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RESEARCH ARTICLE
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Abstract
Maternal nicotine exposure has been associated with many adverse fetal and placental out-

comes. Although underlying mechanisms remain elusive, recent studies have identified that

augmented endoplasmic reticulum (ER) stress is linked to placental insufficiency. More-

over, ER function depends on proper disulfide bond formation—a partially oxygen-depen-

dent process mediated by protein disulfide isomerase (PDI) and ER oxidoreductases.

Given that nicotine compromised placental development in the rat, and placental insufficien-

cy has been associated with poor disulfide bond formation and ER stress, we hypothesized

that maternal nicotine exposure leads to both placental ER stress and impaired disulfide

bond formation. To test this hypothesis, female Wistar rats received daily subcutaneous in-

jections of either saline (vehicle) or nicotine bitartrate (1 mg/kg) for 14 days prior to mating

and during pregnancy. Placentas were harvested on embryonic day 15 for analysis. Protein

and mRNA expression of markers involved in ER stress (e.g., phosphorylated eIF2α,

Grp78, Atf4, and CHOP), disulfide bond formation (e.g., PDI, QSOX1, VKORC1), hypoxia

(Hif1α), and amino acid deprivation (GCN2) were quantified via Western blot and/or Real-

time PCR. Maternal nicotine exposure led to increased expression of Grp78, phosphorylat-

ed eIF2α, Atf4, and CHOP (p<0.05) in the rat placenta, demonstrating the presence of aug-

mented ER stress. Decreased expression of PDI and QSOX1 (p<0.05) reveal an impaired

disulfide bond formation pathway, which may underlie nicotine-induced ER stress. Finally,

elevated expression of Hif1α and GCN2 (p<0.05) indicate hypoxia and amino acid depriva-

tion in nicotine-exposed placentas, respectively, which may also cause impaired disulfide

bond formation and augmented ER stress. This study is the first to link maternal nicotine ex-

posure with both placental ER stress and disulfide bond impairment in vivo, providing novel

insight into the mechanisms underlying nicotine exposure during pregnancy on placental

health.
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Introduction
Despite increased awareness and education, approximately 10–28% of women were reported
to continue smoking during pregnancy [1–4]. Cigarette smoke contains many teratogens, and
exposure during pregnancy increases the risk of adverse pregnancy and neonatal outcomes, in-
cluding placental abruption, placenta previa, sudden infant death syndrome, spontaneous
abortion, stillbirth, low birth weight, and fetal growth restriction [5–11]. Although many preg-
nant women want to quit smoking, recent studies suggest that only 50% successfully abstain
from smoking during pregnancy due in part to the highly addictive nature of nicotine [12, 13].

Nicotine replacement therapies (e.g., nicotine patches and gums) were developed to assist
with smoking cessation while concurrently allowing the smoker to avoid the thousands of
chemicals in cigarette smoke [14]. Although nicotine replacement therapies are often consid-
ered to be safer than smoking, there is still great concern regarding the effects of nicotine on
fetal and postpartum health (please refer to [15] for a review).

Due to the lipid-soluble nature of nicotine, it easily traverses membrane barriers to enter the
placenta, where it can bind to many subtypes of nicotinic acetylcholine receptors (nAChR) pre-
viously reported to be expressed in human and rat placental syncytiotrophoblasts, cytotropho-
blasts, Hofbauer cells, visceral yolk sac epithelium, and amniotic epithelium [16,17]. Emerging
animal studies demonstrate that nicotine alone during pregnancy can lead to compromised
placental and fetal development, with many detrimental health outcomes in the offspring [18–
24]. Furthermore, nicotine exposure in utero results in low birth weight pups, implicating pla-
cental insufficiency [25–27]. Specifically, nicotine in utero led to compromised placental devel-
opment in pregnant rat dams (e.g., compacted decidual and junctional zones, decreased
labyrinth vascularization and cell proliferation, increased placental hypoxia, and impaired tro-
phoblast differentiation) at embryonic day 15, prior to any observable fetal growth deficiencies
[17]. Given that compromised placental development is a strong predictor of fetal growth re-
striction in humans, elucidation of the underlying mechanisms would be therapeutically bene-
ficial for offspring exposed to nicotine in utero [28]. However, to date, the mechanisms linking
maternal nicotine exposure to compromised placental function remain elusive.

