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EXPLOITATION OF COMMON PROPERTY REPLENISHABLE NATURAL
*
RESOURCES: AN EXTENSION

Recently articles have appeared illustrating the dynamic properties of
natural resource exploitation.

Cummings and Burt [3] employ the principles of dynamic programming to
find an efficient intertemporal production theory for a mining firm. They use
a discrete time, finite horizon model to treat an exhaustible resource.

Their result incorporates the statical concept of 'user cost'2 to distinguish
their sole ownership model from the model of Vernon Smith3 where the re-
source is non-appropriated.

I have presented a simple model4 of replenishable5 resource allocation
using the Pontryagin Maximum Principle6 with continuous time and an infinite
horizon in a one good economy to analyze maximum sustained yield conservation
programs. This model applies fairly well to fisheries which are non-appropriated.
The conclusion of the analysis was that maximum sustained yield programs are
non-optimal.

The present paper is meant to generalize my previous model by including
costs of production in a two-good economy. Once again the validity of maximum
sustained yield conservation programs will be questioned. The presentation
will be more general than earlier works by Crutchficld and Zellner [2] and
Smith [16] in that a welfare functional will be maximized whereas their models
were concerned with efficiency in produccion.7 Important issues such as

mesh size and overcrowding as treated by Smith will not be included in order

*

This paper is taken in part from a Ph.D. dissertation written at the
University of Minnesota. I wish to thank my adviser Professor Edward Foster,
and Professors John Chipman and Thomas Muench for helpful comments. All
errors are the responsibility of the author.
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to more efficiently attack the primary problem.

This paper will include development of a model with several restrictive
assumptions on tastes and technologies in order to achieve unambiguous re-
sults. Following this the problem of control will be addressed, and a
method of taxing described which will allow the control solution to be
achieved within a competitive structure. The tax will have the effect of

appropriating the common-property resource, or internalizing the externality.

The Model

Assume there are two consumer goods Y1 and Y2 and one variable
input of production L, fixed in total supply and fully employed.

Production of resource product Y2 is summarized by the function G(L ,N)
where N is the available natural resource mass and L2 is the amount of L
allocated to the resource sector. For convenience G will be specified as
Cobb-Douglas. Hence G is continuous with continuous second partial de-
rivatives, has positive marginal products for all positive amounts of inputs,
and Gii < 0. L2 and N are indispensible.

Production in the other sector is summarized by specification of
F(Ll) where F' > 0, F" < 0 and F(0) = O.

Input L may be interpreted as labor, or a mixture of many variable
inputs.

Assume human population is constant over time, and that there exists

a social discount rate § > 0.

It is required that the welfare functional

o -6t
J U (cl,cz)e dt (1)
0

be maximized subject to the comstraints



G(L,>N) - C, =0 (2)

F(L) -¢C =20 (3)

L +L, =1L (4)
and

= XN -eN’ - G(L,,N) (5)

Ci is the amount of good Yi consumed,

Equation (5) represents the biological growth rate of the resource mass
after human extraction of amount G(LZ,N)S. Assume U(CI’CZ) = U(Cl) + V(Cz).
See footnote 10.

u'(x) >0, u'(*) < o0, u'(cl) ~® asC =0

vi(*) >0, V(*¥)< o0, v'(cz) - o ag Cz -0

The Maximum Principle states the necessary conditions for maximization
subject to initial conditions

N(0) = N0 > 0 are that there exist an auxiliary variable P, and
Lagrangian multipliers 4 y» w9 such that controls Ll’ L2, Cl’ Cz, instan-

taneously maximize H, the current-value Hamiltonian (for all values of Nt>

where

==
]

U(Cl) + v(cz) + p[A\N - GNZ - G(LZ,N)]

and

[l
n

U(Cl) + v(cz) + plAN - eNZ - G(LZ,N)]
+q [F(Ll) - cll + q2[G(L2,N) - c2]

+W(L-L1'L2)

and such that
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P =06p - p(\ - 2N - %§9 - q, %% (6)
N =N - eN® - G(L,5N) (5)

evaluated at the optimal values of the controls. Thus

]

a) U'(Cl) qy

b) Vv'(C,)) =g,

) (q,"p)G = w = qF’

9 thus represents the price of output in Sector 1 and 9, the price
a consumer would pay for a unit of resource product.10

The auxiliary variable p represents the imputed demand price of invest-
ment in terms of present consumption foregone. For example, p represents
the price placed upon a unit of fish in the ocean as an investment good.

