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Abstract 

The main premise of this chapter is that the time is ripe for more extensive research and 

development of social media tools that filter out intentionally deceptive information such as 

deceptive memes, rumors and hoaxes, fake news or other fake posts, tweets and fraudulent 

profiles. Social media users’ awareness of intentional manipulation of online content appears to 

be relatively low, while the reliance on unverified information (often obtained from strangers) is 

at an all-time high. I argue there is need for content verification, systematic fact-checking and 

filtering of social media streams. This literature survey provides a background for understanding 

current automated deception detection research, rumor debunking, and broader content 

verification methodologies, suggests a path towards hybrid technologies, and explains why the 

development and adoption of such tools might still be a significant challenge.  
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INTRODUCTION 

The goal of this chapter is to introduce readers to automated deception detection research, with a 

cursory look at the roots of the field in pre-social media data types. My intent is to draw attention 

to existing analytical methodologies and pose the question of their applicability to the context of 

social media. This chapter is divided into five parts as follows. 

The Problem Statement section sets the stage for why deception detection methods are needed in 

the social media context by calling attention to the pervasiveness of social media and its potential 

role in manipulating user perceptions. 

In the Background segment I define deception and talk briefly about the roots and more 

contemporary forms of deception research. I provide the necessary background for what is 

currently known about people’s overall abilities to spot lies and what constitutes predictive cues 

to tell the liars apart from truth tellers. 

The Methodological Solutions part outlines some principles by which deception can be identified 

outside of social media context. I elaborate on predictive linguistic cues and methods used to 

identify deception. I follow up with an overview of several Online Tools that tackle the problem 

of deception detection and argue that more research and development of deception detection 

tools is needed, taking into account the specificity of each type and format of the social media 

stream. 

In Broader Content Verification I consider several important related concepts: rumors, 

credibility, subjectivity, opinions, and sentiment, evaluating appropriate techniques and method 

for identifying these phenomena.  

Open Research and Development Problems are discussed in terms of the needed methodologies 

for three most recent social media phenomena: potential fraud on collaborative networking sites, 

pervasiveness of clickbaiting, and astroturfing by bots in social media. I briefly explain how each 

phenomenon relates to deception detection efforts, identifying these areas as most up-to-date 

niches requiring research and development.  

I conclude that social media requires content verification analysis with a combination of 

previously known approaches for deception detection, as well as novel techniques for debunking 

rumors, credibility assessment, factivity analysis and opinion mining. Hybrid approaches may 

include text analytics with machine learning for deception detection, network analysis for rumor 

debunking and should incorporate world knowledge databases to fully take advantage of the 

linguistic, interpersonal, and contextual awareness.  

 

PROBLEM STATEMENT: DECEPTION IN SOCIAL MEDIA CONTEXT 

Although social media is difficult to define precisely as a phenomenon (McCay-Peet and Quan-

Haase, Forthcoming 2016), most popular social networking and microblogging sites such as 

Facebook, Twitter, and LinkedIn include the function of online community building, personal 

messaging, and information sharing (Guadagno and Wingate, 2014). Digital news environments, 
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I argue, are now becoming increasingly social, if not in the way they have been written, at least 

in the way they are accessed, disseminated, promoted, and shared.  

The boundary between mainstream media news and user generated content is slowly blurring 

(Chen et al., 2015b). Kang, Höllerer and O'Donovan (2015) observe that microblogging services 

have recently transformed from “online journal or peer-communication platforms” to “powerful 

online information sources operating at a global scale in every aspect of society, largely due to 

the advance of mobile technologies. Today’s technology enables instant posting and sharing of 

text and/or multimedia content, allowing people on-location at an event or incident to serve as 

news reporters”. They cite studies of traditional media journalist practices showing that 

journalists rely heavily on social media for their information, and report about 54% of all U.S. 

journalists use microblogs to collect information and to report their stories (Kang et al., 2015). 

It is also common for lay news readers to receive news by via their social peers on networks like 

Facebook and Twitter. Thus, it is reasonable to consider tools and methodologies from fuller-

form communication formats such as news in “pre-social media era” as a starting point for 

deception detection and rumor debunking methodologies for the newer platforms and formats, 

whether they are shorter or longer, hashed or not, video-based or image-based. In this chapter I 

focus primarily on text-based social media application, those that use text primarily as their 

medium of communication, while image-sharing (such as Flickr and Picassa) and video-sharing 

websites (such as YouTube and Vimeo) are left aside for separate consideration of potential 

ways to manipulate non-textual content.  

A 2013 PEW research report (Holcomb et al., 2013) showed an increase in the number of users 

that keyword-search blogs as opposed to the traditional content streams. It means that a larger 

portion of information comes from complete strangers rather than from known or trusted sources 

(Kang et al., 2015). “With the massive growth of text-based communication, the potential for 

people to deceive through computer-mediated communication has also grown and such 

deception can have disastrous results” (Fuller et al., 2009, p. 8392). 

