinOperator and WindowedOperator.

A JoinOperator is similar to a database join in the sense
that it also finds n-tuples of events that satisfy some condition.
A JoinOperator has two parameters: a window, which
controls the window size used to search for the n-tuples, and a
reduction factor that determines the percentage of all possible
n-tuples that satisfy the join condition. For example: if op is
defined as a join operator with two inputs and a window size of
one minute, and if 100 events arrived at each input during the
last minute, then there are 10 thousand event pairs that could
satisfy the join. The reduction factor controls the number of
these pairs that are sent to the op output.

The WindowedOperator, on the other hand, is used to
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simulate operators that process windows of events and com-
bine them in some manner. Typical examples are aggregation
operators that count events or calculate the average value of
attributes. WindowedOperators behaviour is determined by
three main attributes: a window size, an advance duration,
and a combination function.

Figure 4 illustrates the window and advance concepts.
The window specifies the period of time from which the
events are taken, and the advance duration defines how the
window slides when the previous window closes. Finally, the
combination function is defined as:

f : Rg’o — RZO (1)

where m is the number of operator predecessors. The function
regulates the number of events that are sent to the output given
the number of events accumulated in the input. Commonly, it
can be defined as a constant f(x) = 1, meaning that for each
window, only one event is generated (e.g., for counting events).

5) Generator: Every EventProducer is associated with
a Generator instance, which defines the number of events
generated per simulation interval. CEPSim currently contains
two different implementations:

e UniformGenerator: generates a constant number of
events per simulation interval;

o UniformlIncreaseGenerator: generates a uniformly
increasing number of events until it reaches a maximum
rate. After this point, this maximum rate is maintained
until the end of the simulation.

Other type of generators can be easily added to CEPSim by

creating extra Generator implementations.

B. Query executor

The main idea of the CEPSim simulation algorithm is
to keep with each query an internal state representing its
execution and, at equally spaced simulation ticks, to update
the state of all active queries.

The state of a query on a CEP system is roughly determined
by a queue of events associated with each operator’s in-
coming edge (attribute inputQueues from the InputVertex
interface). As a simulator, CEPSim only tracks the number
of events in each queue and does not handle real events.
Therefore, to “enqueue” events is equivalent to adding to the
queue size counter the number of incoming events. Moreover,
CEPSim always represents the number of processed events as
a floating-point number, which enables “partially processed”

<<interface>> defines
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!
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Fig. 5. Query execution class diagram.
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Fig. 6. Placement definitions.

events to be exchanged between operators. This characteristic
is especially useful to simulate complex operators that require
more than one simulation tick to process an event. For exam-
ple, an operator that requires five simulation ticks to generate
an output can be simulated by generating 0.2 events per tick.

Figure 5 shows the main classes and interfaces developed
for query simulation. The first step in a simulation is to define
a set of query Placements, in which each Placement maps
a set of vertices to the virtual machine on which they will run.
Note that the vertices from a query can be mapped to more
than one virtual machine, which implies distributed query
execution. In addition, a placement can also contain vertices
from more than one query. Figure 6 illustrates this concept:
Placement, maps all vertices from Query; and some from
Querys to Vmy, whereas Placements maps the remaining
Querys vertices to V'mgy. Defining placements for a set of
queries is an instance of the operator placement problem,
as defined by Lakshmanan et al. [23]. CEPSim is pluggable
and can incorporate different placement algorithms by using
alternative implementations of the OpPlacementStrategy
interface.

The execution of each Placement is handled by an instance
of the PlacementExecutor class, which encapsulates most
of the simulation logic. The class has three main methods that
constitute the Placement lifecycle: init, run, and finish.

