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Bovine Oviductal and Embryonic Insulin-Like Growth Factor Binding Proteins:
Possible Regulators of “Embryotrophic” Insulin-Like Growth Factor Circuits'

Quinton A. Winger,** Patricia de los Rios,*¢ Victor K.M. Han,>” David T. Armstrong,>* David ). Hill, 3557

and Andrew J. Watson234

Department of Physiology,’ Reproductive Biology Laboratories,* Department of Obstetrics and Gynaecology,
Department of Paediatrics,® Department of Medicine,® MRC Group in Fetal and Neonatal Growth and Development
and the Lawson Research Institute,” The University of Western Ontario, London, Ontario, Canada N6A 5A5

ABSTRACT

Bovine oviductal monolayer and vesicle primary cultures ex-
press insulin-like growth factor (IGF)-1 and -1l mRNAs and poly-
peptides. Early bovine embryos also express IGF-1, IGF-I, IGF-I
receptor, IGF-1l receptor, and insulin receptor mRNAs. This
study reports the expression of IGF binding protein (IGFBP)
mRNAs and polypeptides in bovine oviduct primary cultures and
IGFBP mRNAs in preattachment embryos. Release of immuno-
reactive IGF-1 and IGF-1l by oviduct cultures and bovine blas-
tocysts was also determined. IGFBP-2, -3, -4, and -5 transcripts
were observed in oviduct primary cultures throughout an 8-day
interval. IGFBP-1 and -6 mRNAs were consistently not detected
in the oviduct. Messenger RNAs encoding IGFBPs -2, -3, and -4
were detected throughout bovine preattachment development,
while transcripts encoding IGFBP-5 were detected only in blas-
tocysts. IGFBP-1 and -6 transcripts were not detected in early
embryos. Ligand blot analysis with '>*1-labeled IGF-II revealed
the presence of four prominent polypeptide bands of approxi-
mate molecular masses 24, 31, and 36 kDa, and a broad band
extending from 46 to 53 kDa, in conditioned media samples
prepared from oviduct primary cultures. Western immunoblot
analysis confirmed the identity of the 24-kDa, 31-kDa, and
36-kDa species as IGFBP-4, -5, and -2, respectively. Levels of
the release of IGF-1l from oviductal vesicle cultures were sig-
nificantly greater than levels observed for monolayer cultures (p
< 0.005). No significant difference in the levels of IGF-I release
between monolayer and vesicle cultures was observed. Pools of
10 blastocysts released on average 36.2 = 3.9 pg of IGF-II per
embryo, while the release of embryonic IGF-1 was below the
levels of detection for our assay. The results suggest that mater-
nally derived IGF may be regulated by IGFBPs to support bovine
preattachment development.

INTRODUCTION

The development of specific culture regimes capable of
supporting in vitro oocyte maturation (IVM), in vitro fer-
tilization (IVF), and subsequent development of mamma-
lian zygotes to the blastocyst stage has continued unabated
[1-12]. Progress has occurred by various routes, including
employment of complex media such as Tissue Culture Me-
dium 199 supplemented with serum in combination with
embryo coculture [1-7]; employment of simple defined salt
solutions (e.g., synthetic oviduct fluid medium) supple-
mented with a serum source [2, 11-14]; and most recently
the construction of chemically defined protein-free media
such as hamster embryo culture medium, CZB, or KSOM
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medium [9, 14]. Variations have included comparing de-
velopment under varying O, levels and supplementing se-
rum-free media with amino acids, synthetic serum substi-
tutes [10-13], BSA, polyvinylalcohol [15], or specific
growth factors [16, 17]. Embryo coculture using primary
oviduct epithelial cell cultures remains an important method
of supporting development of in vivo- and in vitro-matured
and -fertilized (IVMF) bovine and ovine zygotes through
to the blastocyst stage, particularly under atmospheric con-
ditions of 5% CO, in air [1, 2]. Coculture may exert a pos-
itive influence on early development by the secretion of
“embryotrophic” factors into the culture medium or by re-
duction of the negative effects of “‘toxic” components of
the culture environment [4]. It seems likely that embryo
coculture is effective by both of these routes.

Satokata et al. [18] observed that disruption of Hoxa-10
expression by homologous recombination is associated with
early embryonic death just prior to implantation. Hoxa-10
gene products are expressed in several tissues including the
distal oviduct and uterus [18]. This result demonstrates that
oviductal gene products are necessary for mediating early
developmental events. Studies in several animals including
the cow, sheep, human, pig, mouse, rabbit, and hamster
have reported oviductal-specific glycoproteins associated
with the zona pellucida and embryo [19-25]. These gly-
coproteins may contribute to an exclusive microenviron-
ment for the embryo by entering the perivitelline space.
Bovine zygotes cultured on oviductal monolayers are best
moved to fresh cultures every 72 h to sustain development
[1], whereas microdrop cultures containing oviductal vesi-
cles support development through the first week without
transfer to fresh cultures [8, 26]. Our efforts have focused
on defining possible embryotrophic and/or ‘‘detoxifying”
roles of the oviduct by characterizing the expression of
mRNAs encoding antioxidant enzymes [26] and growth
factor transcripts [27, 28] in primary bovine oviductal cul-
tures.

