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ABSTRACT  

The existing literature on wind-induced pressures on roofs of low-rise buildings is generally limited to regular-

shaped, mostly rectangular roofs with relatively small dimensions, say less than 60 m. Large roofs for industrial and 

institutional buildings have not been considered in the formulation of wind code and standard provisions. Therefore, 

it is important to assess the efficiency of the current national building code/standard provisions as to their 

applicability for very large roofs. This paper presents experimental results of wind loads on flat roofs of low-rise 

buildings with large dimensions carried out in an atmospheric boundary-layer wind tunnel for different wind 

directions. Nine low-rise buildings (5, 7.5 and 10 m high) have been modeled and tested in open-country terrain 

exposure. The buildings have square plans with full-scale horizontal dimensions ranging from 60 to 180 m. 

Comparison of the results with respective provisions adopted by ASCE 7-10, NBCC 2015, EN 1991-1-4:2005 and 

AS/NZS 11702, 2011 indicates that some of the current provisions may lead to considerably conservative designs by 

increasing the size of the edge and corner zones. A variety of approaches were considered in order to redefine the 

size of the edge and corner zones with respect to the magnitude of the pressure coefficients provided for all roofs in 

the different codes/standards when dealing with large roofs of low-rise buildings. 
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1. INTRODUCTION 

Historically, significant contributions have been made by several studies to describe the wind pressures on low-rise 

buildings and codify the results such as the comprehensive research conducted in the mid-seventies to investigate 

various geometries of low-rise buildings by means of atmospheric wind tunnel tests (Davenport et al. 1977, 1978) 

and the study on the estimation of instantaneous area-averaged pressure coefficients by the pneumatic-averaging 

method (Surry and Stathopoulos, 1978). 

 

A number of wind-engineering investigators have also presented wind measurement results in the form of wind 

loads and reviews for low-rise buildings, e.g., Stathopoulos (1984-B); Holmes (1993); Krishna (1995); Kasperski 

(1996); Stathopoulos et al (1996); Uematsu and Isyumov (1999); Ho et al (2005); and St. Pierre et al (2005). 

 

Over the past several years the wind load on interior areas of flat roofs of low-rise buildings has been intensely 

investigated by wind tunnel and full-scale experiments. For instance, Gerhardt and Kramer (1992); Milford et al 

(1992); Lin et al (1995); Lin and Surry (1998); and Morrison and Kopp (2007). However, these studies were 

restricted to the simple shapes of low-rise buildings with common, relatively small, dimensions. 

 

Recently, the characteristics of mean and peak wind pressure on flat roofs of large low-rise buildings have been 

described by (Alrawashdeh and Stathopoulos, 2015). The study found that although building height plays a key role 

in impacting the values of pressure coefficients, the distribution patterns of roof wind pressures are mainly affected 

by building plan dimensions. The impact of horizontal plane dimension on the flow patterns is presented in Figure 1, 
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which shows the wind flow patterns over roofs of different dimensions for wind direction normal to the building 

edge. 

 

Figure 1 (a) represents the general simplified trace of pressure distribution over relatively small roofs - for this group 

of buildings the pressure distribution collapses slowly; moreover, the reattachment (if any) occurs further away from 

the leading edge. Figure 1(b) represents the general trend of pressure distribution over relatively large roofs. For this 

case, the pressure distribution collapses rapidly up to the point of first reattachment and thereafter the flow is 

retreated close to the surface and runs away smoothly. 

 
                   (a)                            (b) 

Figure 1: Mean or peak negative pressure distributions over roofs of different sizes: 

(a) Smaller roofs (b) Larger roofs (Alrawashdeh and Stathopoulos, 2015) 

The loading zones of large roofs have been generated by (Alrawashdeh and Stathopoulos, 2015) along with their 

wind loads and compared with respective provisions adopted by North American wind codes and standards (ASCE 

7-10 and NBCC 2015).   