The init method simply iterates over all vertices belonging
to the Placement and initializes each one, whereas the finish
method simply frees the resources allocated in the simulation.
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The run method is invoked at each simulation tick and
receives two main parameters: the number of CPU instructions
that the placement can use at that tick, and the clock time
at which the method has been invoked. Figure 7 shows a
schematic representation of the steps executed in a simulation
tick, which are:

1) All Generators associated with EventProducers from
the placement are activated to determine the number of
events that have been generated from the last simulation
tick to the current one;

2) The OpScheduleStrategy associated with the
PlacementExecutor is invoked to define the order
in which the vertices will be run and the number
of instructions allocated to each vertex. The default
scheduling strategy sorts the placement vertices
according to a topological order and allocates a
number of instructions proportional to the vertices’ ipe
attribute. This strategy ensures that each vertex has
the chance to process the same number of events at
each iteration. Nevertheless, other strategies can also
be used by providing alternative OpScheduleStrategy
implementations. The bottom of Figure 7 shows an
example of a vertex processing sequence determined by
a schedule strategy alongside the number of instructions
allocated to each vertex.

3) Finally, all vertices are traversed and executed according
to the specified order. Each vertex execution is also a
multi-step process:

a) The events in the input queues are consumed (step
3a). For EventProducer vertices, the generators are
considered as the incoming neighbours. The total number
of events consumed is obtained by dividing the number
of allocated instructions by the operator ipe. If the
operator has more than one input queue, then this total
is distributed proportionally to the size of the queues.

b) The operator is “executed”, and the output events are
generated (step 3b). The number of generated outputs
depends on the operator implementation, as described in
Section III-A.

c) The generated events are sent to the vertex successors
and enqueued in their input queues (step 3c).

TABLE I
CEPSim SIMULATION PARAMETERS.

Name
Simulation interval
Placement strategy

Description

Length of the simulation tick

Algorithm that maps query vertices to vir-
tual machines

(per placement) Algorithm that defines the
order on which vertices are traversed and
the number of instructions allocated to each

Scheduling strategy

Generator (per event producer) Function that charac-
terizes the rate at which input events are
generated

Queue size (per vertex) Input queue size

These steps are repeated for all vertices in the sequence
returned by the scheduling strategy.

Bounded queues: Most CEP systems limit the size of
operator queues to avoid memory overflow and to maintain
overall system performance. Because of this characteristic,
CEPSim also supports the definition of bounded input queues.
When using this feature, it is necessary to define the behaviour
of the system when new events arrive at an already full
queue. Currently, CEPSim supports only the application of
backpressure to the incoming neighbours.

When using backpressure, operators inform their predeces-
sors about the maximum number of events accepted for the
next iteration at the end of every simulation tick. Then the
predecessors limit their output on the next tick (if needed).
Nevertheless, when an operator limits its output, it may also
accumulate events in its own input queue and, consequently,
apply backpressure on its own set of predecessors. Ultimately,
the backpressure arrives at the event producer generators,
which may also choose to discard extraneous events or ac-
cumulate them in their own queues.

Table I summarizes the parameters and policies that can be
customized by the user and affect the simulation behaviour.
The table, however, contains only CEPSim specific parameters.
Other aspects of the simulation, such as datacentre characteris-
tics and resource allocation policies are defined by CloudSim,
and their description is out of the scope of this article.

C. Logging

In the run method, CEPSim maintains a log of all important
events occurring during the simulation. Formally, this log is
defined for each placement as a list of three types of entries: 1)
Processed, representing events processed by a vertex; 2) Sent,
representing events sent to a remote vertex; and 3) Received,
representing events received from a remote vertex.

Each log entry has the following attributes: 1) ¢, the sim-
ulation tick number; 2) ts, a timestamp measuring the wall
clock time elapsed since the beginning of the simulation; 3) id,
the vertex identifier; and 4) processed, the number of events
processed, sent, or received by the vertex. Sent tuples also have
a dest attribute containing the vertex identifier to which events
have been sent, and Received tuples have an orig attribute
identifying the vertex from which events have been received.



D. Metrics

One of the most important parts of a simulator is how the
metrics of interest are calculated. CEPSim has an extensible
metrics framework which enables new metrics to be added by
creating implementations of the M etricCalculator interface
(see Figure 5). These implementations are registered on the
Placement Executor before the simulation and can measure
any aspect of the simulation state. Because of their importance,
CEPSim provides built-in implementation for two metrics:
query latency and query throughput.