The precise role(s) of growth factors in supporting early
ovine and bovine development remains unclear, but evi-
dence illustrating that a significant number of bovine IVMF
zygotes can progress beyond the 16-cell stage, reaching the
blastocyst stage {17] in media supplemented with basic fi-
broblast growth factor (bFGF) and transforming growth
factor (TGF)-B, suggests that growth factors could certainly
perform roles expected of embryotrophic factors. These
molecules are, therefore, good candidates for further ex-
perimentation directed at understanding the molecular na-
ture of the beneficial coculture influence on early mam-
malian development. We have reported that bovine oviduc-
tal primary cultures express transcripts encoding bFGE
TGFa, TGFB1, TGFB2; platelet-derived growth factor A,
and insulin-like growth factors I and II (IGF-1, IGF-II) by
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reverse transcriptase polymerase chain reaction (RT-PCR)
[27]. Furthermore, bovine preattachment embryos express
the same growth factor transcripts including mRNAs en-
coding IGF-I, IGF-1II, and insulin receptors [27]. We have
confined our recent analysis to the IGF family since this
family is one of the best-characterized growth factor fam-
ilies in early development. The distribution of both mRNAs
and polypeptides encoding IGF-I and IGF-II has been re-
cently mapped out in bovine oviductal monolayer and ves-
icle cultures [3]. IGF transport and function are modulated
by interactions with up to six insulin-like growth factor
binding proteins (IGFBPs) [29-32]. The present study was
undertaken to further investigate the regulatory interactions
of these putative bovine maternal paracrine circuits by char-
acterizing the expression of mRNAs and polypeptides en-
coding IGFBPs in bovine primary oviduct cultures and
IGFBP mRNAs in early preattachment embryos. The levels
of IGF-I and -II released by these oviduct cultures and bo-
vine blastocysts were also examined.

MATERIALS AND METHODS
Bovine Embryo Culture

Bovine preattachment embryos were produced by stan-
dard in vitro oocyte maturation, fertilization, and embryo
culture methods [1, 2, 7, 8] applied to cumulus-oocyte-com-
plexes (COCs) collected from slaughterhouse ovaries.
COCs were harvested within 4 h of removal from the an-
imal by a razor blade slashing technique. The contents were
pooled and the COCs collected and washed four times with
oocyte collection medium (Hepes-buffered Tissue Culture
Medium 199 [TCM-199; Gibco, BRL, Burlington, ON,
Canada] + 2% steer serum [SS; Cansera, Toronto, ON,
Canada]). COCs were placed into maturation medium con-
sisting of TCM-199 (Gibco, BRL) + 10% SS (v:v) supple-
mented with 35 pg/ml sodium pyruvate (Sigma Chemical
Company, St. Louis, MO), 5 pg/ml FSH (Follitropin; Ve-
trapharm, London, ON, Canada), 5 pg/ml LH (Vetra-
pharm), and 1 pg/ml estradiol-178 (Sigma) for 22 h at
38.6°C in a humidified atmosphere containing 5% CO, in
air. Matured oocytes were fertilized in vitro with frozen-
thawed bovine semen (Semex Canada Inc., Guelph, ON,
Canada) prepared by standard “‘swim-up” procedures [33].
COCs were removed from the maturation medium and
washed four times in Hepes-buffered modified Tyrode’s so-
lution [33] just prior to their placement into preequilibrated
fertilization drops (50 COCs/300-p! drop) consisting of bi-
carbonate-buffered modified Tyrode’s solution under light
paraffin oil (BDH Inc., Toronto, ON, Canada). The sperm/
COC droplets (2.25 X 10° motile spermatozoa per drop)
were incubated for 18 h at 38.6°C in a humidified atmo-
sphere of 5% CO, in air before removal of the remaining
cumulus cell investment. Fertilized oocytes were placed
into 50-pl culture drops consisting of TCM-199 + 10% SS
under oil containing up to 40 oviduct epithelial cell vesicles
{2]. To sustain development through to the blastocyst stage,
50 pl of TCM-199 + 10% SS was added to each culture
drop after 48 h of culture. No oocyte selection strategy was
employed in this study. These conditions routinely support
an overall cleavage rate of 70% of inseminated oocytes
with up to 25% of the inseminated oocytes (35% of cleaved
zygotes) progressing to the blastocyst stage. Pools of 50—
100 bovine embryos including 1-cell zygotes, 2- to S-cell
embryos, 6- to 8-cell embryos, morulae, and blastocysts
were collected by removing the embryos from culture at
the appropriate developmental times.
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Primary Oviductal Cultures

Bovine oviductal cultures were established as outlined
by Xia et al. [3], Xu et al. [8], and Harvey et al. [26]. For
establishment of monolayer cultures, the epithelial cells
were isolated by filling the oviduct lumen with 0.05% tryp-
sin in Ca?*-, Mg2*-free Hanks’ Balanced Salt Solution
(HBSS; Gibco, BRL) and incubating at 38.6°C for 20 min.
The oviduct contents were squeezed into a 35-mm petri
dish. The cells were dispersed by forcing through an
18-gauge needle attached to a 5-ml syringe three times be-
fore transferral of the samples into 15-ml conical tubes con-
taining 10 ml of HBSS for washing by centrifugation. The
cells were resuspended in fresh HBSS and washed three
more times before final resuspension in the appropriate vol-
ume of TCM-199 (Gibco, BRL) + 10% SS (Cansera). The
cultures were established by addition of 1 X 106 cells per
well of a 24-well plate containing 1 ml of TCM-199 +
10% SS medium per well. By 48 h, approximately 50% of
the surface of each well was covered by attached cells. By
72 h the monolayers were confluent. The cultures were
maintained for up to 8 days by removal of the old medium
and addition of 1 ml of fresh culture medium every 48 h.