 

The aim of the current paper is to extend the scope of the previous work. Thus, this paper presents a comparative 

study, which consists of two parts. The first part includes comparisons of application of current national wind 

building codes and standards, namely:  ASCE 7-10 (USA), NBCC 2015 (Canada), EN 1991-1-4:2005 (Europe) and 

AS/NZS 11702, 2011 (Australlia/New Zealand), provisions for flat roof zone systems and design wind pressures. 

The second part of the paper compares the present experimental results with those specified in the current 

codes/standards to assess their suitability for roofs of large buildings. 

2. OVERVIEW 

This section presents a concise overview of the methodologies used by current wind standards and codes of practice. 

The description includes the recommended external design wind pressures and the flat roof zones given by ASCE 7-

10, NBCC 2015, EN 1991-1-4:2005 and AS/NZS 11702 (2011), for low-rise buildings. 

2.1 Design wind pressures on external building cladding 

The methodologies used by the four codes/standards mentioned above, for calculation of wind pressures of enclosed 

rectangular buildings are summarised in Table 1. The basic wind speed used in NBCC 2015 has a longer averaging 

time (1-hr) compared with the 3-sec averaging time used in ASCE 7-10. Therefore, since the gust factors for 

computing pressure coefficients used in ASCE 7-10 will be lower than those in NBCC 2015, the current values of 

the gust pressure coefficients used in the ASCE7-10 will be lower than those in NBCC 2015 in order to yield 

comparable design wind pressures. 

2.2 Zonal systems for flat roofs  

Wind standards and codes of practice divide the entire flat roof of the building into at least three loading zones, 

namely: corner, edge and interior. The loading zones of the current wind codes and standards are defined as a 

function of different parameters such as building plan dimensions and building height. The detailed definitions for 

the zonal system recommended by the wind codes/standards for large flat squared roofs are presented in Figure 2. 
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Also, design local peak pressure coefficients for each respective zone are provided. As shown in Figure 2, NBCC 

2015, ASCE 7-10 and AS/NZS 11702, 2011 use square corner zone, whereas EN 1991-1-4:2005 recommends L-

shape corner zones. Also, AS/NZS 11702, 2011 divides the roof interior zone into subzones of width Z2 and Z3 on 

the basis of H, which is the roof height. 

 

The local external peak pressure coefficients of ASCE 7-10 (GCp) and NBCC 2015 were obtained directly from 

simple graphs versus the tributary area. These values are the envelope from all wind directions. It should also be 

noted that the directionality factor, Kd = 0.85, has already been applied to GCp values of ASCE 7-10.  

 

The local external peak pressure coefficients of EN 1991-1-4:2005 are the equivalent values for CeCp,e1. EN 1991-1-

4:2005 specifies two values for external pressure coefficients on building envelope. The first is assigned for loading 

area 1 m2 or smaller and represented by Cpe,1 as a local coefficients, whereas the second is for loading area of 10 m2 

or larger and represented by Cpe,10 as overall coefficients. The values of Cpe,1 for the corner, edge and interior zones 

of flat roofs are -2.5, -2.0 and -1.2, respectively. However, these values are the most critical from all wind directions 

in the range between 45o to the left and right of the orthogonal wind direction to the roof edge. This is equivalent to 

all wind directions for the case of square roofs, which are dealt with in this paper. The exposure factor, Ce, is given 

as a function of height above the terrain and the terrain category. For the three heights considered in this study (10, 

7.5 and 5 m) and open exposure, the values of exposure factors are 3.0, 2.8 and 2.6 and, therefore, the values of the 

CeCp,e1 for the corner zones are -7.5, -7.0 and -6.5, respectively.  

Table 1: Wind Code and Standard Approaches for Design Wind Pressure. (Alrawashdeh and Stathopoulos, 2015) 
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(a)                   (b)                        (c)  

θ: Roof slope 

D: minimum horizontal dimension  

H: Eave height 

Figure 2: Zonal systems of large flat roofs recommended by wind codes and standards: (a) ASCE 7-10 and NBCC 

2015, (b) EN 1991-1-4:2005 and (c) AS/NZS 11702, 2011. All pressure coefficients were referenced to 2
Vρ5.0=q , 

where: V is the mean hourly wind speed. 