The query latency metric is calculated for each consumer
c and measures the average number of milliseconds from the
moment an event arrives at the query to the moment it is
consumed by c. Latency calculation is based on the following
procedure:

o Each queue U,, connecting a vertex u to a vertex v
has an associated timestamp tsq(Uy,). This timestamp
measures the average simulation time at which the events
have arrived at the queue. If v is an event producer, then
u is the generator connected to the producer;

» Each queue Uy, also has an associated latency l,(Uy,)
that measures the average latency of events from their
producers to vertex v. If v is an event producer, then
lg(Uyy) = 05

o When a vertex v emits a new set of events E! at time ¢,
the timestamp and latency of these events are calculated

as:
Et) — ZiEpred(v) tsq(Uiv) 'p(Uivv Ef;)
tse(E,) = ‘ T B )
ZzEpred(v)p wy Hy
i l Uiv : Uiv;Ef,
le(Ef)) _ Zze;m"ed(v) q( ) p( )—‘y—(t—tse(Ez))

ZiEpred(v) p(Uiv, EE)
3)
where pred(v) is the set of predecessor vertices of v and
p(Uiy, EY) is the number of events consumed from queue
Uiy to produce EY.
e For each queue U,, that succeeds v, the timestamp
tsq(Uyw) and latency I, (U,,,) are updated as:

- ‘E’Lt)| “t+ ‘va| 'tsq(va)

tsq(Upw) = B+ [Dow] 4)
_ ‘Ef)‘ ) le(Ef;) + ‘Uv’w| : lq(Uuw)
N o E ®

where |E!| is the number of events in E! and |U,.,| is
the number of events in queue U,,,.

« The latency of a consumer c is simply the average latency
of all events consumed by c:

latency(c) = » 1(EL)/|T)| (6)
teT

where T is the set of all timestamps when ¢ has consumed
some event.

Query throughput is also calculated for each consumer ¢

as the average number of events processed per second during

its lifespan. Formally, the following procedure is executed to
calculate this metric:

o Given a query (), a consumer ¢ has an associated total
tl(c, px) for each producer pi, € Q,,, where @, is the set
of all producers from (). This value is an estimate of the
total number of events from pj, that had to be produced
to generate c outputs;

« Each queue U, connecting a vertex u to a vertex v also
has an associated total tl,(U.,,pr) for each producer
pr € @p. This quantity measures the number of events
from pj that had to be produced to originate the events
currently in queue Uy,,.

o When a vertex v emits a new set of events E? at time
t, a total for these events and for each producer pj is
calculated as:

tle(Ef;apk:) =

>

<p<Uiva Ef;)
i€pred(v)

-t Uiv7
|U1;1)| lI( pk))

(N
o For each vertex w that succeeds v and each producer
Pk € Qp, the total tl,(Uyy, pi) is updated as:

th(Umuapk’) = th(va,pk) +tle (Ef,,pk) ®)

o When a consumer ¢ consumes a set of events Ef,, its total
for each producer py, is updated as:

tl(c,pr) = tl(c, pi) + te(EL, pr) )

« Finally, the throughput of consumer c is calculated as:

tl(cvpk) .
throughput(c) = ( ————— | /Q.time
(<) Z |paths(py, c)| /
pkEQp
(10)
where |paths(py, ¢)| represents the number of paths from
producer pj to consumer ¢ and .time is the query

execution time in seconds.

IV. CLOUDSIM INTEGRATION

In accordance with the reuse design principle, CEPSim
leverages many functionalities provided by CloudSim to enable
the simulation of CEP queries. For instance, CloudSim is
used to define the cloud computing environments in which
the simulations are run and to select and customize resource
allocation algorithms used in these environments. These al-
gorithms implement different strategies for assigning physical
servers and CPUs to virtual machines, and for splitting the
available processing power among VM processes. In addition,
CloudSim also provides a discrete simulation framework that
is used to control the CEPSim main simulation loop.

This section describes how CloudSim has been extended and
integrated with the CEPSim core described in the preceding
section. The main parts of this extension are depicted in the
class diagram of Figure 8. Classes shown in grey are part
of CloudSim, whereas those shown in white are new classes
created to enable the integration.
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Fig. 8. CEPSim integration with CloudSim.

A. Standalone queries

First, the CloudSim simulator was extended to simulate
standalone CEP queries running on a single server. The main
part of this extension is the CepQueryCloudlet class, a
Cloudlet specialization that encapsulates the CEP placement
executor described in Section III-B.