The majority of social media contributors presumably communicate their messages to the best of 

their knowledge, abilities, and understanding of the situation at hand. Their messages primarily 

match their own beliefs. Social media streams are awash in biased, unreliable, unverified 

subjective messages, as well as ads and solicitations. Most social media consumers are typically 

aware of the subjective nature of social media streams, as well as the typical promotional 

intentions to attract online traffic and revenue. What is rarer is the realization that there are 

(albeit rarer) instances of posts, tweets, links, and so forth, that are designed to create false 

impressions or conclusions. Creating false beliefs in the social media consumers’ minds can be 

achieved though disseminating outright lies, fake news, rumors or hoaxes, especially when the 

message appears to come from “a friend” or another in-group member. Spam and phishing 

attacks in e-mail messages are more recognizable now that most users have experience receiving 

and filtering them, while the issue of information manipulation via social media is still poorly 

understood and rarely atop of users’ minds. Malevolent intentions manifest themselves in inter-

personal deception and can be damaging in person-to-person communication.  

Social media users often hold a general presumption of goodwill in social media communication. 

Morris et al. (2012) found that, for instance, Twitter users “are poor judges of truthfulness based 

on content alone, and instead are influenced by heuristics such as user name when making 
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credibility assessments”. Some social media users may sacrifice caution for the sake of 

convenience, which may result in them being vulnerable to those who intend to deceive by 

disseminating false rumors or hoaxes in an effort to alter users’ decision making and patterns of 

behavior (beyond incentivizing to purchase via pushed advertising).  

There are well-documented instances of deceptive, unconfirmed, and unverified tweets being 

picked up by main-stream media, giving them undeserving weight and credibility.  In October 

2008, three years prior to Steve Jobs’ death, a citizen journalist posted a report falsely stating that 

Jobs had suffered a heart attack and had been rushed to a hospital. The original deliberate 

misinformation was quickly “re-tweeted” disregarding the fact that it originated from CNN’s 

iReport.com which allows “unedited, unfiltered” posts. Although the erroneous information was 

later corrected, the “news” of Jobs’ alleged health crisis spread fast, causing confusion and 

uncertainty, and resulting in a rapid fluctuation of his company’s stock on that day (per CBC Radio 

“And the Winner Is”, 31 March 2012). This is just one, albeit very public, example of deceptive 

information being mistaken for authentic reporting, and it demonstrates the very significant 

negative consequences such errors can create. Earlier examples of companies “struck by phony 

press releases” include the fiber optic manufacturer, Emulex, and Aastrom Biosciences (Mintz, 

2002). Research further cites evidence of false tweets recently discovered in U.S. Senate 

campaigns, in reporting of the Iranian election protests, and in the coverage of unfolding natural 

disasters such as the Chilean earthquake (Morris et al., 2012). Social search tools (such as Bing 

Social Search [bing.com/social] and Social Seaking [socialseeking.com]) can also amplify 

undesirable memes, and while some false reporting is relatively harmless (such as celebrity 

deaths), “increased reliance on social media for actionable news items (Should I vote for candidate 

X? Should I donate to victims of disaster Y?)”, makes credibility a nontrivial concern” (Morris et 

al., 2012).  

 

A 2015 Pew report documents that “about six-in-ten online Millennials (61%) report getting 

political news on Facebook in a given week, a much larger percentage than turn to any other 

news source, according to a new Pew Research Center analysis.” About the same ratio of Baby 

Boomers [born 1946-1964] (60%) rely by contrast on local TV sources for political news (Pew 

2015 Report by Mitchell and Page, 2015). Considering that younger users tend to rely on social 

media to inform themselves on breaking news, political issues, local and international events, the 

potential for harm from being intentionally misinformed over the internet is evident. 

Researchers and developers for social media platforms are starting to consider methods and tools 

for filtering out intentionally manipulative messages and prompting unsuspecting users to fact-

check. The context of social media is unique, diverse in formats, and relatively new, but lying 

and deceiving has been at play in other forms of human communication for ages. The next 

section overviews the roots of deception studies and the contemporary interpretation of the 

phenomenon in deception research. I also outline how deception can be detected in texts, 

specifically, with the use of state-of-the-art text analytics. Though no “bullet-proof” mechanism 

currently exists to screen out all memes, hoaxes, rumors, and other kinds of malevolent 

manipulative messages, it is perhaps time to consider what methodologies can be harnessed from 

the previous years in deception detection research, and how those methods can be successfully 

ported to the new context of social media.  
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BACKGROUND: DECEPTION AND TRUTH BIAS 

Since the ancient times, the concepts of truth, falsehood, lying, and deception have been 

pondered over great thinkers, from the ancient Greek philosophers (Socrates, Plato, Aristotle) to 

central figures in modern Western philosophy (Emmanuel Kant, Ludwig Wittgenstein). Sissela 

Bok writes in her analysis of morality (1989) that “lying has always posed a moral problem”; for 

instance, Aristotle believed falsehood in itself to be “mean and culpable”, and Kant regarded 

truthfulness as an "unconditional duty which holds in all circumstances”.  

In 21st century truthfulness and honesty remain essential for successful communication, while 

deception is still largely frowned upon and widely condemned (Walczyk et al., 2008). Deception 

(with or without computer mediation) violates the cooperative principle for successful 

communication, expressed as a failure to observe at least one of the four maxims, as postulated 

by a philosopher of language, Paul Grice (1975) (1975): say what you believe to be true (Maxim 

of Quality), do not say more than needed  (Maxim of Quantity), stay on the topic  (Maxim of  

Relevance), and do not be vague (Maxim of Manner) (Rubin, 2010b). 