For establishment of epithelial vesicle cultures, cell
sheets were collected from trimmed oviducts and washed
four times with HBSS. Up to 70 pl of cell suspension was
placed into individual 35-mm petri dishes containing 3 ml
of TCM-199 supplemented with 10% SS. The cell sheets
were cultured for 24 h under an atmosphere of 5% CO, in
air at 38.6°C to allow for the formation of vesicles. From
this point on, the vesicle cultures were maintained for up
to 8 days by moving vesicles to new culture dishes con-
taining fresh medium every 48 h.

Collection of Conditioned Media

Oviductal monolayers. Conditioned medium was col-
lected from monolayer cultures on Days 2, 5, and 8 by first
removing the serum-supplemented medium and then wash-
ing the cells three times (1 ml/well) with HBSS followed
by two washes in serum-free TCM-199. The final wash
medium was collected as a control to ensure that possible
transfer of serum proteins into the conditioned medium was
avoided. Monolayer-conditioned medium was prepared by
adding 200 pl of TCM-199 to each culture well and in-
cubating the cultures at 38.6°C under an atmosphere of 5%
CO; in air for 24 h. Conditioned medium from 8 wells (1.6
ml) was pooled, filtered through a 0.2-pm filter, and stored
for up to 3 wk at —20°C.

Oviductal vesicles. Oviductal vesicle-conditioned me-
dium was collected from Days 2, 5, and 8 cultures by first
pooling the oviductal vesicles from 10-ml cultures into
15-ml plastic conical tubes and allowing the vesicles to
settle forming a loose 250-pl pellet. The pellet was washed
four times with serum-free TCM-199. The final wash was
collected and run as control. Approximately half of the ves-
icles in each sample (i.e., 125 pl of vesicles) were added
to culture dishes containing 1 ml of serum-free TCM-199.
The vesicles were incubated at 38.6°C under an atmosphere
of 5% CO, in air for 24 h. Conditioned medium (1 ml) was
collected, filtered, and stored for up to 3 wk at —20°C.

Blastocyst-conditioned medium. Blastocyst-stage em-
bryos were removed from culture on Day 7 and washed
three times in serum-free medium. Groups of 10 blastocysts
were placed in 200 pl of serum-free TCM-199 for a 24-h
incubation period. Conditioned medium was collected, ly-
ophilized, and resuspended in 50-pl volumes for RIA.
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TABLE 1. IGFBP PCR primer sequences.
Amplicon

IGFBP Primer sequences size (bp) Identity

BP-1 5’ primer = 5S’"CGAGCCCTGCCGAATAGAAC 239* —
3’ primer = 5'CATCTGGCAGTTGGGGTC

BP-2 5’ primer = 5’ACTGTCACAAGCATGGCCTG 186 99.2% (bovine)
3’ primer = 5'CCTCCTGCTGCTCATTGTAGA

BP-3 5" primer = 5’ACTTCTCCTCTGAGTCCAAGC 210 100% (bovine)
3’ primer = 5'CGTACTTATCCACACACCAGC

BP-4 5" primer = 5'CTGTGCCCCAGGGTTCCTGC 222 100% (bovine)
3’ primer = 5'TCACCCCCGTCTTCCGGTCC

BP-5 5" primer = 5’"GCTCAAGCCAGCCCACGCAT 215 96.1% (human)
3’ primer = 5'GTCGAAGCCGTGGCACTGAA

BP-6 5" primer = 5'GACGAGGCGCCTTTGCGGGC 345% —

3’ primer = 5’GGAGGAGCGGCACTGCCGCT

* Size of predicted human amplicon.

RT-PCR

RNA isolation. Total RNA was extracted as described by
Temeles et al. [34]. Bovine zygotes were pooled into the
following groups: 1) 1-cell (zygotes), 2) 6- to 8-cell stage,
3) Day 6 morulae, and 4) Day 8 blastocysts. Pools of 50—
100 bovine embryos were solubilized at room temperature
in 100 pl of 4 M guanidine thiocyanate (Pharmacia, Que-
bec, PC, Canada), 0.1 M Tris-HCl (pH 7.4), 1 M 2-B mer-
captoethanol (Sigma) solution in the presence of 20 pg of
Escherichia coli TRNA (Gibco, BRL). After vigorous vor-
tex mixing, the samples either were frozen and stored at
—70°C or were fully processed by precipitating the RNA
by addition of 8 pl of 1 M acetic acid, 5 pl of 2 M potas-
sium acetate, and 250 pl of 100% ethanol. The samples
were precipitated overnight at —20°C. Samples then were
pelleted by centrifugation at 10 000 X g for 20 min at room
temperature. The pellets were washed twice with cold 70%
ethanol and were air dried before resuspension in 20 pl of
resuspension buffer (40 mM Tris-HCl, pH 7.9, 10 mM
NaCl, 6 mM MgCl,). Genomic DNA was degraded by in-
cubating the samples with 1 unit of RQI DNase (Promega,
Madison, WI) for 30 min at 37°C. The samples were reex-
tracted with phenol and reprecipitated by addition of 5 pl
of 3 M potassium acetate, pH 5.2, and three volumes of
cold 100% ethanol for overnight at —20°C. The total RNA
was collected by centrifugation, the pellets were washed
with cold 70% ethanol, and after air drying the samples
were dissolved in 10 pl of autoclaved MilliQ (Millipore
Corp., Bedford, MA) water. Total RNA was also extracted
from bovine oviductal cell cultures by lysis in guanidinium
isothiocyanate (Pharmacia) followed by ultracentrifugation
through cesium trifluoroacetate [35]. Aliquots of 1 pg of
oviduct primary culture total RNA were used for reverse
transcription.