In CloudSim, a Cloudlet represents a workload that is
submitted and processed by the cloud virtual machines [8].
Normally, a Cloudlet represents a finite computation with
a length pre-defined by a fixed number of instructions. It is
assumed that these computations are independent and there
is no visibility of the Cloudlets internal state other than its
expected finish time.

CEP queries, on the other hand, are continuous computa-
tions that run indefinitely or for a specific period of time.
Moreover, tracking queries internal state during simulation
is essential to the analysis of any given CEP system. For
example, an input queue that is always full indicates that
an operator cannot keep up with the incoming event rate.
The CepQueryCloudlet class implements these features, but
because it is a Cloudlet specialization it can still be managed
by CloudSim simulation engine.

During the simulation, a CepQueryCloudlet orchestrates a
Placement Executor execution by invoking the run lifecycle
method at each simulation tick. Both parameters needed by the
run method, the number of available CPU instructions and the
clock time, are provided by the CloudSim simulation engine.

The other main classes created for the integration are:

o CepSimBroker: a broker acts as a mediator
between SaaS and cloud providers [8]. The
CepSimBroker extends the CloudSim broker to
handle CepQueryCloudlets. It also keeps a mapping
of all vertices to the VMs to which they have been
allocated.

o CepSimDatacenter: this datacentre specialization guar-
antees that a simulation event is generated at equally
spaced intervals. CloudSim updates the state of all sim-
ulated entities in response to each of these events.
Therefore, the shorter the interval, the more accurate the
simulation will be, but at a higher computation cost.

o CepQueryCloudletScheduler: a scheduler defines how
the processing power of a VM is shared among all
cloudlets allocated to it [8]. This research extends the
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Detector
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Fig. 9. Storm topology.

time-sharing policy, in which each cloudlet receives a
time slice of the VM cores. This policy has been chosen
because it is a natural model that reflects current operating
system implementations. The extension had to be created
because the regular policy handles neither infinite nor
duration-based cloudlets.

B. Networked queries

CloudSim has also been extended to simulate networked
(distributed) CEP queries. This extension works as follows:

1) At the end of each PlacementExecutor simulation tick,
the CepQueryCloudlet class checks the Placement
log for Sent log entries. For each entry found, the
CepQueryCloudlet invokes the sendMessage method
at the NetworklInter face.

2) The sendMessage method calculates the delay in send-
ing the events from the target to the destination vertex
and schedules a new simulation event at the calculated
timestamp. When this simulation event is processed, the
sent events are enqueued into the destination vertex input
queue.

3) At the next simulation tick, the enqueued events are
processed by the corresponding PlacementExecutor.

Note that CloudSim includes basic network simulation
capabilities that are used to calculate the network delay.
Nevertheless, more advanced network simulations can be used
by creating alternative implementations of Networklnterface.

V. EXPERIMENTS

This section describes the experiments that have been per-
formed to validate the CEPSim simulator. The experiments
compare the latency and throughput metrics obtained by
running queries on a real CEP / stream processing system
(Apache Storm [16]) and by simulating them on CEPSim.

Figure 9 shows the Storm query (topology) used in the
experiment. A spout in the Storm terminology is equivalent to
an event producer, whereas a bolt is equivalent to an operator.
An event consumer in Storm is simply a bolt with no outgoing
edges. The query in the figure is a use case from Powersmiths’
WOW system [24], a sustainability management platform that
draws on live measurements of building systems to support
energy management.

There are three main steps in this query: the first bolt
detects and filters anomalous sensor readings, the second bolt
groups readings into windows of 15 seconds and calculates
the average, and the final bolt stores the calculated average
in a database. The query has been implemented using Java
according to the Storm APIs. In addition, it has also been
instrumented to obtain reliable latency and throughput mea-
surements.