Recent Inter-Personal Psychology and Computer-Mediated Communication studies define 

deception as an intentional and knowing attempt on the part of the sender of the message to 

create a false belief or false conclusion in the mind of the receiver of the message (e.g., Buller 

and Burgoon, 1996, Zhou et al., 2004). The definition typically excludes self-deception and 

unintentional errors since in those exceptions the senders’ beliefs still match the intended 

communicated message. Lying is considered to be just one kind of deception – that of 

falsification – as opposed to other deceptive varieties such as omission, equivocation, or 

concealment. 

From Inter-Personal Psychology studies we also know that people are generally truth-biased, or 

more predisposed towards to veracity than deception. “The truth bias is the presumption of truth 

in interpersonal interactions and the tendency to judge an interpersonal message as truthful rather 

than deceptive, irrespective of the actual truth of the message. Communicators are initially 

assumed to be truthful, and this assumption is possibly revised only if something in the situation 

evokes suspicion” (Van Swol, 2014). “Numerous studies have found that independent of actual 

message veracity, individuals are much more likely to ascribe truth to other’s messages than 

deceit” (Levine et al., 1999). There is no reason to presume that a subset of the general 

population wouldn’t exhibit similar truth-bias tendencies.  

 

Truth bias is also one of the potential explanations for why people are so inept at distinguishing 

truths from deception. Humans are notoriously poor lie detectors even when they are alerted to 

the possibility of being lied to (Vrij, 2004, Vrij, 2000, Vrij et al., 2012). A widely cited source 

that conducted a meta-analytical review of over 100 experiments with over 1,000 participants 

(DePaulo et al., 1997), concludes that on average people are able to distinguish a lie from a 

truthful statement with a mean accuracy rate of 54%, slightly above chance (Rubin and Conroy, 

2012).  

 

On the other hand, current theories of deceptive communicative behaviors suggest that deceivers 

communicate in qualitatively different ways from truth-tellers. Stable differences are found in 

behaviors of liars versus truth-tellers, especially evident in the verbal aspects of behavior (Ali and 
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Levine, 2008). Liars are said to be identified by their words – not by what they say but by how 

they say it (Newman et al., 2003). There have been efforts to compile, test, and cluster predictive 

cues for deceptive messages in order to translate those findings into text analytical tools for 

detecting lies, primarily in longer forms of Computer Mediated Communication such as e-mail.  

 

METHODOLOGICAL SOLUTIONS: DECEPTION DETECTION WITH 

LINGUISTIC PREDICTORS  

Deception Detection researchers generally agree that it is possible to detect deception based on 

linguistic cues. Several successful studies on deception detection have demonstrated the 

effectiveness of linguistic cue identification, as the language of truth-tellers is known to differ 

from that of deceivers (e.g., Bachenko et al., 2008, Larcker and Zakolyukina, 2012). 

Though there is no clear consensus on reliable predictors of deception, deceptive cues can be 

identified in texts, extracted and clustered conceptually, for instance, to represent diversity, 

complexity, specificity, and non-immediacy of the analyzed texts. For instance, (Zhou et al., 

2004) developed Text-based Asynchronous Compute-Mediated Communication (TA-CMC) and 

reviewed five main systems developed for the analysis of the deception detection in textual 

communication: Criteria-Based Content Analysis (CBCA), Reality Monitoring (RM), Scientific 

Content Analysis (SCAN), Verbal Immediacy (VI) and Interpersonal Deception Theory (IDT). 

Each of the systems developed criteria for classifying textual information either as deceptive or 

truthful and contributed towards creation of the list of 27 linguistic features in eight broad 

conceptual clusters, as shown in Figure 1 (Zhou et al 2004). 
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Figure 1. Summary of Zhou et al’s (2004) Linguistic Features for Deception Detection. 
Twenty seven linguistic-based features, amenable to automation, were grouped into nine linguistic constructs: 

quantity, complexity, uncertainty, nonimmediacy, expressivity, diversity, informality, specificity, and affect. All the 

linguistic features are defined in terms of their measurable dependent variables. (Redrawn from Zhou et al., 2004). 

 

 
 

When implemented with standard classification algorithms (such as neural nets, decision trees, 

and logistic regression), such methods achieve 74% accuracy (Fuller et al., 2009). Existing 

psycholinguistic lexicons  (e.g., LIWC by Pennebaker and Francis, 1999) have been adapted to 

perform binary text classifications for truthful versus deceptive opinions, with classifiers 

demonstrating a 70% average accuracy rate (Mihalcea and Strapparava, 2009). 

Human judges, by a rough measure of comparison, achieved only 50 – 63% success rates in 

identifying deception, depending on what is considered deceptive on a seven-point scale truth-to-
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deception continuum: the more extreme degrees of deception are more transparent to judges 

(Rubin and Conroy, 2011). 

Deception Detection researchers also widely acknowledge a variation in linguistic cues as 

predictors across situations (Ali and Levine, 2008), across genres of communication, 

communicators  (Burgoon et al., 2003) and cultures (Rubin, 2014). The main lesson we are 

learning is that the contexts in which deceptive communications occurs matter greatly. For 

example, in synchronous text-based communication, deceivers produced more total words, more 

sense-based words (e.g., seeing, touching), and used fewer self-oriented but more other-oriented 

pronouns (Hancock et al., 2007). Compared to truth-tellers, liars showed lower cognitive 

complexity and used more negative emotion words (Newman et al., 2003).  

In conference calls of financiers,  Larcker and Zakolyukina (2012)found deceptive statements to 

have more general knowledge references and extreme positive emotions, and also fewer self-

references, extreme negative emotions, as well as certainty and hesitation words.  

