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ABSTRACT  

Bridge structures often experience damage during an earthquake, which is one of the most devastating types of 

natural disasters. Base isolation can be employed to mitigate earthquake-induced damage. The main concept of base 

isolation is to reduce the seismic demand on the structure by shifting its fundamental time period away from the 

predominant periods associate with earthquakes. Base isolation involves placing horizontally flexible isolators 

between the bridge superstructure (i.e. deck/girder) and the substructure (i.e. pier/column). There are two main types 

of seismic isolators: (1) elastomeric, and (2) sliding. A fiber reinforced elastomeric isolator (FREI) is a particular 

type of reinforced elastomeric isolator. In an FREI the steel reinforcement used in a traditional elastomeric isolator 

is replaced with fiber fabric, which results in a reduction in the weight and potentially the manufacturing cost. FREI 

can be either bonded (B-FREI) or unbonded (U-FREI) to the substructure and superstructure. This paper investigates 

the behaviour of U-FREI under combined vertical, rotational, and lateral loading, as bridge bearings are expected to 

experience this combination of loads. Accordingly, the test program includes different vertical loads, angles of 

rotation, as well as a number of lateral sinusoidal input motions varying in both frequency and amplitude. The 

objective of this study is to investigate the response of U-FREI under serviceability and extreme loading conditions. 

The findings of this paper also address the feasibility of using U-FREI as bridge bearings/isolators.         
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1. INTRODUCTION 

The observed number of bridge failures during major seismic events, including the 1971 San Fernando, 1989 Loma 

Prieta, and 1994 Northridge, California earthquakes and the 1995 Kobe, Japan, and 1999 Chi-Chi, Taiwan 

earthquakes, confirms the importance of seismic design (Moustafa and Mosalam 2015(a&b)). As such, bridge 

engineers are constantly searching for innovative techniques and devices that are able to prevent fatalities and 

mitigate damage. This can be accomplished by either increasing the capacity of the structure or decreasing the 

seismic demand placed on the structure. The 1995 Kobe, Japan earthquake demonstrated that increasing bridge 

capacity is not always effective (Jangid 2004). However, employing the technique of base isolation to decrease the 

seismic demand placed on the structure reduces the seismic forces and accelerations placed on the superstructure 

and substructure, as well as redistributes the seismic forces between the substructure of the bridge (i.e. piers and 

abutment). 
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Base isolation of a bridge is based on the concept of isolating the superstructure (i.e. deck and girder) from ground 

motions induced in the substructure (i.e. piers and abutments). This can be achieved by introducing elements, known 

as isolators, having low horizontal stiffness, between the superstructure and substructure. Because these elements 

serve as the only link between the superstructure and substructure, they must also be able to support the vertical 

loads and accommodate the rotations induced in the superstructure by the applied loads (mainly the dead and live 

loads). The low lateral stiffness of the isolators shifts the natural period of the structure to the displacement sensitive 

response region, where the inertial forces and accelerations are significantly reduced. This reduction in acceleration 

can be in order of 3, which allows the bridge to be resilient and respond in the elastic region during the design 

earthquake motion (Constantinou et al. 2010). This significant reduction in the seismic demand is why base isolation 

has been employed in thousands of bridges worldwide (Buckle 2006).    

   

There are two main types of seismic isolators are: (1) sliding, and (2) elastomeric. The sliding isolation system is 

based on the transmission of lower shear forces to the structure through isolators with a low friction coefficient. 

Sliding isolation systems are typically either pure friction systems or friction pendulum systems (Girish and Pranesh 

2013). Elastomeric isolators, which are the most widely used type of seismic isolator, consist of flexible elastomer 

layers reinforced by steel plates. There are three main types of steel reinforced elastomeric isolators (SREI), low-

damping natural rubber (LDR) isolators, lead-plug rubber (LPR) isolators and high-damping natural rubber (HDR) 

isolators. However, due to the high cost and weight of SREI, their usage had been limited to high-importance high-

value structures (Kelly and Konstantinidis 2007). 