Recent studies have suggested that endoplasmic reticulum (ER) stress, the perturbation of
ER homeostasis due to the accumulation of misfolded or unfolded proteins, plays a critical role
underlying compromised placentation [29–33]. The unfolded protein response (UPR) activates
to alleviate the stress and restore ER homeostasis through three major signalling pathways gov-
erned by activating transcription factor 6 (Atf6), inositol-requiring enzyme 1α endoribonu-
clease (IRE1α), and protein kinase-like endoplasmic reticulum kinase (PERK) [34–36].
However, if the ER remains severely debilitated, C/EBP-homologous protein/Gadd153
(CHOP) activates downstream apoptosis [37, 38], which has been associated with compro-
mised placental growth both in vivo and in vitro [31, 39]. Since the ER is the primary site of
protein synthesis and maturation within the cell, prolonged disturbance of its function through
ER stress could negatively impact essential signalling and transport function in the placenta (e.
g., VEGF and Glut-1 expression) [29, 40–43]. Moreover, one of the key processes underlying
protein maturation and folding within the ER lumen is the disulfide bond formation of nascent
proteins through protein thiol oxidation, and deterrence of its function has been demonstrated
to augment ER stress [40, 44–46]. It is important to note that due to high protein secretory ac-
tivity in the placenta, low-moderate basal levels of UPR activation may occur even under nor-
mal physiological conditions; however, chronic pathological augmentation may rear
consequences in placental development [29, 33, 47].

Nicotine is known to induce vasoconstriction in placental and umbilical vasculature, thus
restricting oxygen and nutrient (e.g., amino acids) supply [48, 49]. Interestingly, hypoxia and
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low amino acid supply have been demonstrated to both hinder disulfide bond formation and
induce ER stress in vitro [50–54]. Exposure to cigarette smoke or nicotine has also been shown
to cause ER stress in several tissue/cell types, but little is known about the mechanisms underly-
ing maternal nicotine exposure in vivo on ER stress and disulfide bond formation in the devel-
oping placenta [55–61]. Therefore, the aim of this study was to determine whether maternal
nicotine exposure in vivo leads to augmented placental ER stress and impaired disulfide bond
formation in the rat placenta.

Materials and Methods

Experimental model
All animal experiments were approved by the Animal Research Ethics Board at McMaster Uni-
versity in accordance with the guidelines of the Canadian Council for Animal Care. Nulliparous
femaleWistar rats (200–250 g, Harlan, Indianapolis, IN, USA) were randomly assigned to receive
daily subcutaneous injections of either saline (vehicle) (n = 6) or nicotine bitartrate (1 mg/kg,
Sigma-Aldrich) (n = 5) for 14 days prior to mating and during pregnancy. This dose has previ-
ously resulted in maternal and neonatal serum cotinine concentrations similar to either moderate
female smokers and/or low-dose nicotine replacement therapy users [24, 62–64]. Mating (embry-
onic day (e) 0) was confirmed by the presence of sperm in a vaginal flush. At necropsy (e15)
whole placentas were harvested, immediately flash-frozen in liquid nitrogen, and stored at -80°C
until molecular analyses were performed.

RNA extraction and Real Time-Polymerase Chain Reaction (RT-PCR)
Total RNA was extracted from homogenized whole placentas using TRIzol reagent (Invitro-
gen). Chloroform (Sigma-Aldrich) was added to the solution, and then centrifuged at
12,500rpm. Supernatant was transferred to a fresh tube with an equal volume of isopropanol
(Sigma-Aldrich) and centrifuged again at 12,500rpm. Total RNA was then collected from the
pellet and dissolved in DEPC-treated water. Deoxyribonuclease I, Amplification Grade (Invi-
trogen) was added to the RNA to digest contaminating single- and double-stranded DNA.
Four μg of RNA were reverse-transcribed to cDNA using random hexamers and Superscript II
Reverse Transcriptase (Invitrogen). Primer sets directed against gene targets of interest were
designed through National Center for Biotechnology Information’s primer designing tool and
generated via Invitrogen Custom DNA Oligos (Table 1). Quantitative analysis of mRNA ex-
pression was performed via RT-PCR using fluorescent nucleic acid dye SsoFast EvaGreen
supermix (BioRad) and BioRad CFX384 Real Time System. The cycling conditions were 95°C
for 10 min, followed by 43 cycles of 95°C for 15 sec and 60°C for 30 sec and 72°C for 30 sec.
The cycle threshold was set so that exponential increases in amplification were approximately
level between all samples. Relative fold changes were calculated using the comparative cycle
times (Ct) method, normalizing all values to the geometric means of three housekeeping genes
(β-Actin, 18S, and Gapdh). Suitable housekeeping genes were determined using algorithms
from GeNorm [65], Normfinder [66], BestKeeper [67], and the comparative ΔCt method [68]
to provide an overall ranking of the most stable housekeeping genes (available online at http://
www.leonxie.com/referencegene.php) (Please refer to S1 Fig. to see all mRNA targets normal-
ized to individual housekeeping genes). Given all primer sets had equal priming efficiency, the
ΔCt values for each primer set were calibrated to the experimental samples with the lowest
transcript abundance (highest Ct value), and the relative abundance of each primer set com-
pared with calibrator was determined by the formula 2ΔΔCt, in which ΔΔCt was the normalized
value.
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Xbp1 splicing assay
Quantitative analysis of Xbp1 mRNA splicing was performed as previously described [69].
Briefly, primers were designed to span the unique exon-exon border formed by unconventional
IRE1 splicing to target spliced Xbp1 mRNA. Primers were also designed to target total Xbp1
mRNA (Table 1). Results were normalized to the geometric means of three housekeeping
genes (β-Actin, 18S, and Gapdh), and then a ratio of spliced to total Xbp1 was taken to quantify
the splicing of Xbp1.