 

AS/NZS 11702 provides the values of external mean pressure coefficients, )C( e,P
, for flat roofs as a function of the 

distance from the windward roof edge and the ratio of the roof height to the width. For the roofs shown in Figure 2, 

e,pC  for the corner and edge zones is -0.9, for the interior zones 
e,pC  values are -0.5, -0.3 and -0.2. The area 

reduction factor )K( a
 depends on the tributary area (A), such that it has a maximum value of 1.0 for A ≤ 100 m2, 0.9 

for A = 25 m2 and 0.8 for A ≥ 100 m2. The combination factor, 
e,cK , is not applied for roof cladding, thus it is taken 

as 1.0 in case of wind pressures acting alone. The local pressure factor )K( I
 on flat roofs is applied to the cladding 

elements within a distance of Z from the leading edge. Thus, the values of )K( I
 are 3.0, 2.0 and 1.5 for small 

cladding area on the corner, exterior edge and interior edge zones, respectively. For the interior zones 1=KI
. 

Permeable cladding reduction factor )K( P
accounted for the effect of surface permeability on the negative pressure is 

taken as 1.0. For example, the value of )C(KKKK e,PPIe,ca
 of the corner zones is =9.0×1×3×1×1 -2.7.  

 

Finally, in order to take into account the different averaging time for the basic wind speed the values of GCp (ASCE 

7-10), CeCp,e1 (EN 1991-1-4:2005) and )C(KKKK e,PPIe,ca
 (AS/NZS 11702, 2011) have been multiplied by 2.31, 1.14 

and 2.31 respectively using Durst (1960).  

3. EXPERIMENTAL PROCEDURE 

All experiments have been carried out in the boundary layer wind tunnel at the Building Aerodynamics Laboratory, 

Concordia University. The wind tunnel has a length 12.20 m and working section with 1.80 m wide with an 

adjustable roof height ranging between 1.40 m and 1.80 m. At the test section, the tunnel is provided with a turntable 

of 1.60 m diameter, which allows the tested model to rotate at different wind directions. The floor of the tunnel is 

covered by carpet to generate the required velocity and turbulence profiles of open-country exposure. 

The variation of the mean wind speed with the height above the floor was generated with power law index (α) of 

0.15, matching the exposure B of ASCE 7-10 and open terrain exposure of NBCC 2015, exposure II of EN 1991-1-

Z= Z1=min (0.1D or 0.4H), but 

             ≥ (0.04D or 1.0m)  

Z=min (0.1D or 0.5H) 

Z1= min (0.1D or 0.2H)  
Z= min (0.2D, 0.2B or H) 

Z1= 0.5H 

Z2= Z3= H 
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4:2005 and exposure 2 of AS/NZS 11702, 2011. Therefore, CpCg values of EN 1991-1-4:2005 shown in Figure 2 

will be modified by a reduction factor 0.80 to make them compatible with the exposure used in this study. 

 

A geometric scale of 1:400 has been used for all experiments of this wind tunnel study as recommended by 

Stathopoulos (1984). A Plexi-glass model of full-scale equivalent plan dimensions of 60 m has been used as a basic 

model in the simulation. The roof of the basic model is equipped with 127 roof pressure taps. Models of larger plan 

dimensions are composed of the basic model and similar geometry wooden blocks, which can be removed or placed 

to create varying building dimensions i.e. buildings of plan dimensions of 120 m and 180 m. Three full-scale heights 

of 5.0, 7.5 and 10.0 m are considered in this study. Totally, nine configurations of large low-rise buildings have been 

tested for this study (B1:60X60X10 m to B9: 180X180X5 m). 