In police interrogations, Porter & Yuille (1996b) found three significantly reliable, verbal 

indicators of deception (based on Statement Validity Analysis techniques used in law 

enforcement for credibility assessments): amount of detail reported, coherence, and admissions 

of lack of memory.  

In descriptions of mock theft experiments, Burgoon and colleagues (2003) found deceivers’ 

messages in their text-based chats were briefer (i.e., lower on quantity of language), less complex 

in their choice of vocabulary and sentence structure, and lacked specificity or expressiveness. 

Deception is prominently featured in several domains (e.g., politics, business, personal relations, 

science, journalism (Rubin, 2010a). The use of  language changes under the influence of 

different situational factors, genre, register, speech community, text and discourse type (Crystal, 

1969). Therefore, the verbal cues for deception detection across various knowledge domains and 

various formats of social media may differ, though the computational algorithms or broader 

concept (such as Zhou’s clusters of diversity, complexity, specificity, and non-immediacy) may 

remain constant. When predictive linguistic cues are developed based on general linguistic 

knowledge (Höfer et al., 1996), linguistic cues could be portable to social media contexts (for 

instance, from e-mail to full-sentences forum posts). Nevertheless, if the subject areas are highly 

specialized, then when deciphering predictive cues, researchers should account for context 

specificity and format (Höfer et al., 1996, Porter and Yuille, 1996a, Köhnken and Steller, 1988, 

Steller, 1989). Table 1 summarizes various types of discourses or types of data that were 

addressed within various disciplines that study deceptive behaviors and their linguistic 

predictors. Notice that only a limited portion of data types can be found on social media (such as 

dating profiles and product and services reviews), while several non-social media types of 

discourse bare closer resemblance to each other (such as confessions and diary-style blogs). 
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Table 1. Deception Research Disciplines and Associated Data Type Examples.   
Various contemporary disciplines that study deception for the purpose of its detection are listed with corresponding 

typical data types that have been studied in the recent past. The data type distinctions are made based on the mode of 

obtaining data and the predominant discourse variety in the data type. Both columns are non-exhaustive. 

 

How predictive cues of deception in microblogs (Twitter) may be different from more verbose 

formats (e-mails or conference call records) is yet to be studied. The social nature of the media 

can also provide other affordances that are typically inaccessible to face-to-face communication 

studies (such as past track-record, profiles, geolocation, and associated imagery) which could 

and should be matched against known truths or general world knowledge (encapsulated in such 

sources as Wikipedia and Wiktionaries). In other words, since context appears to be paramount 

to obtaining appropriate linguistic predictors of deceptive messages, contextual information 

should be intensely explored for social media deception detection. Past behaviors and profiles 

afford a more holistic interpretation of one’s linguistic behavior and its correspondence to reality, 

since (ethical issues of surveillance, tracking and profiling aside) incongruities can be directly 

identified based on one’s “footprints” in social networking and communication.  
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ONLINE DECEPTION DETECTION TOOLS 

In the past several years, conceptual tools dealing with language accuracy, objectivity, factuality 

and fact-verification have increased in importance in various subject areas due to rising amounts 

of digital information and the number of its users. Journalism, online marketing, proofreading 

and politics are to name a few. For example, in politics, Politifact (although based on manual 

fact-checking) and TruthGoggles sort the true facts in politics, helping citizens to develop better 

understanding of politicians statements.  

 

In proofreading, Stylewriter and AftertheDeadline help users to identify stylistic and linguistic 

problems related to their writings. These tools use not only linguistic cues to resolve expression 

uncertainty problems, but also establish the factuality of events and statements using experts’ 

opinions and additional necessary sources. For an overview of related content annotation and 

automation efforts, see (Morante and Sporleder, 2012) and (Sauri and Pustejovsky, 2009, Sauri 

and Pustejovsky, 2012). 

 

Building on years of Deception Detection research in Interpersonal Psychology, Communication 

Studies, and Law Enforcement, a cutting-edge technology is emerging from the fields of Natural 

Language Processing and Machine Learning. Spurred by demand from practitioners for stable, 

quick and accurate deception detection tools, scholars have begun to create software for 

deception detection. A limited number of automated (or partially automated) online deception 

detection tools became available for the public by around 2010, including those by 

Chandramouli and Subbalakshmi (2012), Ott et al. (2011), Moffit and Giboney (2012) (evaluated 

by Rubin and Vashchilko, 2012).  

 

The majority of the text-based analysis software uses different types of linguistic cues. Some of 

the common linguistic cues are the same across all deception software types, whereas other 

linguistic cues are derived specifically for specialized topics to generate additional linguistic 

cues. The complete automation of deception detection in written communication is mostly based 

on the linguistic cues derived from the classes of words from the Linguistic Inquiry and Word 

Count (LWIC) (Pennebaker et al., 2001). The main idea of LWIC coding is text classification 

according to truth conditions. LWIC has been extensively employed to study deception detection 

(Vrij et al., 2007, Hancock et al., 2007, Mihalcea and Strapparava, 2009).  