Protein extraction andWestern blot
Whole placentas were homogenized in RIPA buffer (50 mM Tris-HCL, pH 7.4, 150 mMNaCl,
1 mM EDTA, 1% Nonidet P40, 0.25% C24H39NaO4, supplemented with phosphatase inhibitors
(20 mM NaF, 40mM Na-pyrophosphate, 40mMNa3VO4, 200mM β-glycerophosphate diso-
dium salt hydrate), and a protease inhibitor cocktail (Roche)). The solution was sonicated at
30% amplitude for 5 sec total, 1 sec per pulse. It was then mixed in a rotator for 10 min at 4°C
and centrifuged at 300g for 15 min at 4°C. The supernatant was collected and centrifuged at
16000g for 20 min at 4°C. The resulting supernatant was collected as the total cellular protein
extract and quantified by colorimetric DC protein assay (BioRad). Loading samples were pre-
pared with fresh total cellular protein extract (avoiding repeated freeze-thaw cycles), NuPAGE
LDS Sample Buffer (4X) (Invitrogen), NuPAGE Reducing Agent (10X) (Invitrogen), and de-
ionized water, and heated at 70°C for 10 min to denature the proteins. Proteins (20μg/well)
were separated by size via gel electrophoresis in gradient polyacrylamide gels (Novex), and
transferred onto polyvinylidene difluoride membrane (Millipore). Membranes were blocked in
1x Tris-buffered saline-Tween 20 buffer with 5% non-fat milk (blocking solution), and then
probed using primary antibodies of the protein targets of interest, all diluted in the blocking so-
lution (Table 2). Secondary antibodies were used to detect the species-specific portion of the
primary antibody, all diluted in the blocking solution (Table 3). Immuno-reactive bands were
visualized using SuperSignal West Dura Chemiluminescent Substrate (Thermo Scientific).

Table 1. Forward and reverse sequences for the primers used for quantitative Real-Time PCR.

Gene Forward Reverse GenBank/Reference

Atf6 GGATTTGATGCCTTGGGAGTCAGAC ATTTTTTTCTTTGGAGTCAGTCCAT NM_001107196.1

Xbp1 GAGCAGCAAGTGGTGGAT TCTCAATCACAAGCCCATG NM_001004210.2

Spliced Xbp1 GAGTCCGCAGCAGGTG GCGTCAGAATCCATGGGA (69)

Grp78 AACCCAGATGAGGCTGTAGCA ACATCAAGCAGAACCAGGTCAC NM_013083.2

Atf4 CCTGACTCTGCTGCTTATATTACTCTAAC ACTCCAGGTGGGTCATAAGGTTTG NM_024403.2

CHOP CCAGCAGAGGTCACAAGCAC CGCACTGACCACTCTGTTTC NM_001109986.1

PRDX4 TCCTGTTACAGACTGAAGCTTTGC GTGATCTGCGACCGAAACCC NM_053512.2

GPx-7 CCTGCCTTCAAATACCTAACCC TGTAATACGGGGCTTGATCTCC NM_001106673.1

VKORC1 GCTGGTGGAGCATGTGTTAGG CAACGTCCCCTCAAGCAACC NM_203335.2

QSOX1 AGCCACTGCCCTAGATGTACC TGAGGCCTGCGTTTAGTTCC NM_001109898.1

Bax AGGATCGAGCAGAGAGGATGG GACACTCGCTCAGCTTCTTGG NM_017059.2

Bcl-2 TGTGGATGACTGAGTACCTGAACC CAGCCAGGAGAAATCAAACAGAGG NM_016993.1

β-Actin CACAGCTGAGAGGGAAAT TCAGCAATGCCTGGGTAC NM_031144

18S TTGCTGATCCACATCTGCTGG ATTGCCGACAGGATGCAGAA M11188.1

Gapdh GGATACTGAGAGCAAGAGAGAGG TCCTGTTGTTATGGGGTCTGG NM_017008.4

doi:10.1371/journal.pone.0122295.t001
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Statistical analysis
All statistical analyses were performed using GraphPad Prism 5 software. All results were ex-
pressed as means of normalized values ± SEM. Significant outliers were statistically identified
using the Grubbs’ test [70]. The significance of the differences (p<0.05) between normalized
mean values was then evaluated using the two-tailed, nonparametric Mann-Whitney test.