 

The instantaneous surface pressures over the entire roof have been measured for wind directions between 0o and 90o 

at increments of 15o. The measured pressures have been normalized by the mean dynamic pressure measured at 

reference height to express them as non-dimensional pressure coefficients, Cpi(t) defined as 

 

[1]   ,  

 

in which Pi(t) is the wind pressure at pressure tap (i), Ps is the static pressure at reference location,  is mean value 

of the dynamic velocity pressure at height Zref, ρ is the density of the air and  is mean value of the wind velocity at 

roof height, H. 

4. COMPARISON OF ZONAL SYSTEMS FOR FLAT ROOFS 

In this section, zonal systems of current national wind codes and standards considered in this study are compared. 

Moreover, experimental results of the large roof zones are compared with respective values from current wind 

codes/standards.  

4.1 Current wind codes and standards for large roofs 

It is well known that the provisions of the current wind codes and standards were established mainly based on wind 

tunnel experiments of model configurations with relatively small dimensions. Therefore, it would be of interest to 

apply the provisions of these codes/standards on flat roofs of low-rise buildings with large dimensions. A 

comparison of roof zone patterns and sizes of ASCE 7-10, NBCC 2015, EN 1991-1-4:2005 and AS/NZS 11702, 

2011 was made for the nine building geometries considered in this study.  

 

It has been noted that differences in terms of zonal system sizes are significant among the four national 

codes/standards considered in this study. For instance, ASCE 7-10 (NBCC 2015) edge/corner zone sizes are 

determined by the design criterion of 4% of the least horizontal dimension (0.04Ds) for most geometries. According 

to EN 1991-1-4:2005, the sizes of the edge zone for all geometries are governed by the design criterion of 20% of 

the roof height (0.2H) and sizes of the corner zone are defined by 50% of the roof height (0.5H); whereas, the width 

of edge and corner zones of AS/NZS 11702, 2011 are determined by the roof height (H); the sub-zones within the 

edge zones are governed by (0.5H), while the interior sub-zones are created by (H) for all geometries considered in 

this study; see Figure 2. 

 

Clearly, it can be noticed that the smallest corner and edge zone sizes are those provided by EN 1991-1-4:2005. For 

relatively high buildings (H ≥ 7.5 m), the largest corner zones are created by AS/NZS 11702, 2011 provisions. Also, 

for buildings with relatively low height (H ≤ 7.5 m) the largest edge zones are those created by the provisions of 

ASCE 7-10 (NBCC 2015). 

4.2 Experimental data and current wind codes/standards 

Edge and corner zones have been created by following the same methodology and patterns implemented for 

ASCE7-10 and NBCC 2015. Detailed information about this methodology is provided by Alrawashdeh and 

Stathopoulos (2015).  
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Comparison of the roof zone sizes of the experimental results with those created by the current guidelines of ASCE 

7-10 and NBCC 2015 shows that for buildings with low height and large size (B ≥ 120 m and H ≤ 7.5 m), the edge 

and corner zones are considerably smaller than the sizes governed by ASCE 7-10 (NBCC 2015) guidelines. The 

disagreement between the experimental results and the respective code values is due to the zoning parameter 4% of 

the least horizontal dimension (0.04Ds). For instance, the edge zone size of ASCE 7-10 (NBCC 2015) for building 

(B9) is found to be twice as large as the actual (experimental) size. On the contrary, for relatively high and large roof 

buildings, the sizes of the edge and corner zones created by this investigation are comparable to the current ASCE 7-

10 (NBCC 2015) provisions. 

 

The experimental sizes of the corner zone (Z) are found to larger than those created by EN 1991-1-4 (0.5H). For all 

tested roofs, the experimental width of the edge zone (Z1) are a factor of 2.7 to 3.6 larger than those provided by 

(0.5H) of EN 1991-1-4. In addition, the experimental sizes of the corner and edge zones (Z and Z1, respectively) are 

approximately 1.5 to 2.0 times smaller than those created by the design criterion (H and 0.5H, respectively) of 

AS/NZS 11702. 