Reverse transcription. RNA was reverse transcribed by
oligo(dT) priming and reverse transcriptase (Gibco, BRL)
[26-28]. The RNA samples were incubated with 1 pg of
oligo(dT);,_;g primer (Gibco, BRL) for 10 min at 70°C.
After cooling on ice, RNA was incubated in 1st Strand
Buffer (Gibco, BRL) containing 50 mM Tris-HCI (pH 8.3),
75 mM KCl, 3 mM MgCl,, 10 mM dithiothreitol, 0.5 mM
dNTPs, and 200 U of Superscript Reverse Transcriptase
(Gibco, BRL). Reverse transcriptions were accomplished
by incubation at 42°C for 1.5 h. The reaction was termi-
nated by heating at 94°C for 4 min and flash cooling on
ice. The cDNA was further diluted with sterile distilled wa-

ter to a concentration of 2 embryo equivalents/ul or the
equivalent of 40 ng of oviduct RNA/pl.

Amplification of binding protein cDNAs. Polymerase
chain reaction (PCR) was performed as described previ-
ously [26-28]. Aliquots of embryo and oviduct cDNA (5
pl) were amplified with 1 U of Tag DNA polymerase (Gib-
co, BRL) in a final volume of 50 pl containing 10-strength
Tag reaction buffer (200 mM Tris-HCI, pH 8.4, and 500
mM KCl) plus 1.5-2 mM MgCl,, 0.2-0.24 mM dNTPs,
and 2 pM of each sequence-specific primer. The mixture
was overlaid with mineral oil and then amplified by PCR
for up to 40 cycles in a DNA thermal cycler (Perkin Elmer
Cetus 480; or Thermolyne, Amplitron; VWR Scientific, To-
ronto, ON, Canada) with each cycle consisting of denatur-
ation at 94°C for 1 min, reannealing of primers to target
sequences at 56-58°C for 30 sec, and primer extension at
72°C for 1 min. PCR products (20 pl) were resolved on
2% agarose gels containing 0.5 pg/ml of ethidium bromide.

PCR primers. Primer pairs were obtained from the Core
Molecular Biology Facility, London Regional Cancer Cen-
ter, University of Western Ontario. The possibility of ge-
nomic DNA contamination was assayed for by PCR using
B-actin primers that bracket an intron and produce a pre-
dicted 243-base pair (bp) fragment for the cDNA and a
larger DNA fragment (due to the presence of the intron) if
genomic DNA is present [26-28]. The larger genomic DNA
product was not detected in any of the cDNA samples em-
ployed in this study. Primer pairs were derived from pub-
lished human and bovine ¢cDNA sequences [36-39], and
the sizes of the expected PCR products are shown in Table
1. To confirm identity, each DNA product was cloned into
pCRII vector through use of the TA cloning kit (Invitrogen,
San Diego, CA) and were sequenced by dideoxy sequenc-
ing employing base-specific termination of enzyme-cata-
lyzed primer-extension reactions [40] using a T7 sequenc-
ing kit (Pharmacia).

Detection of Oviductal IGFBPs by Western Ligand
Blotting

[#1]-IGF-Il ligand blot analysis. Oviductal monolayer-
and vesicle-conditioned media were concentrated by cen-
trifugal ultrafiltration using a membrane with a molecular
size cut-off of 10 kDa (Centricon-10; Amicon, Danvers,
MA) [41, 42]). Concentrated samples were subjected to
electrophoresis using a nonreducing 10% SDS-polyacryl-
amide gel. Proteins were then electrophoretically trans-
ferred to a nitrocellulose membrane (Bio-Rad, Mississauga,
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ON, Canada) for 2 h at a constant current of 250 mA. The
membrane was washed for 30 min in Tris-NaCl (pH 7.4),
0.5 mg/ml sodium azide (Sigma), and 3% Nonidet P-40
(NP-40; Sigma) before blocking for 2 h in Tris-NaCl (pH
7.4) and 1% BSA (Sigma), all at 4°C. The membrane was
washed twice for 20 min in Tris-NaCl (pH 7.4) + 0.1%
Tween 20 (Sigma) and was incubated for 20 h with 400
000 cpm [">TJIGF-II (for ligand control, 100 ng/ml unla-
beled IGF-II was added to incubating solution) in Tris-NaCl
(pH 7.4), 0.1% Tween 20, and 1% BSA at 4°C [41, 42].
Recombinant human IGF-I and IGF-1I (Gro-Pep Pty. Ltd.,
Adelaide, Australia) were iodinated to specific activities of
150-250 p.Ci/pg of protein using a chloramine-T method
[43]. After the incubation, the membrane was taken through
a series of 15-min washes, two in Tris-NaCl (pH 7.4) +
0.1% Tween 20 followed by three washes in Tris-NaCl (pH
7.4). The membrane was air dried at room temperature and
exposed to x-ray film (XAR; Eastman Kodak, Rochester,
NY) with intensifying screens at —70°C for 3-7 days.