Results

Maternal nicotine exposure leads to augmented ER stress and unfolded
protein response activation in embryonic day 15 placenta
To determine the presence of ER stress in nicotine-exposed placenta, we assessed mRNA and
protein levels of the main players involved in the three branches of the UPR (Atf6, IRE1α, and
PERK) via Real-Time PCR andWestern blot, respectively. Activation of the UPR indicates the
presence of ER stress [35]. With respect to the Atf6 branch of the UPR, the steady-state mRNA

Table 3. Western Blot secondary antibodies, dilutions used in experiments, and company and cata-
logue information.

Antibody name Dilution Company (#Catalogue)

Donkey Anti-Rabbit IgG
(H+L)

1:10000 Jackson ImmunoResearch Laboratories, West Grove, PA, USA
(#711-001-003)

Donkey Anti-Mouse IgG
(H+L)

1:5000 Jackson ImmunoResearch Laboratories, West Grove, PA, USA
(#715-001-003)

Donkey Anti-Goat IgG (H
+L)

1:5000 Jackson ImmunoResearch Laboratories, West Grove, PA, USA
(#705-001-003)

doi:10.1371/journal.pone.0122295.t003

Table 2. Western Blot primary antibodies, dilutions used in experiments, and company and catalogue information.

Antibody name Source Dilution Company (#Catalogue)

KDEL (Grp78) (10C3) Mouse monoclonal 1:300 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA (#sc-58774)

Atf6 Mouse monoclonal 1:600 Novus Biologicals, Oakville, ON, Canada (NBP1-40256)

Phospho-PERK (Thr980) (16F8) Rabbit monoclonal 1:500 Cell Signaling Technology Inc., Danvers, MA, USA (#3179)

PERK (D11A8) Rabbit monoclonal 1:500 Cell Signaling Technology Inc., Danvers, MA, USA (#5683)

Phospho-eIF2α (Ser51) (119A11) Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#3597)

eIF2α Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#9722)

CREB-2 (Atf4) (C-20) Rabbit polyclonal 1:5000 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA (#sc-200)

CHOP (D46F1) Rabbit monoclonal 1:500 Cell Signaling Technology Inc., Danvers, MA, USA (#5554)

Ero1-Lα Rabbit polyclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#3264)

PDI (C81H6) Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#3501)

VKORC1 (D-17) Rabbit polyclonal 1:500 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA (#sc-54456-R)

Quiescin Q6 (QSOX1) (G-12) Goat polyclonal 1:500 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA (#sc-160084)

GPx-7 (S-12) Goat polyclonal 1:500 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA (#sc-160062)

Caspase-3 (8G10) Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#9665)

Caspase-6 Rabbit polyclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#9762)

Caspase-7 (D2Q3L) Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#12827)

Lamin A/C (4C11) Mouse monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, USA (#4777)

Bax Rabbit polyclonal 1:500 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA (#sc-493)

Bcl-2 Rabbit polyclonal 1:100 Abcam Inc., Toronto, ON, Canada (#ab7973)

β-Actin Mouse monoclonal 1:50000 Sigma-Aldrich Co., St. Louis, MO, USA Canada (#A3854)

doi:10.1371/journal.pone.0122295.t002
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levels of Atf6 were found to be significantly elevated in e15 nicotine-treated placentas com-
pared to controls (p<0.05), however, the protein levels of active Atf6(p50) remained unaltered
(Fig. 1A-C). To determine the activation of the IRE1α branch, splicing of its downstream tar-
get, Xbp1 mRNA, was measured and found to be unaltered (Fig. 1D). However, nicotine expo-
sure led to activation of the PERK branch of the UPR as demonstrated through significantly
increased ratios of phosphorylated PERK [Thr980]: total PERK protein levels in nicotine-ex-
posed placentas compared to controls at e15 (p<0.05, Fig. 1A, E). Nicotine exposure also led to
significantly increased ratios of phosphorylated eukaryotic initiation factor (eIF) 2α [Ser51]:
total eIF2α protein levels in the placenta (p<0.05), suggesting global protein translation attenu-
ation (Fig. 1A, F).

Since activation of the PERK pathway of the unfolded protein response was demonstrated,
we decided to next investigate the expression of its potential downstream targets, Atf4, Grp78,
and CHOP. Atf4 protein levels were significantly elevated in e15 nicotine-exposed placentas
compared to controls (p<0.01) with unchanged steady-state mRNA levels (Fig. 2A-C). Grp78
protein levels were also significantly elevated in nicotine-exposed placentas (p<0.05) with un-
changed mRNA levels (Fig. 2A, D-E), revealing post-transcriptional ER-stress-related increases
in protein expression. However, nicotine exposure led to increased expression of CHOP
(p<0.05), indicating prolonged ER stress and potential activation of ER-stress-related apopto-
tic pathways in e15 placentas (Fig. 2A, F-G). Collectively, these results confirm the presence of
augmented ER stress and unfolded protein response activation of the PERK pathway in nico-
tine-treated placentas.