TABLE 11
STORM CLUSTER SPECIFICATION.
# CPU Mem. Description
1 | 1 core - Intel Xeon E5-2630 2.6 GHz | 512 MB zookeeper
2 | 1 core - Intel Xeon E5-2630 2.6 GHz | 768 MB nimbus
3 | 1 core - Intel Xeon E5-2630 2.6 GHz | 2048 MB | workers

Table II describes the cluster of virtual machines (VMs)
used in the experiments. VMs #1 and #2 run zookeeper and
nimbus, which coordinates the cluster communication and
assigns tasks to workers, respectively. The worker VM is the
one which effectively executes the queries. All VMs were
deployed on the same physical server (12 cores Intel Xeon
E5-2630, 2.6Ghz / 96GB RAM).

A. Setup

The first step of the experiment was to implement the Storm
query in the CEPSim model. The mapping of Storm queries
to CEPSim is straightforward because both use DAGs as the
underlying query model. As an example, Figure 10 depicts
an object diagram of the query as implemented in CEPSim.
Storm’s spouts and bolts are mapped to EventProducer and
Operator instances respectively. More specifically, the second
bolt is mapped to an instance of the WindowedOperator
class because it uses the rolling window concept.

Each link connecting two objects in Figure 10 represents
an edge of the query graph and is annotated with the corre-
sponding edge selectivity. For example, the operator outlier
is connected to avgWindow with selectivity = 0.95. This
selectivity represents the fact that only 95% of the events
processed by outlier are sent to avgWindow (the other
5% are anomalies). Finally, each vertex of the graph also
contains the ipe attribute, which estimates the number of
instructions needed to process an event. These values were
obtained beforehand in a separate experiment which estimated
the maximum throughput for each Storm operator. Based on
estimations of the processor MIPS and the maximum operator
throughput, it is possible to roughly calculate the number of
instructions required to process each event.

Following, CloudSim was used to create a simulation en-
vironment as close as possible to the Storm cluster servers.
Processor capacity has been estimated as 2500 MIPS. A
simulation interval of 10 ms was used to achieve higher
precision.

B. Results

Figure 11 summarizes the results of the experiment. The first
graph plots the query latency as a function of the number of
sensors sending data to the query. The second graph is similar
and depicts the query throughput as a function of the number
of sensors. RandomSensorSpout from the Storm query was
implemented to send 10 readings each second per sensor, of
which 5% are anomalies.

The Storm query was run for every number of sensors
for 30 minutes. The values shown in the graphics are the
average latency (throughput) for the last 20 minutes. CEPSim

results were simulated only once, because the results are
deterministic.

Generally speaking, CEPSim achieved very high accuracy
for latency and good accuracy for throughput. The latency
error was less than 2% up to 1000 sensors, and even though the
error was higher at 1750 sensors, CEPSim correctly captured
the general shape of the curve and the fact that the query
started to overload at this point.

CEPSim also accurately calculated the query throughput,
achieving 0% error from 1 to 100 sensors and approximately
10% for 500 and 1000 sensors. The throughput accuracy
diminished at higher generation rates, but once again CEPSim
could show the performance degradation at 1750 sensors.

Further analysis concluded that this divergence in metric
values has been mainly caused because CEPSim servers were
not as overloaded as the real ones during the experiments. By
changing the operators’ ipe attributes it was possible to better
approximate the real behaviour. Therefore, this experiment
has also showed the importance of a controlled procedure to
estimate the ipe values with higher precision. This limitation
will be addressed as a future work.

VI. CONCLUSIONS

This article has presented CEPSim, a simulator for cloud-
based Complex Event Processing systems. CEPSim extends
CloudSim, an existing cloud computing simulator, with a new
application model based on DAGs and an engine that can sim-
ulate the execution of CEP queries. Moreover, CEPSim enables
its user to customize the simulation by creating alternative
operator placement and scheduling strategies. Experimental
results have shown that CEPSim can simulate a real system
(Apache Storm) with high precision and accuracy.

By using the simulator, system architects and researchers
can experiment with different environment configurations and
strategies without incurring the costs of running large-scale
tests on cloud environments. In addition, we hope that this
simulator can encourage and facilitate research in this field.

As future work, we plan to develop alternative load shedding
strategies and a more comprehensive set of experiments,
including networked queries, scalability tests, comparison with
other CEP systems, and experiments in real cloud environ-
ments. Finally, a mechanism will also be implemented that
enables queries to arrive and leave during the simulation.
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