 

The methodologies followed for the development of current wind code and standard provisions are different. For 

instance, the smallest sizes of the corner and edge zones are provided by EN 1991-1-4, which also gives the highest 

local peak pressure coefficients among the other codes and standards; see Figure 2. Therefore, quantitative 

comparisons of the roof zone sizes separately may not be sufficient to describe the adequacy of these codes and 

standards. In this regard, the suitability of the code/standard roof systems should be equally examined with the 

design wind pressure coefficients.    

 

The current wind codes/standards roof zones and the experimental roof pressures are investigated together by 

projecting the wind codes/standards zone layouts on the roof distribution of most critical peak pressure coefficients. 

For example, Figure 3 shows the contour distribution of most critical peak pressure coefficients over the perimeter 

of the building B9: 180X180X5 m with roof zones of current wind codes/standards. It should be noted that these 

contours on a quarter of the roof reflect the pressure distribution on the entire roof perimeter by taking advantage of 

the symmetry of the roof models. The summary of this investigation is presented in Table 2, in which the range of 

most critical pressure coefficients captured by corner and edge zones of current provisions are provided.  

 

Based on the results shown in Table 2, it can be concluded that the current provisions of ASCE 7-10 and NBCC 

2015 have a tendency to provide very conservative corner and edge zones. These results have been demonstrated by 

Alrawashdeh and Stathopoulos (2015) during their investigation to the current ASCE 7-10 and NBCC 2015 

provisions for flat roofs. 

 

Corner and edge zones of EN 1991-1-4:2005 capture the local pressure coefficients higher than -3.0 and -2.5, 

respectively. These values, which represents the local boundary pressure coefficients between edge/corner zones and 

the interior zone, are found to be in agreement with  design pressure coefficients for the interior zones (-3.3, -3.0 and 

-2.7, see Figure 2). Accordingly, current edge and corner zones of EN 1991-1-4:2005 on the one hand are suitable 

for large roofs, and on the other hand very conservative design pressure coefficients are provided for edge and 

corner zones. 
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Figure 3: Most critical negative peak pressure coefficient contours (envelope values for all wind directions) with 

roof zones for building B9: 180X180X5 m of the current provisions of: (a) ASCE 7-10 (NBCC 2015), (b) EN 1991-

1-4 and (c) AS/NZS 11702, 2011 

 

Corner zones of AS/NZS 11702 capture local boundary pressure coefficients higher than -1.8, -1.7 and -1.5 for all 

roofs of heights 10, 7.5 and 5 m, respectively. Comparison of these boundary pressure coefficients with those 

provided by AS/NZS 11702 for the first interior zone (-1.1, see Figure 2) shows that the design pressure coefficients 

of AS/ (2011) 11702 for interior zones are insufficient and indeed lower than the actual wind pressure. This implies 

that sizes of the corner zone and total edge zones (two sequential) created by design criterion eave height (H) for 

large flat roofs are less than desired. Thus, these zones should be extended for larger sizes to capture lower pressure 

coefficients. Accordingly, the size of the interior zones will be reduced and the maximum local pressure coefficients 

captured by these zones will be decreased too. 

Table 2: Minimum Values (in Absolute Sense) of Most Critical Pressure Coefficients Captured by Current Wind 

Code/Standard: ASCE 7-10 (NBCC 2015), EN 1991-1-4:2005 and AS/NZS 11702, 2011– see Figure 3 for B9. 

Corner Zone 

Building 

ASCE 7 

(NBCC) 
EN 1991-1-4 AS/NZS 11702 

CpCg CpCg CpCg 

B1 > -2.5 > -3.0 > -2.0 

B2 > -2.0 > -2.8 > -1.8 

B3 > -2.0 > -3.0 > -1.8 

B4 > -2.2 > -2.7 > -1.6 

B5 > -1.9 > -2.7 > -1.7 

B6 > -1.3 > -2.8 > -1.3 

B7 > -2.0 > -3.0 > -1.4 

B8 > -1.5 > -2.8 > -2.0 

B9 > -1.3 > -2.8 > -1.3 

Edge Zone 

Building 
ASCE 7 

(NBCC) 
EN 1991-1-4 AS/NZS 11702 
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CpCg CpCg CpCg CpCg 