The effects of nicotine-induced activation of CHOP on downstream
apoptotic pathways
Due to elevated expression of CHOP in nicotine-exposed placentas, we next wanted to deter-
mine the expression of downstream apoptotic targets, pro-apoptotic Bax and anti-apoptotic
Bcl-2, which are known to synergistically orchestrate apoptosis [37, 71]. To assess the level of
apoptotic activation, the ratio of Bax: Bcl-2 mRNA levels were quantified; however, we found
no significant difference between groups (Fig. 3A, B). There was a slight increase in Bax protein
and decrease in Bcl-2 protein in nicotine-exposed placentas compared to controls, however,
neither the markers nor their ratio reached statistically significant differences (Fig. 3A, C).

Maternal nicotine exposure does not induce caspase-mediated
apoptosis
To further investigate the severity of the ER stress, we measured another major ER stress-relat-
ed apoptotic pathway, the caspase-mediated apoptosis pathway. We found no significant dif-
ferences in the protein levels of cleaved caspase-3, 6, 7, nor their substrate Lamin A, between
control and nicotine-exposed placentas at e15 (Fig. 4).

Maternal nicotine exposure down-regulates expression of protein
disulfide isomerase and ER oxidoreductases
In order to elucidate the underlying mechanisms of nicotine-induced ER stress in the placenta,
we further examined disulfide bond formation, a process intimately connected with ER homeo-
stasis and known to cause ER stress when compromised [52]. Specifically, we were interested
in looking at the effects of nicotine on expression of the key isomerase and oxidoreductases
that carry out disulfide bond formation. Protein disulfide isomerase (PDI) mediates protein
folding by introducing disulfide bonds to nascent proteins through thiol oxidation. ER
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Fig 1. The effect of maternal nicotine exposure on the three branches of the unfolded protein
response (Atf6, IRE1α, PERK) in e15 rat placentas. Protein and mRNA levels of targets of interest were
determined via Western blot and RT-PCR, respectively. (A) Specific targeted protein bands as detected by
respective antibodies via Western blot. (B) Atf6 mRNA levels. (C) Atf6 protein levels. (D)mRNA levels of
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oxidoreductase, Ero1-Lα/β, will then subsequently reoxidize PDI to continue the redox relay
[40, 44, 45]. Interestingly, PDI protein levels were found to be significantly decreased in nico-
tine-exposed placentas at e15 (p<0.05, Fig. 5A, B). In contrast, the main ER oxidoreductase,
Ero1-Lα, demonstrated no significant change between treatment groups (Fig. 5A, C).

These results provoked further exploration of the expression of alternative ER oxidoreduc-
tases (e.g., PRDX4, GPx-7, VKORC1, and QSOX1) recently found to be involved in PDI reoxi-
dation and/or direct thiol oxidation of nascent proteins [72–77]. Real-time PCR revealed
decreases in the steady-state mRNA levels of GPx-7, VKORC1 (p<0.05) and QSOX1 (p<0.05,
Fig. 6A, B, D, F). Additionally, QSOX1 was significantly decreased at the protein level in nico-
tine-treated placentas compared to the controls (p<0.05, Fig. 6A, G).

Maternal nicotine exposure increases markers of hypoxia and amino
acid deprivation
Given that oxygen is the final electron acceptor in post-translational disulfide bond formation
[52], we next investigated whether hypoxia was induced by nicotine exposure by measuring
placental protein levels of hypoxia-inducible factor (Hif) 1α [78, 79]. Western blot revealed
that Hif1α protein levels were significantly elevated in e15 nicotine-treated placentas compared
to the controls (p<0.05, Fig. 7A, B). We were also interested in exploring whether additional
insults induced by the vasoconstrictive effects of nicotine were present (e.g., low amino acid
supply) [48]. General control non-depressible 2 (GCN2) is a protein kinase that responds to
amino acid starvation by up-regulating transcription factors (e.g., GCN4) to mediate the nutri-
ent deprivation. GCN2 also acts as an alternative kinase to phosphorylate eIF2α alongside
PERK to attenuate protein translation [80, 81]. Western blot revealed that GCN2 protein levels
were strongly elevated in e15 nicotine-treated placentas compared to the controls (p<0.01,
Fig. 7A, C).