 

A relative significant reduction in both weight and potential manufacturing costs are possible if fiber fabrics are used 

to reinforce the elastomeric isolators instead of steel. The fiber reinforcement can be bonded to the elastomer using a 

cold-vulcanized bonding compound without the need of a mold. Furthermore, individual isolators can be cut from 

large sheets using a standard band-saw. An increase in the flexural flexibility of the reinforcement is another 

advantage gained from eliminating the rigid steel end plates and replacing the steel reinforcement with fiber 

material. Moreover, the interaction between fibers within the reinforcement provides a new source of energy 

dissipation in addition to the intrinsic damping of the elastomer. 

  

Fiber reinforced elastomeric isolators (FREI) can be classified as either bonded, partially bonded, or unbonded 

according to the employed connection between the isolator and the contact surfaces of the substructure and the 

superstructure. This paper will focus on the behaviour of unbonded FREI (U-FREI). As a result of the unbonded 

boundary conditions and lack of flexural rigidity of the fiber fabric reinforcement, this type of isolator can 

experience rollover and lift-off under lateral and rotational deformations, respectively, as shown in Fig. 1.   

 

      
(a)   Rollover                                                                        (b) Lift-off 

Fig. 1: (a) Lateral and (b) rotational deformation patterns of an U-FREI 

  

  

The main objective of this paper is to experimentally investigate the response of U-FREI when subjected to lateral, 

vertical, and rotational deformations/load levels that are expected to occur over the lifetime of a bridge structure. 

Additionally, the resulting stress/strain states in the U-FREI under the loads considered in the experimental study 

will be evaluated using three-dimensional finite element modelling (FEM). The parameters varied during this study 

are: 

 

1. Mean vertical stress (σv) = 2, 4, 6, 8 and 10 MPa. 

2. Static rotation (θ) = 0, 0.015, 0.03 radians. 

3. Dynamic lateral cyclic displacement amplitude (UL) = 0.25, 0.5, 1.0, 1.5, and 2.00 tr (total rubber thickness).     
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2. EXPERIMENTAL TESTING  

2.1 Test-rig 

The experimental program was conducted using the 3 degree-of-freedom (3DOF) bearing test apparatus, shown in 

Fig. 2, which was constructed in the Applied Dynamics Laboratory (ADL) at McMaster University for the primary 

purpose of testing seismic isolators. This test apparatus was designed to be capable of applying the vertical, 

rotational, and lateral movement (simultaneously or independently) via displacement or load control. The main 

components of the test apparatus are the loading beam, pedestal, and reaction frame. The reaction frame is 

comprised of stiffeners placed at the actuator reaction points, pedestal and vertical reaction arm. The main pedestal 

supports a thick bottom platen. A cold rolled plate is attached to the top of the bottom platen and serves as the lower 

contact support.  

 

Loads and deformations are applied to the isolator specimen through a cold rolled steel plate attached at the mid-

span of the loading beam. A total of three hydraulic actuators are also attached to the loading beam. The two vertical 

actuators, located at either end of the loading beam, are used to apply the vertical loads and rotational deformations 

on the test specimen. The lateral actuator, which is attached to one end of the loading beam, is used to apply lateral 

loads/deformations. Roller guides are located on both sides of each end of the loading beam to ensure lateral 

stability. Additionally, two three-axis load cells are used to measure the vertical and lateral loads. The vertical 

deflection of the isolators during loading (vertical and lateral cyclic) are measured using four laser displacement 

transducers attached at the four sides of the loading platen. In this study all the tests were conducted at room 

temperature and the data was recorded at 200 Hz.  

 

 

   
Fig. 2: 3D testing machine 

2.2 Specimens and testing program 

A FREI specimen with physical dimensions of 70.0 mm x 70.0 mm x 22.4 mm was cut from a laminated fiber 

reinforced elastomeric sheet. The specimen comprised of 5 interior natural rubber layers with a thickness of 3.19 

mm and 2 cover layers with a thickness of 1.58 mm. Thus, the total rubber thickness (tr) was approximately equal to 

19.05 mm. The reinforcement sheets used were a plain weave bi-directional carbon fiber with a thickness of 0.25 
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mm. The shape factor, S, defined as the ratio between loaded area and the area free to bulge, was determined to be 

5.50, which lies in between the common range of elastomeric bearings employed in bridges structures (i.e. 3 < S < 

8) (Stanton 2007). Additionally, the aspect ratio, AR, defined as the ratio between the total length/width and total 

height, was determined to be 3.40.  