Western immunoblots were prepared on the same mem-
branes as described above. Membranes were initially
washed for 30 min in 10 mM Tris-HCI containing 0.15 M
NaCl, 0.3% NP-40 (v:v), and 0.5 mg/ml sodium azide (pH
7.4). The membrane was then blocked for 1 h in Tris-buf-
fered saline (150 mM NaCl, 50 mM Tris-HCI, pH 7.4) con-
taining 0.05% Tween 20 (v:v) (TTBS) supplemented with
4% BSA (w:v) and was washed three times, 10 min each,
in TTBS. Membranes were incubated for 20 h at 4°C in
TTBS + 1% BSA (w:v) with one of the following anti-
bodies: anti-IGFBP-2 (rabbit polyclonal antiserum against
bovine IGFBP-2 [39], diluted 1:1000; Upstate Biotechnol-
ogy Inc. [UBI], Lake Placid, NY), anti-IGFBP-4 (rabbit
polyclonal antiserum against human IGFBP-4 [44], diluted
1:250; UBI), or anti-IGFBP-5 (rabbit polyclonal antiserum
against human IGFBP-5, diluted 1:100; Austral Biologicals,
San Ramon, CA). After incubation with primary antiserum,
the membranes were washed with TTBS (three times, 10
min each) and then incubated with anti-rabbit IgG biotin
conjugates (Sigma) diluted in 1% BSA (1:30, w:v) TTBS
for 2 h. Membranes were washed three times for 10 min
each in TTBS, in ExtrAvidin (Sigma; 1:30 in PBS) for 1
h, and three times for 10 min each in TTBS. Bands were
visualized using a 3,3'-diaminobenzidine tetrahydrochlo-
ride (Sigma)/3% hydrogen peroxide reaction. The reaction
was then quenched in 50 mM Tris-HCI (pH 7.5), and the
membranes were air dried.

RIA of IGF-I and IGF-II

A standard RIA method applied routinely to plasma
samples was modified to determine the concentration of the
IGF ligands released into oviduct primary culture- and blas-
tocyst-conditioned culture media [45, 46]. Recombinant hu-
man IGF-I and IGF-II (GroPep Pty. Ltd.) were iodinated to
specific activities of 150-250 uCi/pg of protein using a
chloramine-T method [43]. Samples were concentrated by
lyophilizing and resuspending in a volume of 100 pl dH,O.
IGFBPs were extracted using an acidic environment (pH <
3.4, formic acid) to release IGF/IGFBP complexes and pre-
cipitate the binding proteins. Then 100 pl of media was
combined, in a 5-ml polypropylene tube, with 50 pl of 8
M formic acid + 0.5% Tween 20; these were mixed, and
350 ul of acetone was added [47]. The tube was covered
to prevent evaporation and was centrifuged at 4°C for 30
min at 3000 X g. The supernatant (200 pl) was removed
and neutralized in 1 M Tris base (200 pl). The loss of IGF
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during extraction was determined by the addition of labeled
['25T]IGF-I and -II to extraction reactions. The rate of re-
covery of labeled IGF-I and IGF-II was measured by gam-
ma counting and was 52.2% * 1.5 cpm/sample. Condi-
tioned media, standard or control samples (100 pl) + pri-
mary antibody (100 pl, anti-human IGF-I or IGF-II;
GroPep), and RIA buffer (100 pl of 0.01 M phosphate buff-
er containing 0.1% [w:v] sodium azide, 0.01 M EDTA, and
0.05% [v:v] Tween 20, pH 7.5) were combined in a 5-ml
polystyrene test tube. The tubes were mixed briefly and
incubated at 4°C overnight. To each tube was added 100 pl
of ['>SI]IGF at 20 000 cpm/tube. Tubes were mixed and
incubated for a further 3 days before 250 pl of polyethylene
glycol (PEG-2000; Sigma) mix containing bovine gamma
globulin (Sigma; 1.5 g/L)) was added to each tube. After
overnight incubation, the tubes were centrifuged for 30 min
at 6500 X g, the supernatant was decanted, and the radio-
activity of the pellet was determined by A\ spectroscopy. A
standard curve was generated using 0.15-20 ng/ml recom-
binant IGF-I or IGF-II (GroPep human recombinant). Min-
imal detectable dose and half-maximal displacement of the
radioligand occurred, respectively, at 0.35 ng/ml and 2.2-
2.8 ng/ml for IGF-I and at 0.32 ng/ml and 3.5-7 ng/ml for
IGF-II. Results are expressed as nanograms IGF-I or -1I
released per microgram cell DNA. For DNA quantification,
oviductal cells were lysed in 10% trichloroacetic acid at
4°C for 20 min, then solubilized in 0.1 M NaOH overnight
at 38.6°C. The solubilized cells were then assayed for DNA
content by fluorometric spectroscopy as described by Kis-
sane and Robins [48].

Statistical Analysis

The effects of primary culture (monolayer or vesicle)
and culture interval (Days 2, S, and 8) on IGF-1 and IGF-II
release from conditioned media was determined by a 2 X
3 factorial analysis of variance. Results were considered
significant at p < 0.05.

RESULTS

IGFBP Transcripts in Bovine Preattachment Embryos and
Primary Oviductal Cell Cultures

RT-PCR assays were repeated a minimum of three times
with embryo and oviduct samples derived from replicate
cultures. B-Actin amplicons representing the expected size
from amplification of cDNA were detected in all embryo
and oviduct cell samples (data not shown). At no time was
the larger intron spanning genomic B-actin product ob-
served. Figure 1 displays the typical detection pattern for
IGFBP mRNAs in cultured bovine preattachment embryos.
Figure 2 summarizes the expression pattern for these m-
RNAs in both oviductal monolayer and vesicle primary cul-
tures.