Discussion
In the current study, we have demonstrated that nicotine exposure in pregnant rats leads to
augmented ER stress in the e15 placenta. We were interested in selecting a time-point during
pregnancy when nicotine exposure was previously shown to cause structural and morphologi-
cal aberrations in the rat placenta, prior to exhibiting any observable fetal growth deficit [17,
25]. Given that ER stress and placental insufficiency were observed to precede human intra-
uterine growth restriction [26, 27, 29, 31, 33], the presence of augmented ER stress exhibited in
e15 nicotine-exposed rat placentas reveal a potential mechanism through which nicotine may
cause adverse placental and fetal outcomes in pregnant mothers who are smoking or undergo-
ing nicotine replacement therapy.

An elegantly conducted study by DuRose et al. (2006) revealed intrinsic differences between
the three UPR pathways (Atf6, IRE1α, and PERK) in their abilities to sense and recognize dis-
tinct types of ER perturbations [82]. We demonstrated that maternal nicotine exposure selec-
tively activates the PERK unfolded protein response pathway in e15 rat placentas. Increases in
the steady-state levels of Atf6 mRNA proposes possible involvement of the Atf6 branch,

spliced Xbp1, unspliced Xbp1, and ratio of spliced: unspliced Xbp1. (E) Protein levels of p-PERK [Thr980],
PERK, and ratio of p-PERK: PERK. (F) Protein levels of p-eIF2α [Ser51], eIF2α, and ratio of p-eIF2α:eIF2α.
All protein levels were expressed as means normalized to β-Actin ± SEM (n = 5-6/group). All mRNA levels
were expressed as means normalized to the geometric mean of three stable housekeeping genes (β-Actin,
18S, and Gapdh) ± SEM (n = 5-6/group). *, Significant difference (p< 0.05). **, Significant difference
(p<0.01).

doi:10.1371/journal.pone.0122295.g001
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Fig 2. Nicotine exposure leads to activation of downstream targets in the PERK branch of the
unfolded protein response in e15 rat placentas. Protein and mRNA levels of targets of interest were
determined via Western blot and RT-PCR, respectively. (A) Specific targeted protein bands as detected by
respective antibodies via Western blot. (B) Atf4 mRNA levels. (C) Atf4 protein levels. (D)Grp78 mRNA levels.
(E)Grp78 protein levels. (F) CHOPmRNA levels. (G) CHOP protein levels. All protein levels were expressed
as means normalized to β-Actin ± SEM (n = 5-6/group). All mRNA levels were expressed as means
normalized to the geometric mean of three stable housekeeping genes (β-Actin, 18S, and Gapdh) ± SEM
(n = 5-6/group).*, Significant difference (p< 0.05). **, Significant difference (p<0.01).

doi:10.1371/journal.pone.0122295.g002
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however, the lack of change in the protein levels and transcript levels of downstream target (e.
g., Grp78), do not strongly support this at this particular time-point. Activation of PERK in-
duces phosphorylation of eIF2α, which attenuates global protein translation to reduce the in-
coming protein load [83–85]. Phosphorylated eIF2α also paradoxically elevates translation of
mRNA transcripts with conserved upstream open reading frames, such as Atf4, which was
demonstrated through unchanged Atf4 mRNA levels, but significantly increased protein levels
in our nicotine-treated placentas compared to controls [86–88]. Interestingly, Grp78 protein
levels were also found to be significantly up-regulated in nicotine-treated placentas compared
to controls, amidst unchanged mRNA levels. Grp78 mRNA transcription is more commonly
regulated by Atf6 and IRE1α branches of the UPR; however, various post-transcriptional
mechanisms (e.g., alternative translation initiation due to eIF2α phosphorylation) have been
demonstrated to independently regulate protein levels of Grp78 in the presence of ER stress re-
gardless of transcript levels [89, 90].

CHOP, which may be up-regulated by Atf4 and/or phosphorylated eIF2α, is known to am-
plify various downstream apoptosis pathways (e.g., down-regulation of anti-apoptotic Bcl-2 ex-
pression, translocation of Bcl-2-associated X protein (Bax) to mitochondria to amplify death
pathway, etc.) [38, 71, 91–95]. However, the minimal changes seen in the ratio of Bax: Bcl-2 ex-
pression despite significantly increased CHOP expression perhaps suggests an early stage of
CHOP activation in e15 nicotine-exposed placentas, when downstream apoptosis have not yet

Fig 3. The effect of maternal nicotine exposure on downstream CHOP-mediated apoptotic pathways.
Protein and mRNA levels of targets of interest were determined via Western blot and RT-PCR, respectively.
(A) Specific targeted protein bands as detected by respective antibodies via Western blot. (B)mRNA levels
of Bax, Bcl-2, and ratio of Bax: Bcl-2. (C) Protein levels of Bax, Bcl-2, and ratio of Bax: Bcl-2. All protein levels
were expressed as means normalized to β-Actin ± SEM (n = 5-6/group). All mRNA levels were expressed as
means normalized to the geometric mean of three stable housekeeping genes (β-Actin, 18S, and Gapdh) ±
SEM (n = 5-6/group).