 

In 2014 Rubin and Lukoianova proposed that veracity should be considered as an important 

component of big data assessment, assuming that social media posts, tweets, reviews and other 

platform messages are a large component of big data (see Figure 2 for an explanation of the 

proposed veracity index calculation). Passing the deception detection test in Social Media can 

verify the source’s intention to create a truthful impression in the readers’ mind, supporting 

sources trustworthiness and credibility. On the other hand, failing the test immediately alerts the 

user to potential alternative motives and intentions and necessitates further fact verification 

(Lukoianova and Rubin, 2014).  
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Figure 2. Conceptualization of the Components of Big Data Veracity. Veracity – as the 4th V in 

addition to Volume, Velocity and Variety – portrayed across three primary orthogonal dimensions in the conceptual 

space – objectivity, truthfulness, credibility. The dimensions intersect in the center and the nebula represents a 

certain degree of variability within the phenomena that together constitute the big data veracity. Secondary 

dimensions of lesser concern in textual data are presented in dotted lines. The tree main components of veracity 

index are normalized to the (0,1) interval with 1 indicating maximum objectivity, truthfulness and credibility, and 0, 

otherwise. Then, the big data veracity index is calculated as an average of the three, assuming that each of the 

dimensions equally contributes to veracity establishment. The three primary dimensions reduce “noise” and 

potential errors in subsequent inferences from the textual big data due to minimization of bias, intentional 

misinformation, and implausibility.  

 

 

 
 

 

 
 

 

 

As of early 2016, researchers declared that the field of automated detection as applied to “social 

media is a relatively new one. There have so far been only a handful of works that address this 

problem.” (Vosoughi, 2015). Even if automated social media verification tools are on the market 

or in research and development, they are not particularly well known to general social media 

users. Nor have they received much attention in mainstream North American media coverage, or 

in the scientific community. The wealth of predictive linguistic cues knowledge has yet to be 

tested in the social media context. It is worth noting that other terminology may have been used 

to refer to deception detection, such as veracity prediction and rumor debunking or rumor 

busting, and those methodologies – as well as several other “close relatives” pertaining to 

content verification – will be explored in the next section.  

 

BROADER CONTENT VERIFICATION: RUMORS, CREDIBILITY, AND 

OPINONS  

There are several ways to look at the problem of social media content verification. Detection of 

deceptive messages based on what has been said (or linguistic cues) is only one part of the 
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problem. The broader context – in terms of positioning of the message sources in the network, 

their reputation, trustworthiness, credibility, expertise, as well as propensity for spreading rumors 

– should be taken into account. How accurate, well-informed and objective are the sources? 

Ideally, for decision-making, social media users should rely on truthful, accurate, and complete 

information from credible expert sources.   

Rumors and Rumor Debunking 

Social media often amplifies and disseminates word-of-mouth rumors by reaching wider 

audiences. Rumors should not be directly equated to deceptive messages, even though most 

people as well as experts in the rumor debunking research agree that rumors are harmful. Among 

undesirable responses to rumors Matthews (2013) lists defamation, protests, and destruction of 

properties, spread of fear, hate, or euphoria. Rumors on Twitter have been known to influence 

the stock market. “Perhaps, one of the most infamous cases is of the hacked AP account tweeting 

a rumor that Barack Obama had been injured in an explosion at the White House. The tweet 

caused the S&P to decline and wipe $130 Billion in stock value in a matter of seconds” (Liu et 

al., 2015).  

The defining feature of a rumor is lack of verifiability at the moment of dissemination. Merriam 

Webster’s Dictionary defines a rumor as “a statement or report current without known authority 

for its truth” or “talk or opinion widely disseminated with no discernible source” (Merriam-

Webster Online Dictionary, 2016). Some dictionary definitions emphasize “the word of mouth” 

as the method of spreading hearsay (Thr Free Dictionary, 2016) disregarding how prevalent the 

spread of rumors can be over social networks. Though it is still the dawn of rumor detection 

studies, there have been further clarifications in a handful of current works which take into 

account social media reality. For instance, Vosoughi (2015) makes it clear that a rumor is “an 

unverified assertion that starts from one or more sources and spreads over time from node to 

node in a network.” In his recent dissertation on the topic, he continues to explain the subtleties 

of the rumor spread on Twitter, how rumor is related to deception, and, most importantly, what it 

means to resolve a rumor algorithmically: “On Twitter, a rumor is a collection of tweets, all 

asserting the same unverified statement (however the tweets could be, and almost assuredly, are 

worded differently from each other), propagating through the communications network (in this 

case Twitter), in a multitude of cascades. A rumor can end in three ways: it can be resolved as 

either true (factual), false (non-factual) or remain unresolved. There are usually several rumors 

about the same topic, any number of which can be true or false. The resolution of one or more 

rumors automatically resolves all other rumors about the same topic. For example, take the 

number of perpetrators in the Boston Marathon bombings; there could be several rumors about 

this topic:  

1. Only one person was responsible for this act.  

2. This was the work of at least 2 or more people.  

3. There are only 2 perpetrators.  

4. It was at least a team of 5 that did this.   

Once rumor number 3 was confirmed as true, it automatically resolved the other rumors as well. 

(In this case, rumors 1 and 4 resolved to be false and rumor 2 resolved to be true)” (Vosoughi, 

2015).  
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Traditionally, rumors have been resolved with either by common sense judgements or with 

further investigations by professionals. There are several existing examples of rumor detection 

systems, some with real time algorithmic veracity prediction that is potentially faster than human 

verification by professionals. For instance, Liu and his colleagues from the Thompson Reuters 

R&D group (2015), observed the need to invent tools for journalists to verify rumors. They thus 

proposed a method to automatically debunk rumors on Twitter using social media. Figure 3 

shows the types of features that the rumor debunking system considers in its real-time analysis.  