IGFBP-2, -3, and -4 transcripts were detectable in all
stages of bovine preattachment development. Transcripts
encoding IGFBP-5 were not detected in early cleavage-
stage embryos or morulae, but a weak signal was consis-
tently observed in blastocyst samples. Transcripts for
IGFBP-1 were not detected in any preattachment embryo
stage (Fig. 1), although a product of expected size was de-
tected in bovine liver and kidney RNA samples (data not
shown). The IGFBP-6 amplicon of expected size (345 bp)
was not detected in any preattachment embryo stage. In-
stead a much smaller (166 bp) amplicon was consistently
observed in all embryo samples (Fig. 1). This DNA product
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FIG. 1. Detection of mRNAs encoding
IGFBPs in preattachment bovine embryos
by RT-PCR. Lanes are (L) ladder (size of
bands given in base pairs), (1) negative
control (no cDNA), (2) oviduct sample, (3)
1-cell zygotes, (4) 2-5-cell embryos, (5)
6-8-cell embryos, (6) morulae, (7) Day 8
blastocysts. Transcripts encoding IGFBP-2,
-3, and -4 were detected in oviduct sam-
ples and all preattachment embryo stages,
while IGFBP-5 mRNAs were detected in
oviduct samples and in blastocyst-stage
embryos. Messenger RNAs encoding
IGFBP-1 and -6 were not detected in any
preattachment embryo stage. A PCR am-
plicon smaller than expected size was de-
tected in all embryo samples employing
IGFBP-6-specific primers. The procedures
were repeated three times and were ap-
plied to pools of embryos obtained from
three replicate cultures. The identity of
each amplicon was determined by DNA
sequence analysis.

was, however, not observed in bovine oviduct samples (Fig.  peated several times on various proven bovine embryo
2). Sequence analysis indicated that, of the first 84 bp of = ¢cDNA samples, and at no time was the expected IGFBP-6
the 166-bp amplicon, 96% were identical to the reported  PCR product detected. The identities of the remaining
sequence for an E. coli aceE gene encoding the E1 com-  IGFBP amplicons were confirmed by sequence analysis
ponent of pyruvate dehydrogenase. This analysis was re-  comparing the bovine embryo IGFBP amplicon sequences

F D2V D8V

L123456 L123456 L123456

D2M D8M

L123456 L123456

FIG. 2. Detection of IGFBP transcripts in
noncultured fresh oviduct samples (F), Day
2 vesicle cultures (D2V), Day 8 vesicle
cultures (D8V), Day 2 monolayer cultures
(D2M), and Day 8 monolayer cultures
(D8M) by RT-PCR. L, ladder (size of bands
in base pairs); lanes 1-6 correspond to
PCR products encoding IGFBPs 1-6, re-
spectively. Transcripts encoding IGFBPs 2—
5 were detected in both vesicle and
monolayer primary cultures throughout an
8-day culture interval. IGFBP-6 mRNAs
were detected in only a single culture rep-
licate. The procedures were conducted
three times and were applied to oviduct
RNA samples extracted from three repli-
cate sets of primary oviduct cultures. The
identity of each amplicon was determined
by DNA sequence analysis.
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FIG. 3. Western ligand blot and immu-
noblot analysis of 24-h-conditioned media
collected from oviductal cell monolayer
(1,3,5,7) and vesicle (2,4,6,8) primary cul-
tures. Concentrated samples were subject-
ed to SDS-PAGE, transferred to nitrocellu-
lose, and incubated with ['*51)IGF-Il radio-
ligand. A representative autoradiograph re-
veals 4 prominent bands with IGF-1i
binding affinity at 24 kDa, 31 kDa, and 36
kDa and a broad band at 46-53 kDa, in
both monolayer and vesicle cultures (lanes
1 and 2). Western immunoblot analysis
employing polyclonal antisera against
IGFBP-2 (lanes 3 and 4), -4 (lanes 5 and
6), and -5 (lanes 7 and 8) identified the
36-kDa, 31-kDa, and 24-kDa bands (ar-
rows), respectively.

2l=

to published bovine and human IGFBP cDNA sequences
(Table 1) [36—-39]. Comparison of the embryonic IGFBP-2
DNA product with those of published sequences revealed
a 99.2% sequence identity to the bovine IGFBP-2 sequence.
Embryonic IGFBP-3 and -4 products displayed a 100% se-
quence identity to their respective bovine cDNA sequences,
and the IGFBP-5 DNA product displayed a 96.1% sequence
identity to that of the human cDNA.

Transcripts encoding IGFBP-2, -3, -4, and -5 were de-
tected in oviduct monolayer and vesicle primary cultures
over an 8-day cuiture interval (Fig. 2). The mRNAs encod-

B IGF-I
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FIG. 4. Release of IGF-1 and -ll from oviductal cultures over 24 h into
serum-free medium. After the extraction of binding proteins, IGF levels
were measured by RIA in samples collected at Days 2, 5, and 8 of culture.
No significant variation in the levels of IGF-1 or -1l release was detected
for vesicle or monolayer cultures over an 8-day culture interval. IGF-Il is
released at 25 times higher levels in vesicle cultures and 9 times higher
in monolayer cultures than IGF-I. The jevels of release of IGF-1l from
vesicle cultures were significantly greater than those observed for mono-
layer cultures (p > 0.005). No significant difference in the levels of IGF-]
release between monolayer and vesicle cultures was observed.
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ing IGFBP-1 and -6 were not consistently detected in ovi-
duct cultures, although a PCR product of expected size (345
bp) encoding IGFBP-6 was observed once in each of the
oviduct samples examined (Fig. 2).