A central planner would be interested in controlling variable input
such that, from a social point of view, marginal revenue products are equal in
both sectors. That equality is stated in (c) above.

In Sector 1 the value of the marginal product is simply qu', the im-
plicit price of a unit of output. In Sector 2 it is qul, the implicit price

of a unit of current output, minus p G,, the 'cost' of a unit of current

1
output in terms of future consumption foregone.
Condition (c) will be referred to as a condition that input L be used

"efficiently".

L1 and L2 as functions of N and p

For any given values (ﬁ; ;) of the state and auxiliary variables, (c)

states that
= = .

From (a) and (b)

il
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O, ) - Bje @y = U EA)) - E ) &
This relationship implicitly defines L1 and L2 as functions of N and ).
Define
M= UMY - BJo (L l) - UNE@LY)E WLy (8)
Now
M(N,p,Lz) =0
and
M3 =D
where
D = v"cf + (v'-p)G11 + U".F'F' + U'.F"
But
V",Gll,U", and F" are negative.
Moreover
Gi,V' - poF', and U' are non-negative.
Unless no production takes place at all, D < 0.11
So for (N,p) satisfying the necessary conditions for maximizing H one
may write
L2 = £(N,p)
where

1) £ is continuous at (N,p)

2) f has continuous first partials given by

£ oL
1 D
M,
£, = = 3 (Taylor [18], p. 241)
VG, G, + (V'-p) G
e .11 % 12 )

1 D



(10)

<
f2 0

!

The sign of fl is troublesome. The question to be answered is: '"What

happens to L, as N is increased and the necessary conditions for optimality

2
are met?" In one case, more L may be allocated to Sector 2, i.e.,
JL,
N > Ot because, combined with more N, L is more productive in this sector.
{BLZ }
Or L might move out of Sector 2 i.e., gﬁr-< 0) if, for example, no more of C2

is wanted and N is substituted for L, in production.

2
aL2
Generally the sign of SN depends upon the substitutability of factors

L and N, and upon the desire for the products Y1 and YZ'

One may demonstrate this dependence as follows: Define

- 1"
m=-c, %7 the elasticity of marginal utility, >
and
G1 G2
al-var-a the elasticity of substitution between factors L2 and N.
° 12
In equilibrium
>
q, = 0
and
02 =G
so
- y" G1 G2
me==-GC, 57 .
2V G 12

: 1" 1 -
p = stem {V G186y + VIGy - G12}

[%2]
e
3
h
n

Al



as

- =
1Zme+ p/q, and hence as 1 - em = _ p/a,

AV

For G(LZ,N) Cobb-Douglas e=l. Assume G12 >0

Hence the sign of £, is the same as the sign of (l-m-p/qz)

1

From condition (c) (qz-p) >0 and (l-p/qz) >0

Without prior knowledge, the cases will necessarily be considered
oL

individually. In this paper the case Sﬁz = 0 will be treated in full.

JL

§§g~< 0 a similar analysis applies but is somewhat more difficult.

oL
5§2'> 0 means that for efficiency in allocation of input L, if

the stock of resource rises, more of the variable input

should be allocated to the second sector.

S;-‘< 0 can be interpreted as a condition that the amount of input
L allocated to Sector 2 should fall as the imputed demand
price of investment rises for efficient and optimal allo-
cation of L. That is, the more one wishes to 'save' the
resource for the future, the less of L should be put into

its production today.