Figure 3. Verification Feature for Rumor Debunking on Twitter (Liu et al., 2015).  
The six proposed categories of verification features largely based on insights from journalists. 

 

 

Most existing algorithms for debunking rumors, however, follow Castillo, Mendoza, and 

Poblete’s work (Castillo et al., 2011, Mendoza et al., 2010) employing variations on data used 

and features extracted (Wu et al., 2015, Yang et al., 2012). Qazvinian and colleagues (2011) 

focus on rumor-related tweets to match certain regular expression of the keyword query and the 

users' believing behavior about those rumor-related tweets; both pieces of information are 

instrumental in isolating rumors. Mendoza and colleagues (2010) analyze user behavior through 

tweets during the Chilean earthquake that year: “they analyze users' retweeting topology network 

and the difference in the rumor diffusion pattern on Twitter environment than on traditional news 

platforms” (Yang et al., 2012). Moving away from Twitter, Yang and colleagues (2012) studied 

Sina Weibo, China's leading micro-blogging service provider that functions like a Facebook-

Twitter hybrid. They collected and annotated a set of rumor-related microblogs based on the 

Weibo's rumor-busting service, as a result proposed extra. Figure 4 lists the features used for the 

Weibo rumor buster.  
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Figure 4. Rumor Busting Features for Sina Weibo Microblogs (Yang, 2012). 
Grouped into five broad types (content-based, client-based,  account-based, propagation-based, and 

location-based), rumor detection features were extracted on Sina Weibo, the Chinese leading micro-

blogging platform, for the binary classification purposes (rumor or not). Each predictive feature is 

described in terms of its implementation.  

 

 

Credibility and Credibility Assessment 

Credibility assessment tools have explored broader contextual profiles than deception detection 

and rumor debunking methods. The concept of credibility is intrinsically linked to believability, 

which is not necessarily equivalent to truthfulness or veracity but is rather a reflection of 

perceived truth.   

Much has been written in Library and Information Science and Human-Computer Interaction on 

credibility assessment and a variety of checklist schemes to verify the credibility and stated 

cognitive authority of the information providers. See Rieh (2010) for a summary of the historical 

development of the credibility research in such fields as Psychology and Communication, and a 

recent overview of credibility typologies in LIS (e.g., source credibility, message credibility, and 

media credibility) and HCI (e.g., computer credibility: presumed credibility, reputed credibility, 

surface credibility, and experienced credibility.  

The concept of trust is often used in everyday language and communication in making 

trustworthiness decisions. Hardin (Hardin, 2001) noticed a pervasive conceptual slippage that 

involves a misleading inference from the everyday use of trust: many ordinary-language 

statements about trust seem to conceive trust, at least partly, as a matter of behavior, rather than 

an expectation or a reliance. Trust, in Inter-Personal and Organizational Psychology, is seen as a 

positive expectation of a trusting entity regarding the behavior of the trustee (the trusted entity) 

in a context that entails risk to the trustor (e.g., Marsh and Dibben, 2003).  Fogg and Tseng 
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(1999) firmly equate credibility to believability and trust to dependability (p. 41). Content trust is 

a trust judgment about a particular piece of information in a given context (Gil and Artz, 2006), 

e. g., any statement regarding upcoming or ongoing political upheaval. While an entity can be 

trusted on the whole, each particular piece of information provided by the entity may still be 

questioned.  

In relation to information shared on social media, trust is an assured reliance on the character, 

ability, strength, or truth of trusted content (Merriam-Webster.com). In the Semantic Web 

literature, two types of trust are distinguished, one concerned with trust judgments about the 

providers of the information, and the other concerned with the nature of the information provided 

(Gil and Artz, 2006), e.g., a judgment about the US Government provided by the activists of the 

99% movement.   

Rieh (2010) also underscores the importance of trustworthiness and expertise, as the two widely 

recognized components of credibility, although according to her, they are not always perceived 

together. “An expert with the title of doctor or professor might have a reputation of being 

knowledgeable in a certain area but still might not be considered trustworthy for the tendency to 

unreliability or bias. A person may think of a friend as being honest and trustworthy in general, 

but the advice that the friend gives is not necessarily considered credible for the friend’s lack of 

expertise” (Rieh, 2010, p. 1338). 

Trustworthiness refers to the goodness or morality of the source and can be described with terms 

such as well-intentioned, truthful, or unbiased. Expertise refers to perceived knowledge of the 

source and can be described with terms such as knowledgeable, reputable, and competent (Tseng 

and Fogg, 1999).  

Since the early 2000s credibility tools have proliferated in the form of varying measures for 

credibility predictions, computational models, and algorithms. In 2011 Castillo, Mendoza, and 

Poblete (2011), proposed an algorithm that predicts the credibility of an event based on a set of 

features of a given set of tweets: they analyzed tweets related to “trending topics” and use a 

binary supervised classification method from machine learning to place them into one of the two 

bins: credible or not credible. Kang, Höllerer, and O'Donovan (2015) identify and evaluate key 

factors that influence credibility perception on Twitter and Reddit (such as time spent posting or 

time spent reading posts of others). For their ground truth measure of the credibility of microblog 

data to achieve a “more stable” estimate of credibility, Sikdar and colleagues (2013) combine 

manually annotated scores with observed network statistics (such as retweets).  