2.3 Phase I: vertical behaviour 

2.3.1 Effects of axial loads levels 

Seismic isolators must possess sufficient vertical stiffness in order to adequately resist and transmit gravity loads 

from the superstructure to the substructure. This section investigates the vertical response of the U-FREI under a 

range of axial loads.  The vertical testing was conducted by loading the specimen under load control up to the 

desired level of axial load. Once the target axial load, P, was reached three fully reversible cycles with amplitude 

±20% P at a loading rate of 0.2 Hz were applied. The vertical stiffness was determined from the measured response 

using the following relation  (ISO 2010) 

[1]  
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where Fv,max, Fv,min, ∆v,max, ∆v,min are the minimum and maximum vertical forces and displacements, respectively, 

observed over the third loading cycle. Figure 3 shows the results of the vertical testing completed on the test 

specimens.  It can be observed that an increase in the amplitude of the applied axial load resulted in a nonlinear 

increase in the vertical stiffness of the isolator. A primarily reason for this behaviour is due to the initial lack of 

straightness of the individual fibers (Kelly 2008). As a vertical load is applied, the lateral bulging of the elastomer 

creates a tensile stress in the fiber reinforcement that pulls the individual fibers taut, which consequently results in a 

higher vertical stiffness as the restraint on the elastomeric layers is increased. Additionally, the vertical damping 

ratio (ζv), which was calculated based on the area within the hysteresis loops, was found to be approximately 1%. 

Finally, the tested isolator exhibited vertical frequencies corresponding to the applied axial load ranging from 17 to 

29 Hz, which is considered satisfactory for seismic isolation applications.  

 

 
Fig. 3: The influence of axial load amplitude (P) on the vertical stiffness (Kv) of the isolator 

 

2.3.2 Effects of static rotations 

Bridge superstructures are subjected to rotational deformations due to dead loads, live loads, and/or geometric 

imperfections of eccentricities. This section investigates the effect of bridge deck/girder rotations on the vertical 

stiffness of the isolator. Static rotations of 0, 0.01, 0.02, 0.03 radians were considered in the study. The isolator was 

vertically loaded in the same manner described in the previous section. However, the static rotation was applied 

before the three fully reversible vertical cycles were applied to the isolator. The effect of static rotation on the 

vertical stiffness of isolators is shown in Fig. 4. Static rotations can lead to a loss of contact area between the isolator 
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and the supports, which is expected to lead to a decrease in vertical stiffness as observed at lower applied vertical 

loads. However, it is postulated that the insignificant change in vertical stiffness under higher levels of applied 

vertical loads is primarily due to the increase in the vertical stresses on one side of the isolator (Al-Anany and Tait 

2015b), which also results in an increase in the fiber tensile stresses. The increased level of tension in the fiber 

reinforcement is expected to increase in vertical stiffness and as a result the reduction due to the loss of contact area 

is mitigated (Al-Anany and Tait 2016a)  

 

 
Fig. 4 The influence of axial load amplitude (P) and static rotation (θ) on the vertical stiffness (Kv) of the isolator 

 

2.3.3 Effects of lateral offsets 

Bridge superstructures are subjected to various temperatures throughout the year, which results in expansion and 

contraction of the deck/girder. Additionally, lateral movement may occur due to creep and shrinkage, elastic 

shortening due to prestressing and traffic loading (AASHTO-LRFD 2012). However, the maximum amplitude of 

this lateral movement is specified/ limited by bridge design codes (ex. CSA 2014) to be less than a value of 0.50 tr. 

The objective of this section is to present the influence of lateral offset on the vertical stiffness of the isolator. A 

lateral offset is the lateral displacement applied to the specimen after applying the vertical load but prior to cycling 

the load vertically on the specimen. Figure 5 presents the effect of lateral offset on the vertical stiffness of a U-FREI. 