doi:10.1371/journal.pone.0122295.g003
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Fig 4. The effect of maternal nicotine exposure on downstream caspase-mediated apoptotic
pathways. Protein levels of targets of interest were determined via Western blot. (A) Specific targeted protein
bands as detected by respective antibodies via Western blot. (B) Cleaved caspase-3 protein levels. (C)
Cleaved caspase-6 protein levels. (D) Cleaved caspase-7 protein levels. (E) Cleaved Lamin A protein levels.
All protein levels were expressed as means normalized to β-Actin ± SEM (n = 5-6/group).

doi:10.1371/journal.pone.0122295.g004

Fig 5. Nicotine decreases PDI expression in e15 rat placentas. Protein levels of targets of interest were
determined via Western blot. (A) Specific targeted protein bands as detected by respective antibodies via
Western blot. (B) PDI protein levels. (C) Ero1-Lα protein levels. All protein levels were expressed as means
normalized to β-Actin ± SEM (n = 5-6/group). *, Significant difference (p<0.05).

doi:10.1371/journal.pone.0122295.g005
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been fully elicited. The other possibility is that although CHOP is involved in the translocation
of Bax to the mitochondria, it may not be involved in up-regulating the transcription of Bax
[94]. The lack of change seen in other caspase markers further indicates the absence of nicotine
effects on these specific apoptosis pathways at this particular time point. However, the expres-
sion of placental genes previously found to be influenced by nicotine (e.g., up-regulation of
VEGF and down-regulation of Glut-1) are also altered in the same manner by tunicamycin (a
known inducer of ER stress), without any reported activation of apoptosis [17, 29, 96, 97]. This
collectively suggests that the structural and morphological aberrations in nicotine-exposed

Fig 6. The effect of maternal nicotine exposure on various ER oxidoreductases in e15 rat placentas.
Protein and mRNA levels of targets of interest were determined via Western blot and RT-PCR, respectively.
(A) Specific targeted protein bands as detected by respective antibodies via Western blot. (B)GPx-7 mRNA
levels. (C)GPx-7 protein levels. (D) VKORC1mRNA levels. (E) VKORC1 protein levels. (F)QSOX1mRNA
levels. (G)QSOX1 protein levels. All protein levels were expressed as means normalized to β-Actin ± SEM
(n = 5-6/group). All mRNA levels were expressed as means normalized to the geometric mean of three stable
housekeeping genes (β-Actin, 18S, and Gapdh) ± SEM (n = 5-6/group). *, Significant difference (p<0.05).

doi:10.1371/journal.pone.0122295.g006
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placentas may be due to the ER stress-induced alterations in gene expression caused by nico-
tine, instead of pathological apoptosis [17]. Therefore, the nicotine-induced unfolded protein
response at e15 may possibly be attempting to avoid apoptosis by re-establishing some manner
of sub-optimal placental homeostasis to adapt to the ER stress experienced.

Activation of the unfolded protein response also reveals possible dysfunction of protein
maturation. Disulfide bond formation is critical for successful co- and post-translational modi-
fications during protein maturation, and impairment is known to lead to ER stress [35, 98].
Traditionally, PDI and/or QSOX1 expression increases during hypoxia, tunicamycin or thapsi-
gargin-induced ER stress to further assist with protein folding and disulfide bond formation
[99–102]. PDI has also been found to be up-regulated in the lungs of chronic smokers, perhaps
as a protective response against the oxidative damage of chronic cigarette smoke exposure
[103–105]. However, down-regulation of mRNA transcripts of essential isomerases and oxido-
reductases in disulfide bond formation (e.g., VKORC1, QSOX1) was seen in the nicotine-ex-
posed rat placentas at e15. Protein levels were also seen to be significantly down-regulated in a
few markers (e.g., PDI, QSOX1), though to a lesser degree compared to the change in mRNA
levels. It is possible that these transcripts initially down-regulated by nicotine are being subse-
quently stabilized at the protein level by the unfolded protein response, which seeks to post-
transcriptionally up-regulate their protein levels in the presence of ER stress, as seen in previ-
ous studies [99–105]. This may explain the milder changes seen in protein levels of VKORC1
and QSOX1, despite strong decreases in their transcript levels. Interestingly, cigarette smoke
has recently been demonstrated to also lead to excessive posttranslational oxidation of PDI,
abating its functionality in the formation of disulfide bonds [60]. Given that inhibition of PDI
is also known to disrupt protein folding and augment ER stress, it may be stipulated that the
nicotine-induced down-regulation of PDI and other oxidoreductases at e15 may still be con-
tributing in part to the augmentation of ER stress, despite the adaptive efforts of the unfolded
protein response to stabilize their protein levels [46]. Regardless, additional studies must first