Rubin and Liddy’s (2006) short influential work on modeling credibility of blogs set out a 

framework for assessing blog credibility, with 25 indicators outlined within four main categories: 

blogger expertise and offline identity disclosure; blogger trustworthiness and value system; 

information quality; and appeals and triggers of a personal nature (see Table 2). Weerkamp and 

de Rijke  (2008) estimated several of the indicators proposed in Rubin and Liddy (2006) and 

integrated them into their retrieval approach, ultimately showing that combining credibility 

indicators significantly improves retrieval effectiveness.   
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Table 2. Blog Credibility Assessment Factors 
(Redrawn from Rubin and Liddy (2006) with additional details added from the associated presentation). 

 

 

Even though certain features have been proven to be beneficial for more accurate blog retrieval 

in early work on weblog credibility in information retrieval, subjectivity research, and sentiment 

analysis (Rubin and Liddy, 2006, Weerkamp and de Rijke, 2008), the research has not yet 

resonated with the rumor debunking community, probably due the isolation of the literatures or 

perhaps due to the differences between blogs and micro-blogs formats.  

When analysing social media platforms and formats of interaction, these two components of 

credibility should be considered separately. In summary, two credibility components, 
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trustworthiness and expertise, are essential to making credibility (i.e., believability) judgments 

about trustworthiness (i.e., dependability) of sources and information on social media, regardless 

of whether such judgments are expressed lexically with a vocabulary of trust as being 

trustworthy (i.e., dependable) or credible (i.e., believable).  

 

Subjectivity and Opinion Mining, or Sentiment Analysis 

Some fields, such as Media Theory, differentiate objectivity from credibility, both of which have 

been part of traditional journalistic practices since 1950s, with credibility equated to believability 

(Johnson and Wiedenbeck, 2009). The main two reasons for using automation in deception 

detection are to increase objectivity by decreasing potential human bias in detecting deception 

(reliability of deception detection), and improve the speed in detecting deception (time 

processing of large amounts of text) (Hauch et al., 2012).  

The concept of separating subjective judgments from objective became of great interest to 

Natural Language Processing researchers and gave rise to a very active area of sentiment 

analysis, or opinion mining, which concerns with analyzing written texts for people’s attitudes, 

sentiments, and evaluations with text analytical techniques. “Rubin (2006b) traces the roots of 

subjectivity identification tools to the work of (Wiebe et al., 2001) who proposed one of the first 

annotation schemes to classify and identify subjective and objective statements in texts. Prior to 

this work on subjectivity, Rubin (2006b) continues, an NLP system needed to determine the 

structure of a text – normally at least enough to answer “Who did what to whom?” (Manning and 

Schütze, 1999). Since early 2000s the revised question was no longer just “Who did what to 

whom?” but also “Who thinks what about somebody doing what?” (Lukoianova and Rubin, 

2014). 

The majority of current text analytical tools operating on social media datasets are 

disproportionally focused on sentiment analysis or polarity of opinions (positive, negative, or 

neutral), while the issues of credibility and verifiability are addressed less vigorously. (For a 

comprehensive overview of the field of opinion-mining and/or sentiment analysis, see Pang and 

Lee (2008) and a more recent survey by Liu (2012) as well as the introductory article by 

Thelwall (Forthcoming, 2016) in this book which is specifically focused on sentiment analysis 

tools for social media. The work on identification of factuality or factivity in text-mining ((e.g., 

Sauri and Pustejovsky, 2009, Sauri and Pustejovsky, 2012, Morante and Sporleder, 2012) stems 

back to the idea that people exhibit various levels of  certainty (or epistemic modality) in their 

speech, and that these levels are marked linguistically (e.g., “maybe”, “perhaps” vs “probably” 

and “for sure”) and can be identified with text analytical techniques (Rubin, 2006a, Rubin et al., 

2006, Rubin et al., 2004). Text analysis for factuality and writer’s certainty is more beneficial to 

enhance deception detection capabilities than currently acknowledged in the field. For instance, 

opinion mining should not disregard factivity, objectivity, and certainty in stated opinions, since 

lack of those properties in personal claims may render them useless and may skew aggregate 

analyses of social media data (such as product and services reviews). 
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Open Research and Development Problems 

Outside of the previously discussed studies, there have been surprisingly few well-known efforts 

to verify information in social media feeds. Notable exceptions are studies of fake social network 

profiles (Kumar and Reddy, 2012), fake dating profiles (Toma and Hancock, 2012) and fake 

product reviews (Mukherjee et al., 2013), though the interactive social component may be less 

prominent in these studies as compared more mainstream micro-blogging platforms such a 

Twitter and Sina Weibo.  

Three relatively recent social media phenomena call for further investigations: the rise of 

collaborative networking sites and their openness to potential fraud, pervasiveness of 

clickbaiting, and astroturfing by social bots to influence users. Each is discussed in turn here.  

 

 

Fraud on Academic Collaborative and Networking Sites 

Relatively new academic collaborative and networking platforms (such as ResearchGate, 

Academia.edu, Mendeley, or ORCID) are yet to be studied for potential content manipulation 

and fraud. To the best of my knowledge, no deception detection tools are yet available within 

these profession-based collaborative scholarly sharing systems. Inaccurate self-presentation or 

presentation of others on their behalf (with or without their knowledge) can have ramifications 

for perceptions of scholars’ productivity when socially shared data is used for altmetrics 

(bibliometrics and webometrics combined) of scholarly output. For instance, Ortega (2015) 

firmly links social and usage metrics at the authors’ level to the authors’ productivity and treats 

such metrics as a proxy for research impact. The newly coined field of altemtrics has not yet 

considered the margins of errors related to fraud, as most of the collaborative platform data seem 

to be currently taken for its face value. 