Detection of IGFBPs in Bovine Oviductal Cell-
Conditioned Media

Western ligand analysis of conditioned media prepared
from monolayer and vesicle cultures over an 8-day culture
period revealed four prominent IGFBPs of approximate
molecular masses 24 kDa (IGFBP-4), 31 kDa (IGFBP-5),
and 36 kDa (IGFBP-2) and a broad band extending from
46 to 53 kDa (IGFBP-3; Fig. 3, lanes 1 and 2). This anal-
ysis was repeated four times employing conditioned media
collected from replicate monolayer and vesicle cultures es-
tablished from separate oviduct collections. The specificity
for IGF binding displayed by these polypeptides was veri-
fied by control analysis consisting of competitive binding
assays employing cold IGF-II to displace binding of radio-
labeled IGF-II. In all cases this procedure eliminated the
detection of any IGFBP signal in these samples (data not
shown). Media were also collected from the final washes,
and no detectable levels of IGFBPs were observed in these
controls. Furthermore, replicate ligand blots were incubated
with [!25T]IGF-1, and an identical binding pattern was de-
tected (data not shown). Identities of the binding proteins
were predicted from the relative molecular sizes, and
IGFBP-2, -4, and -5 were confirmed by immunoblotting
using IGFBP-specific antisera (Fig. 3, lanes 3-8). A single
band of 36 kDa was detected employing a rabbit polyclonal
antiserum raised against bovine IGFBP-2 (UBI) in both
oviductal monolayers and vesicles (Fig. 3, lanes 3 and 4,
arrow). Likewise, bands of appropriate molecular masses
for IGFBP-4 (Fig. 3, lanes 5 and 6, arrow) and IGFBP-5
(Fig. 3, lanes 7 and 8, arrow) were detected in oviductal
monolayer and vesicle cultures employing rabbit polyclonal
antisera specific for human IGFBP-4 (UBI) and human
IGFBP-5 (Austral Biologicals), respectively.



BOVINE IGFBP EXPRESSION

Measurement of IGF Levels in Oviduct- and Blastocyst-
Conditioned Media

RIAs were conducted to measure IGF-I and -II accu-
mulation in oviductal cell (Fig. 4)- and bovine blastocyst-
conditioned media. IGFBP extraction in these samples was
confirmed by the absence of an IGFBP signal following
Western ligand blot analysis prior to RIA (data not shown).
No significant variation in either IGF-1 or IGF-II release
was detected in either monolayer or vesicle cultures over
the 8-day culture interval. However, the release of IGF-II
was 25 times that of IGF-I in vesicle cultures (6.25 * 0.88
ng/ng DNA for IGF-II vs. 0.25 = 0.05 ng/ug of DNA for
IGF-I), with a 9-fold difference in the accumulation of IG-
F-1I over that of IGF-I in monolayer cultures (2.8 = 0.56
ng/ng DNA for IGF-1I vs. 0.31 = 0.08 ng/png DNA for
IGF-I; Fig. 4). The release of IGF-II by vesicle cultures
was significantly greater (p < 0.005) than that observed for
monolayer cultures. No significant difference in IGF-I re-
lease was observed. Pools of 10 blastocysts released on
average 36.2 += 3.9 pg/embryo of IGF-II. Release of IGF-1
from blastocysts was below the detectable levels of the as-
say.

DISCUSSION

We have demonstrated that bovine oviduct monolayer
and vesicle cultures both express transcripts encoding
IGFBPs 2-5 throughout an 8-day culture interval. Tran-
scripts encoding IGFBP-1 and IGFBP-6 were not consis-
tently detected in oviductal cultures or early embryos. In
contrast, IVMF bovine zygotes express mRNAs encoding
IGFBPs 2-4 through to the blastocyst stage. Messenger
RNAs encoding IGFBP-5 were detected in bovine blasto-
cysts. Each bovine IGFBP DNA product displayed a 96%
or greater sequence identity to published cDNAs [36-39].
The 166-bp fragment derived from the IGFBP-6 primers
did not display any identity to published IGFBP-6 sequenc-
es [38]. This amplicon was also observed by Hahnel and
Schultz [36] using identical primers to investigate the ex-
pression of IGFBP-6 mRNAs during murine preimplanta-
tion development. The IGFBP-6 amplicon of expected size
was detected only in murine blastocyst samples; however,
the 166-bp product was observed in all preimplantation-
stage embryo samples [36]. Our result, indicating a shared
homology with an E. coli aceE gene encoding the E1 com-
ponent of pyruvate dehydrogenase, is intriguing and is wor-
thy of further investigation, especially since this DNA prod-
uct was not detected in bovine oviduct samples. Clearly,
differences in the expression of mRNAs encoding the
IGFBPs exist between murine and bovine early embryos,
as IGFBP-5 transcripts were confined to bovine blastocysts
and IGFBP-6 mRNAs were not detected. The significance
of these species differences awaits further investigation. No
differences in the pools of expressed IGFBP mRNAs were
detected in oviduct vesicle or monolayer primary cultures
over an 8-day culture interval. The inconsistent detection
of IGFBP-1 and -6 mRNAs in both monolayer and vesicle
cultures does not rule out the possibility that expression of
these gene products may be low, transitory, or linked to
ovarian cycles. This possibility has been investigated in the
human oviduct [49, 50].