It can be observed that the lateral offset has no significant effect on the vertical stiffness. A recent study by Al-

Anany and Tait (2016b) has shown that the vertical stiffness of the isolator can be maintained up to a lateral offset of 

1.50tr.  

 

 
Fig. 5: The influence of axial load amplitude (P) and lateral offset (∆L) on the vertical stiffness (Kv) of the isolator 
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2.4 Phase II: rotational behaviour 

The rotational behaviour of an isolator should be evaluated to ensure the ability of the isolator to accommodate the 

cyclic rotational deformations expected during the lifetime of the bridge. This section aims to investigate the 

rotational response of the isolator when subjected to quasi-static cyclic rotations with amplitudes of 0.01, 0.02 and 

0.03 radians. The isolators were initially loaded up to the target axial loads, under load control, before cyclic 

rotations were applied under displacement control. The moment-rotational response of the isolator under three 

different levels of axial loads is shown in Fig. 5. It can be observed that the rotational response of the isolator 

exhibits a softening type behaviour due to lift-off as the rotational amplitude is increased under smaller axial load 

levels. As the amplitude of the applied axial load is increased, lift-off is delayed or completely prevented and the 

isolator exhibits a near linear rotational response (Al-Anany and Tait 2015b). 

 

Fig. 5: Moment-rotation response of the isolator 

 

2.3. Phase III: lateral behaviour 

The lateral force-displacement behaviour of U-FREI under three different vertical loads is shown in Figure 6. Each 

lateral test, which consisted of three cycles at five ascending normalized displacement amplitude (∆L/tr) values of 

0.25, 0.50, 1.00, 1.50, and 2.00 tr, was conducted under a lateral loading rate of 76 mm/sec.  

  

Fig. 6: Lateral response of the isolator 

As shown in Fig. 6, the isolator experiences a reduction in the lateral stiffness as the lateral displacement is 

increased. This is due to rollover, which results in a reduction in the effective shear area (Osgooei P. 

2014&2015,Van Engelen N. et al. 2014&2015). It can also be seen that the level of applied axial load had a 

negligible effect on the lateral response of the isolators. 
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3. FINITE ELEMENT MODELLING  

3.1 Model-description 

Three-dimensional finite element (FE) modelling was carried out for the analysis of the considered U-FREI under 

vertical and rotational loading. The primary goal of the FE-analysis is to evaluate and assess the resulting stress and 

strain state within the isolator when subjected to the considered axial loads and angles of rotation applied in the 

experimental study. FE analyses were completed using the commercially available general-purpose finite element 

programs, MSC Marc. The elastomer was modelled with an eight-node isoparametric quadrilateral brick element. 

The hyperelastic Neo-Hookean material model was used to represent the elastomer. This model is defined by two 

parameters representing the bulk modulus (Ke) and the shear modulus (Ge) of the elastomer material, which 

correspond to an elastic modulus of 2.58 MPa and a Poisson’s ratio of 0.4998. The reinforcement material was 

modelled using a linear elastic isotropic material, which is typically defined by two constants: the elastic modulus 

(Ef) and Poisson’s ratio (υf) of the fiber. The material properties considered in the FE model were determined from 

experimental tests and are shown in Table 1.  

Table 1: Material properties 

Elastomer  Fiber 

Shear Modulus, Ge = 0.86 MPa Elastic Modulus, Ef = 20 GPa 

Bulk Modulus, Ke   = 2000 MPa Poisson’s ratio, υf = 0.20 

 

 

Two rigid wires were used to model the top and bottom contact support surfaces. The upper rigid wire had a control 

node with two degrees of freedom one in the vertical direction and one in the rotational direction. The lower rigid 

wire was constrained from any movement. Additional modelling details can be found elsewhere (Al-Anany and Tait 

2015a, 2015b). 

3.2 Results and discussions 

This section presents the vertical stresses (σ22) that developed in the isolator under a range of axial loads and angles 

of rotation. Fig. 7 presents the normalized stress contours (σ22 / σV) under values of average applied stress (σV) of 2, 

6, and 10 MPa. The stress contours are shown within the isolator by taking a section along the centre of the isolator. 