Steady-State Equilibrium for Interior Solutions

For notational convenience call

G(L,(N,p),N) = QUNY,p)

sO
aL2
Q=G5 *C
OL
Q =6, 5=

If
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The differential equations which describe flows of points (Nt’ Pt) in

phasc spacc are

. 2
N =AM -eN -QN,p) (5)
b, =P (6 - A+ 2eN +6) - v' law,p) Ic, 4 (6)
where
13
_ 96
G = -

For this autonomous system an equilibrium is defined as (N¥*, p*) such
that

ﬁt = ﬁt = 0 at (N*, p*)

Slopes of p=0 and N=0 curves in Phase Space

I
The following analysis will consider the question of the slopes %—ﬁj
p=0

d pl .
and 3 Nf.ln phase space.
N=0
Consider the graph of N=0.
N = 0 if and only if AN - eNZ = Q(N,p)
or

y(N,p) =0
where
Y = W - eN’ - Q(N,p)
oL

==Q_ =6, == >0 for all (N,p) so implicit differentiation is valid.
P 1 op

)
)
|
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If Q. = A - 2¢N then the numerator of d =0 and dep 20
N d Nj~ d Nj=
N=0 N=0
If Q < A - 2N t:hen-d—BJ <0
N d N|=
N=0
Consider next the graph of p = 0 .
Define
R(N,p) = pl6 - A + 2¢N + G2] - 9,6, =0 (12)

where

q, = a,(N,p) = V'(Q(N>p))
and

GZ(LZ’N) = GZ(LZ(N’p) »N)

dq oL - G..G

=y =y" 2 = 1 1

5-5- V' on V .Gl . ap D
where

D < V"G2 <0

1
Hence
dq
0< =2<1

op
This condition states that a rise in thc imputed demand price of in-
vestment (in terms of the utility of present consumption foregone) will be
accompanied by a rise (smaller in size) of the imputed demand price of re-
source product. (I.e., the more one desires to have his cake in the future,
the higher will be his present imputed price of cake.)
Since q, > 0, then R(N,p) = 0 implies p # O. Interpret p as the

imputed demand price of the unharvested resource. This study is interested
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only in commercially exploitable natural resources, not in such resource

questions as Lamprey control, so only the case where p > 0 will be of interest.

So
9,

6-x+ZeN+(:2 mall U8

1}

and in order to satisfy p = 0, the value of N will be defined by

q,-P

A-6 + 62

N%% = e P (1 3)

Since
- = = r> 0 d >0
(qz p) G w q F an Gl

(qz-p) >0 and N#** > %EQ for all p** (14)

Heuristically, the condition (qz-p) > 0 states that the imputed de-
mand price of the resource product exceeds: the imputed demand price of the
unharvested resource. In my earlier modellh these prices were equal. The
difference is the existence of production costs in this model. The equi-
librium value of N here must exceed the value %Eg, which was the equilibrium
value of the simplified model.

So, whenever there are costs of production, the optimal steady-state

population will exceed the modified maximum sustained yield population.

This conclusion was reached earlier by Crutchfield and Zellner [2]. Now

oR
%ﬁj = -;%%— if %5 £ 0
=0 P

S - (oot a-ghro-rra] A

where



n
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aL2
$< 0
and
A=-b6
*k > S 16
N 5 (16)
6§ - A+ 2N>0
Hence
%% > 0 for all (N**, p**) satisfying p =0 .
oR a1‘2
The sign of §ﬁ'will depend upon the sign of SNt
oL dq
3R _ 2] - =2
o = %Pt (P'qz)[c‘zz M T B T (an
where
qu BLZ
— = "o ynt —
N - Qv =V [Gz te W ]
From Appendix
aLZ aL2
SN2 0 implies (622 + G21 §ﬁ—9 <0
So
OR oL
> 8
X 0 for SN 2 0 and (18)
de 19
= <0 (19)
p=0

Phase Space

It was shown that the slope of the curve p = 0 in phase space is
negative, The N = 0 curve will intersect the p = O curve in zero, one or
two points. Since it is the intention of this analysis to study properties

of steady-state equilibria, attention will be directed at the last two cases.
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If the number of intersections is one, it will be shown that the slopc of
the N = 0 will be positive and the resulting equilibrium will be a saddle-
point.

If there are two intersections (see Figure 2) then it will be shown
that one is unstable, the other is a saddle-point.

Next consider

dp oL,
le.v— with = = 0 for all N

For each p > 0 there may be two positive values of N satisfying N = 0.