Fig 7. Nicotine-induced vasoconstriction leads to both hypoxia and reduced amino acid supply in e15
placenta. Protein levels of targets of interest were determined via Western blot. (A) Specific targeted protein
bands as detected by respective antibodies via Western blot. (B) Hif1α protein levels. (C)GCN2 protein
levels. All protein levels were expressed as means normalized to β-Actin ± SEM (n = 5-6/group). *, Significant
difference (p<0.05). **, Significant difference (p<0.01).

doi:10.1371/journal.pone.0122295.g007
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Fig 8. Proposed schematic of the effect of nicotine on ER stress and the unfolded protein response in
the e15 placenta. Pathways affected by nicotine are indicated by the darkened arrows and boxes. In
summary, nicotine exposure was shown to augment ER stress and activate the unfolded protein response in
the e15 placenta. Activation was most prominent in the PERK branch and was demonstrated in association
with impaired disulfide bond formation. Nicotine is proposed to impair disulfide bond formation through direct
or indirect down-regulation of PDI and other oxidoreductases. Disulfide bond formation is further impaired
through increased hypoxia as caused by nicotine-induced vasoconstriction. Additionally, up-regulation of
GCN2 suggests amino acid starvation and activation of the integrated stress response to further

Maternal Nicotine Exposure Leads to Placental ER Stress

PLOS ONE | DOI:10.1371/journal.pone.0122295 March 26, 2015 14 / 21



be conducted on the individual effects of nicotine and UPR activation on PDI and oxidoreduc-
tase regulation to further address these speculations.

It is noteworthy that increased expression of Hif1α, alongside previously reported increases
in CA-IX expression, jointly reveals hypoxia in nicotine-exposed placentas [17, 78, 79]. The in-
crease in hypoxia may be due to nicotinic antagonism of nAChR α9, which induces vasocon-
striction of placental vasculature to reduce oxygen supply [48, 49]. Koritzinsky et al. (2013)
recently identified oxygen as the terminal electron acceptor in post-translational disulfide bond
formation, further implicating the impairment of protein maturation in hypoxia-induced ER
stress [52]. Additionally, vasoconstriction is known to reduce nutrient and amino acid supply
to the placenta [48]. Nicotine has also been documented to depress amino acid transport sys-
tem A and block acetylcholine-mediated nutrient delivery in trophoblasts, collectively hinder-
ing the maternal transport of many essential amino acids to the feto-placental unit [106–108].
Significantly increased expression of GCN2 indeed reveals amino acid starvation in nicotine-
exposed placentas [80, 81]. Furthermore, GCN2 is an alternative kinase of eIF2α and may be
partially responsible for its phosphorylation alongside PERK to cooperatively initiate an inte-
grated stress response to hypoxia/ER stress and amino acid starvation [109]. However, future
research is directed to further investigate the relationships between low amino acid supply and
impaired disulfide bond formation.

In summary, this study has demonstrated that nicotine alone can induce ER stress and
evoke an integrated stress response in the rat placenta, as revealed through PERK- and
GCN2-activation of the p-eIF2α-Atf4-CHOP axis (Fig. 8). Recent studies have demonstrated
the induction of ER stress via super-physiological nicotine dosages or cigarette smoke [55–61];
however, our study was the first to induce ER stress in the rat placenta through an in vivo
model of maternal nicotine exposure using physiological nicotine dosages. Furthermore, we
provide novel insight by demonstrating this in association with impairment of the disulfide
bond formation pathway, as shown through nicotine-induced down-regulation of PDI and
QSOX1 expression and increased hypoxia. By elucidating that maternal nicotine exposure is
linked to placental ER stress and impaired disulfide bond formation, this may contribute to the
development of more efficacious interventions (e.g., Tauroursodeoxycholic acid to relieve ER
stress [110]). More importantly, given that nicotine alone exerts severe effects on placental
function, and consequently, on fetal and postnatal health, this study further implicates that
greater caution is required for women considering nicotine replacement therapy for smoking
cessation in pregnancy.

Supporting Information
S1 Fig. mRNA targets all normalized to individual housekeeping genes selected for geomet-
ric mean. Trends remain across all normalizations to individual housekeeping genes. All
mRNA levels were expressed as means normalized to either β-Actin, 18S, Gapdh, or the geo-
metric mean ± SEM (n = 5-6/group). Statistical analyses were not performed in these graphs.
(TIF)

phosphorylate eIF2α. However, the lack of Bax and caspase activation seen at e15 suggests that the
nicotine-induced ER stress response may possibly be attempting to avoid apoptosis by re-establishing some
manner of sub-optimal placental homeostasis to adapt to the ER stress experienced.

doi:10.1371/journal.pone.0122295.g008
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