It can be observed that the magnitude of (σ22) is essentially constant in the vertical direction with a normalized peak 

value of 2.00, which is expected for a square elastomeric isolator.  

  

σV = 2 MPa σV = 6 MPa σV = 10 MPa 

 
 

Fig. 7: Normalized stress contours (σ22 / σV)  

 

Figures 8 and 9 show the evolution of normalized stress distribution (σ22 / σV) within the isolator under average 

compressive stress (σV) values of 2 and 10 MPa, respectively. As shown in Figs. 8 and 9, the normalized stresses are 

presented at different angles of rotation (θ) = 0, 0.01, 0.02, and 0.03 radians. It can be observed that the magnitude 

of compressive stresses that developed in the isolator increase as the applied angle of rotation is increased. An 

 
2.00 1.60 1.20 0.40 0.00 0.80 
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increase in the applied angle of rotation leads to lift-off, which consequently results a reduction in the loaded area 

and a corresponding increase in the compressive stress.  

 

  

θ = 0 rad. 

 

θ = 0.01 rad. 

  
θ = 0.02 rad. θ = 0.03 rad. 

 

 

 

  

Fig. 8: Evolution of Normalized stress contours (σ22 / σV) under different angles of rotation and 

 average compressive stress (σV) of 2 MPa 

 
 

θ = 0 rad. 

 

θ = 0.01 rad. 

  
θ = 0.02 rad. θ = 0.03 rad. 

 

 

Fig. 9: Evolution of Normalized stress contours (σ22 / σV) under different angles of rotation and 

 average compressive stress (σV) of 10 MPa 

 

 
2.20 1.76 1.32 0.44 0.00 0.88 

 
3.40 2.72 2.04 0.68 0.00 1.36 
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Furthermore, the increase in the peak stress is more significant under lower levels of compressive stresses, which is 

also related to the occurrence of lift-off. Under low compressive stress (i.e. σV=2MPa), lift-off occurs (i.e. reduction 

in the loaded area), which results in a higher increase in the compressive stresses. However, under higher levels of 

compressive stress (i.e. σV=10MPa) the occurrence of lift-off is delayed, and as a result the applied axial loads 

continue to be resisted by the full contact area.  Additionally, the development of tensile stresses in the U-FREI is 

negligible because lift-off is permitted for this type of unbonded isolator. Thus, lift-off allows this unbonded isolator 

to separate from the support surfaces under excessive rotational deformation; resulting in the development of only 

compressive and shear forces between the unbonded isolator and the contact support surfaces. 

4. CONCLUSIONS  

This paper presents test results of U-FREI when loaded in vertical, rotational, and lateral direction independently 

and in combination. Experimental testing and finite element modelling were both employed in this study. The square 

bearing investigated in this study had a plan area of 70 mm x 70 mm, shape factor of 5.50, and aspect ratio of 3.40. 

The main parameters varied during this study were the mean vertical stress (σv) = 2, 4, 6, 8 and 10 MPa, static 

rotation (θ) = 0, 0.015, 0.03 rad., dynamic lateral cyclic displacement amplitude (UL) = 0.25, 0.5, 1.0, 1.5, and 2.00 

tr. The main conclusions that can be drawn are: 

 

1. The isolator exhibited a nonlinear increase in the vertical stiffness when the applied axially load level was 

increased.  

2. The applied angle of rotation reduced the vertical stiffness of the isolator under low vertical loads. However, 

under high levels of vertical loads, and with any value for the angle of rotation, no significant change in vertical 

stiffness was observed.  

3. A significant change in the vertical stiffness was observed in the U-FREI under the considered values of lateral 

offset (i.e. < 0.5 tr). 

4. The amplitude of the vertical load applied on the isolator influenced the shape of the hysteresis loops, which also 

influenced the rotational stiffness. 

5. The rate of increase in the compressive stresses developed within the isolator due to the rotational deformation 

was found to be higher under lower levels of vertical loads due to the rapid occurrence of lift-off.    
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