Label then ﬁl and ﬁz for a cross-section of Q(N,p) at p = p. Assume
N1 < N2

A ({, B)oqq > X - 26N L. do} 5

~ . d
d < - . gp
and at (Nl,p) assume QN A= 2N .°. an <0



=]3=-

The corresponding diagram in phase space is as follows:

Figure 2

* *
Equilibrium (Nl, pl) will be analyzed later. Directions of arrows

* *
will be shown to be as indicated in Figure 2. Thus (Nl’ pl) will be unstable.
* %
(NZ’ p2) is a saddle-point. There exists an optimal trajectory,

*
which will be described later. If No > N1 a controller will follow this

trajectory.

1f (Ni, p:) is in fact an optimum, with the information assumecd at
his disposal, a controller can compare the welfare provided by (Ni, p?) and
(N:, pg). If NO = Ni, the controller can leave the system unaltered, or
force p downward and direct the economy toward (N:, pZ) depending upon
which state provides more welfare.

*
If N0 < N1 the resource mass should be reduced to zero.
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Trajectories in Phase Space

f = W - eN® - QN,B)

It is easily verified that above the line N = 0 it is true that N > 0 and
below it N < 0 since G(L2<§,p),ﬁ) is a decreasing function of p.

Since p = p(6 - A + 2¢N) - (qz-p) G2 is an increasing function of N from
equation (18) thereforc above and to the right of p = 0 it follows that

p > 0 and to the left p < 0.

Arrows in Figure 2 indicate directions of movements in Phase Space.

* *
To Show (Nz, p ) is a Saddle Point

. %
Expand p and N about (NZ’ p*) as a Taylor series, taking only linear

terms.
p k|
AP
N -N*
N N2

where A is a constant 2 x 2 matrix.
It can be shown that the eigenvalues of A are rcal and of opposite sign.

Alternatively, using L'Hospital's Rule

D
d .
(N.; > P*) Eﬁ(N)

dp

= (20)
%
This results in a quadratic equation in %ﬁ].
%

2
The coefficient of (%ﬁ)] is Qp which is negative and the absolute term is

IR
ad

which is positive. Hencc the roots arc of opposite sign,

ta
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*
and real so (Nz, p*) is a saddle-point. The optimal trajectory will corrcs=

pond to the negative root.

A Sole-Ownership Produccer

If a sole-ownership firm is given exogenous time paths of product
price qz(t) and wages w(t) and maximizes discounted profits, that is,
maximizes

©
J [qZG(Lz,N) - wl,z]e"6t dt
0
subject to

2

N = AN + eN +6(L,,N) =0

the Euler necessary conditions for an extremum are

W (qz-p) 6, (21)

and

P Gp-p(X-ZeN-GZ) - 4,6, (22)

These conditions are identical to condition (c) and equation (6)
for a controller. The competitive producer's allocation of L2 is socially
optimal. For him the resource use is an internal problem. No externality

is present. It is the common-property nature of the resource which

necessitates control in the general case.

The Case of n Identical Competitive Firms

Consider next the situation where there are n firms with identical
technologies in resource product (fish) production represented by g(LZi,N)
where LZi is the amount of L2 each will exploit, and N is the resource

mass.

A controller's optimum would require L2 to be allocated according to
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w = (qz-p) ) (23)

If the controller sets a tax per unit output of amount p(t) and
if each firm maximizes discounted profits, given prices qz(t) and w(L)
each firm will allocate variable input acéording to equation (23).16
The tax p(t) which the controller determines from the optimal trajectory,
has the effect of internalizing the common-property externality, or of

appropriation.

Concluding Remarks

Replenishable common-property natural resources are not optimally
exploited by untrammelled competitive firms. Central control is neces-
sary.

One central control solution is to attempt, via quotas, to achieve
a maximum sustained production, i.e., maintain the resource size N = 2% °
This is generally non-optimal.

Optimal control can be achieved by imposition of a correctly deter=-
mined per unit tax p(t). The problem of determining p(t) however is diffi-
cult because of the information that the controller must have at his dis-

posal.
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Appendix
To show
OL )
+ >0
a) Gy tC6, W
BLZ
+ ==<0
b) Gzz G21 ON
when
oL
2
— >
ON 0
oL oL