Clickbaiting 

Another issue that received little attention thus far is the prevalence of “clickbait” in news 

streams (see Figure 5 for examples).  

  



19 | P R E - P R I N T  P a g e   

 

R u b i n  ( 2 0 1 7 )  D e c e p t i o n  D e t e c t i o n  &  R u m o r  D e b u n k i n g  f o r  S o c i a l  M e d i a  

 

Figure 5. Examples of Clickbait via Twitter. (Chen, Conroy and Rubin, 2015 presentation). 

Two examples of clickbaits or online content that primarily aims to attract attention and 

encourage visitors to click on a link to a particular web page. The claims made in headlines of 

clickbaits and the associated imagery are often outrageous and/or misleading, as the reader finds 

out from reading the full message.  

 

 

Clickbait refers to “content whose main purpose is to attract attention and encourage visitors to 

click on a link to a particular web page” [‘clickbait,’ n.d.] and has been implicated in the rapid 

spread of rumor and misinformation online. Clickbaiting can be identified through a 

consideration of the existence of certain linguistic patterns, such as the use of suspenseful 

language, unresolved pronouns, a reversal narrative style, forward referencing, image placement, 

reader’s behavior and other important cues (Chen et al., 2015a). 

Several social sharing platforms have standardized formats and visual presentation of delivery, 

regardless the source. Be it a satirical news piece from the Onion or a mainstream news piece 

from the New York Times, when “liked” and “shared” on Facebook or Twitter, the visual clues 

for potentially misleading information are minimal. The source’s attribution is barely visible (see 

bottom of Figure 5).  Tabloidization of news production and the shift towards digital content 

incentivizes the use of clickbait (Chen et al., 2015a), and it is yet unclear how skilled news 

readers on social media are in distinguishing this variety of content manipulation from legitimate 

news.  

More work is necessary to distinguish fake news from authentic ones, and clickbaiting practices 

are just the tip of the iceberg. Other potential threats to veracity include such fake news as 

fraudulent journalistic reporting, hoaxes, and misleading satirical news taken at face value 

(Rubin et al., 2015). 

Astroturfing by Social Bots 

Astroturfing is a recent phenomenon and, by a definition found in an off-beat dictionary, is an 

attempt “to create the impression of public support by paying people in the public to pretend to 

be supportive” (The Urban Dictionary, 2016). A new computerized form of such false support is 

slowly spreading on social media. Some social media platforms allow sybil accounts or social 

bots which rely on computer algorithms to imitate humans by automatically producing content 
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and interacting with other users. Such social bots pollute authentic content and spread 

misinformation by manipulating discussions, altering user popularity ratings, and “even 

perform[ing] terrorist propaganda and recruitment actions” (Davis et al., 2016). 

 

Subrahmanian and colleagues (2016) identified three types of Twitter bots that engage in 

deceptive activities: 1) “Spambots spread spam on various topics”; 2) “Paybots illicitly make 

money. Some paybots copy tweet content from respected sources like @CNN but paste in micro-

URLs that direct users to sites that pay the bot creator for directing traffic to the site; 3) 

“Influence bots try to influence Twitter conversations on a specific topic. For instance, some 

politicians have been accused of buying influence on social media”. Subrahmanian and 

colleagues (2016) also notice that influence bots can “pose a clear danger to freedom of 

expression”, citing examples of spread of radicalism, political disinformation and propaganda 

campaigns. The challenge has just been recently identified in the U.S. DARPA Social Media in 

Strategic Communications program competition to test the effectiveness of influence bot 

detection methods. Three most successful teams found machine learning techniques alone were 

insufficient because of lack of training data, but thought a semi-automated process that included 

machine learning was useful. Their feature set is reminiscent of a variety of features discussed in 

this chapter thus far. For instance, BotOrNot, a publicly-available service since May 2014 (see 

Figure 6), leverages more than one thousand features to evaluate the extent to which a Twitter 

account exhibits similarity to the known characteristics of social bots (Davis et al., 2016). 

 

 

Figure 6. Dashboard-Style Interface of the BotOrNot System (Davis et al 2015). The system 

evaluates the extent to which a Twitter account exhibits similarity to the known characteristics of social bots. 
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The organizers of the DARPA challenge predict that as “bot  developers are becoming 

increasingly sophisticated”, “we can expect a proliferation of social media influence bots as 

advertisers, criminals, politicians, nation states, terrorists, and others try to influence 

populations” in the next few years. This trend necessitates the need for significant enhancements 

in the analytical tools that help analysts detect influence bots (Subrahmanian et al., 2016). 

 

CONCLUSION 

In conclusion, social media with its new mechanisms for interaction and information flow 

requires a variety of content verification mechanisms, perhaps in combination with previously 

known deception detection approaches as well as novel techniques for rumor debunking, 

credibility assessments, and opinion mining. When analyzing social media for potentially 

deceptive content, it is important to apply methods that consider not just what is being said, but 

also how the message is presented, by who, and in what format and context. The hybrid approach 

should include text analytics, network analysis and world knowledge database incorporation to 

fully take advantage of linguistic, interpersonal, and contextual awareness. This chapter is a call 

for further research in developing further, as well as modifying and applying existing deception 

detection methods and rumor debunking technologies towards various social media forms and 

formats. 
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