Western ligand blot analysis revealed four prominent
IGFBPs of approximate molecular masses 24 kDa, 31 kDa,
and 36 kDa and a broad band extending from 46 to 53 kDa
in oviductal monolayer- and vesicle-conditioned media
samples. Serum was removed prior to collection of condi-
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tioned media, and ligand blots of wash media did not result
in the detection of any IGFBP signal. Furthermore, all
IGFBP signal was eliminated when the blots were coincu-
bated with unlabeled IGF-II. Bands of proteins at 24, 31,
36, and 46-53 kDa correspond in molecular mass to
IGFBP-4, -5, -2, and -3, respectively [29, 31, 32, 41, 42,
49, 51]. The 46-53 kDa band likely represents a doublet
consisting of the nonglycosylated and glycosylated forms
of IGFBP-3, running at the same size as the dominant band
present by Western ligand analysis of steer serum (not
shown). Absolute identification of this band as IGFBP-3
awaits further determination employing specific antiserum
by Western blot analysis. The identities of the 24-, 31-, and
36-kDa proteins were confirmed by immunoblot methods.
Bands at the molecular mass range 29-30 kDa that were
detected in the ligand blots and in the IGFBP-4 Western
immunoblot may represent glycosylated forms of IGFBP-4
[52] or cross-reactivity of antiserum with IGFBP-2 [44].
Since transcripts encoding IGFBP-1 were not detected and
IGFBP-6 mRNAs were not consistently detected in these
primary cultures, it is unlikely that the 29-30-kDa poly-
peptides are related to IGFBP-1 or IGFBP-6. Furthermore,
no differences in the banding patterns was observed be-
tween IGF-I- and IGF-II-radiolabeled ligand blots (data not
shown), suggesting that IGFBP-6 is not represented in the
banding pattern. IGF-II is reported to have a 10-fold higher
affinity for IGFBP-6 than that displayed by IGF-I [53].
IGFBPs are reported to regulate IGF biological activity
[31, 32] in at least four ways. These include 1) transpor-
tation of IGFs; 2) influences on IGF half-life; 3) contribu-
tion to IGF tissue- and cell-specific distribution; and 4)
modulation and potentiation of IGF action with receptors
[31, 32]. Variations in IGFBP transcript levels have now
been associated with several developmental events. For ex-
ample, IGFBP-2 mRNAs decrease with follicular growth
and maturation in the porcine ovary [54], and follicular
fluid IGFBP-2 levels increase in porcine atretic follicles
over levels observed for follicular fluid derived from
healthy follicles [55]. The presence of IGFBPs 2-5 in bo-
vine follicular fluid was reported by de la Sota et al. [56],
who also observed that increased levels of IGFBP-2, -4,
and -5 were associated with atresia. Porcine corpora lutea
express mRNAs encoding IGFBPs 2-5 [57]. Messenger
RNAs and polypeptides encoding IGFBPs 1-4 are ex-
pressed in human oviduct [49, 50]. Although mRNAs en-
coding IGFBP-1 were weakly detected by Northern blotting
in the human oviduct [49], immunolocalization intensity
was the greatest for IGFBP-1 polypeptides in the human
oviduct [50]. Cycling IGFBP levels are also correlated with
implantation. Endometrial IGFBP-2 mRNA levels increase
between Day 18 of the estrous cycle and early pregnancy
in cattle [58], and murine uterine stromal IGFBP-4 mRNA
levels increase on Day 4 of pregnancy in stromal tissue just
underlying the luminal epithelium [59]. These levels of
IGFBP expression may be influenced by steroids, as ad-
ministration of estradiol to ovariectomized rats (1 pg per
rat per day for 3 days) dramatically decreases the levels of
two IGFBPs with molecular masses of 38-42 and 28 kDa
[51]. Furthermore, maternal serum levels of IGFBPs also
cycle during pregnancy, as Nason et al. [60] observed that
serum levels of all IGFBPs increased between Days 12 and
24 of pregnancy in the rabbit and then declined to term.
Furthermore, IGFBPs may have the capacity to stimulate
direct influences on cell processes as exemplified by
IGFBP-3 action on human breast cancer cell growth [61].
The nature of IGFBP regulation of IGF activity during early
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bovine development is unknown but represents the subject
of future experiments.

Bovine oviductal primary cultures express transcripts en-
coding IGF-I and IGF-II and secrete respective peptides [3,
27}. In addition to these ligand mRNAs, bovine preattach-
ment embryos express mRNAs encoding IGF-I, IGF-II, and
insulin receptors [27]. Our present results have confirmed
that detectable levels of IGF-I and -1I are released by bo-
vine primary oviductal cultures and IGF-II from blastocyst-
stage embryos. Both IGF-I and -II have been detected in
porcine oviductal fluid, and porcine oviductal primary cul-
tures also secrete IGF-1 and -II [62]. The differences in
IGF-I and -II levels detected in oviduct-conditioned media
are similar to other findings, as Ko et al. [63] observed a
10-fold difference in IGF-II levels over IGF-I in Day 12—
14 cyclic and pregnant sheep uterine luminal fluids. The
significantly higher levels of IGF-II in vesicle cultures as
compared to monolayer cultures is particularly intriguing.
It is clear from studies investigating early murine devel-
opment that insulin and both IGFs are capable of stimulat-
ing physiological responses and increases in cell prolifer-
ation [30, 64, 65]; similar confirmation of these influences
has not been made for early bovine development and awaits
further study.

In conclusion, we have demonstrated that bovine preat-
tachment embryos and primary oviductal cultures express
transcripts encoding IGFBPs. Bovine primary oviductal
cultures release four principal IGFBPs, and oviductal cul-
tures release detectable levels of IGF-1 and IGF-II. Bovine
blastocysts release detectable levels of IGF-II, and IGF-1
release is below the level of detection of the assay. The
results support the existence of oviduct paracrine and em-
bryonic autocrine IGF circuits, raising the possibility of the
existence of IGFBP modulation in the support of bovine
preattachment embryo development.
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