2 2
. — > > -
Consider G21 + Gll aN 0 where TN 0 for G(LZ,N) Cobb Douglas

of the form ANa'LzB where a + B =y < L.
Homogeneity of degree y < 1 is not unreasonable in view of the fact

that fixed capital is an input in production but is not represented explicitly

in G.
Proof
NG, + L,G, = YG (Euler's Theorem)
Hence
51.2 aL2 aL2
N(G,, + Gy S50 = (1) (€ FT+6y) - Ly(6y5 *+ 6y, 5'1\'1").
Now
aL2 v"c;zc1 + (v'-p)c;12
K - VGG + (V' -p)G,. + U'.F' F' + U .F"
11 11
G + .—_B.V'- E-]iuz—
2y G,
== vi-p S
G, + Vv G, t P

where P represents the positive terms



U" F'F' U'.F"
- T
v G,V -Gy

t : )
58 L% v G 2 v G
1 1 )
Subtfact : '
BL?_
c— >
ON Gl + GZ 0
v'- BLZ
v 181 & Glz] *GE<O
Since
y'-
L—VFB)-< 0
) dL

?
S——— >
Go*t8 5 0

©ge

and also since

(y=1) <O

)
LZ

—<
Gzz + G21 ON 0

<

s T e A AT T 0 Aranm A N M TSI ke
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l'Exhaustiblc" in their use means that the supply of the resource
is not naturally replenished within the horizon. 'Exhaustible' in Lhis
paper shall mean that the biological growth rate A is zero.

2See Gordon, H.S. [4], and Scott, A. {141.

3Vernon smith [161.

4In A.E.R., June 1970.

SBy ‘replenishable' is meant that the biological growth rate A ex-

ceeds z2ro. In fact it is required in this model that X\ > § where 6 is
the social discount rate.

65ee Pontryagin, et. al. [12].

7After the present model was essentially developed, a similar pre-
sentation by Quirk and Smith [13] was brought to my attention.

8See [11] for details. N is interpreted as the mass of

resource , such as tonnage of fish.

9 . . P . .
Subscripts of t will be dropped except where their inclusion 1s
instructive.

4]

: 0., . . . s . i
1 It is at this point that specification of a (separable) additive
utility function is convenient. Since the interesting case where resource
product is desired has q, > 0, therefore C2 = G(LZ’N)' it is instructive

to write q, as a function of L2 and N, i.e.,
= ] = t
qy =V (Cz) v [G(LZ,N)]

in order to show L2 as a function of N and p. To sce the complications that

arise when the utility function is not separable, sce Uzawa [19].

1ll'.f (qz-p) and 4 were given market prices, and if condition (c) were

the first-order condition for profit maximization for a competitive firm, then
D < 0 would be the second-order condition that profits be max imized, or,
equivalently, that variable inputs be used efficiently.

12For V(CZ) =c¥, m=1-a  For V(C ) linear m = 0, and quadratic
2 2

m=1. A.K. Sen [15] shows that in a primitive, one factor, economy m con-
stant and less than unity is the only case that leads to intuitively appealing
results.,

Green [5] and Hicks [7], p. 252, conclude that if utility functions are
to be stationary, homogencous and independent over time, then m > 1 and constant.
Upon integrating one can show this condition requires there exist a Bliss statc,

as Ramsey employed.
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1%nore properly one would write

and

L=

in which case,

oL
ON

oL * %
= 6p - SN where L2 = L2 (N,p)
N
Py
L*
2

U(e) + V(C,) + POW - N’ - G(L,sN))

+ qZ(G(L2>N) -Cy) + ql(F(Ll) - Cl)
+ w( - L, - L)

%
evaluated at (Nt’ P> L2)

aLz BLZ
= p(\ - 2N - G1 Sﬁ- - G2) + qu1 SN !
aLl BLl 81,2
' - CERLTEER e  S—
+ 6, F v 5T oK) .

= p(A - 2¢N) + (q2 - p)02

+ ;;g [(qz - PG - qu']

L JL
N [ 2 _ 2]
WS TS
p(A - 2eN) + (q2 - p)G2 as above because

BLZ

T ON

and condition (c)

A.E.R., June 1970.
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*
15 ot - 0 and Nt *’Ni as t - o it follows that the trans-

Since pte-
versality conditions are met.

BLZ
For 5 - 0, H(N,p) is concave.

Sufficient conditions are not easily found.

16This results from maximizing

(-]
[T, ay ) - vy le™ a
2 2i’ 2i

0
ith tt .
with respect to L2i

L2
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