B1 > -2.5 > -2.5 > -2.5 -2.5> CpCg >-1.8 

B2 > -2.3 > -2.8 > -2.3 -2.3> CpCg >-1.8 

B3 > -2.0 > -2.5 > -2.3 -2.3> CpCg >-1.8 

B4 > -2.5 > -2.7 > -2.4 -2.4> CpCg >-1.6 

B5 > -2.3 > -2.7 > -2.5 -2.5> CpCg >-1.7 

B6 > -1.8 > -2.5 > -2.3 -2.3> CpCg >-1.8 

B7 > -2.5 > -3.0 > -2.5 -2.5> CpCg g>-1.5 

B8 > -1.5 > -2.5 > -2.5 -2.5> CpCg >-1.8 

B9 > -1.3 > -2.8 > -2.3 -2.3> CpCg >-1.8 

5. MODIFYING THE PROVISIONS OF CURRENT WIND CODES AND STANDARDS 

A suggestion has been proposed by Alrawashdeh and Stathopoulos (2015) for the current statement of ASCE 7-10 

(NBCC 2015) defining the roof zones of low-rise buildings for better evaluation of edge and corner zones of large 

roofs. A key limitation of this suggested exception is that the exception addresses the current roof zones sizes 

without modifying the structure of the guidelines defining the zone sizes, as well the design wind pressures of these 

zones. This suggestion is appropriate for buildings with mean roof height of 8 m or lower and least horizontal plan 

dimension greater than 90 m. Following this, during this section application of the proposed suggestion and its 

efficiency to current wind codes and standards will be discussed. The proposed suggestion is presented in Figure 4. 

Accordingly, Table 3 shows roof zones of the tested buildings obtained by experiments, current and modified 

provisions based on the suggested exception.   

The current provisions of ASCE 7-10 (NBCC 2015) may lead to considerably conservative and uneconomic 

edge/corner zones for large and relatively low height roofs with sizes larger than the actual sizes. For these 

geometries the size of these zones should be decreased such that they will envelope higher range of pressure 

coefficients. This issue can be solved for the current roof system of ASCE 7-10 (NBCC 2015) by applying the 

suggested exception that presented in Figure 4. Application of this exception to the ASCE 7-10 (NBCC 2015) 

guidelines has led to more economic and adequate design for large roofs of large buildings. 

Roof zones of EN 1991-1-4:2005 are found to be suitable in terms of sizes for large roofs with exaggerated design 

pressure coefficients for the small areas on the roof perimeter. In this case, increasing the size of the edge/corner 

zones is not compatible. Thus, interior zones with the exception will be designed for more conservative values of 

pressure coefficients compared with before (current system). As presented in Table 3, application of the suggested 

exception does not change the roof zones since the edge/corner zones are created by the design criteria 0.2H which 

is always less than (0.8H) of suggested by the exception.  

 

Exception: for roofs of buildings with α = 0° to 7° and a least horizontal dimension greater than 90 m (300 ft) 

the width of the corner and edge zones (Z and Z1) shall be limited to a maximum of (0.8H) regardless of the 

zones shape. 

Figure 4: Current guidelines specified in different wind codes/standards and the proposed suggestion. 

Table 3: Size of Corner/Edge Zones of Present Study and Current Wind Code/Standard: ASCE 7-10 (NBCC 2015), 

EN 1991-1-4:2005 and AS/NZS 11702 (2011), compared with the proposed exception. 

Corner Zone (Z, in m) 

Building Experimental 
ASCE 7 (NBCC) EN 1991-1-4 AS/NZS 11702 

Current Modified Current Modified Current Modified 

B1 5.3 4.0 4.0 5.0 5.0 10.0 10.0 

B2 6.0 4.8 4.8 5.0 5.0 10.0 10.0 

B3 6.9 7.2 7.2 5.0 5.0 10.0 10.0 

B4 5.2 3.0 3.0 3.8 3.8 7.5 7.5 

B5 5.3 4.8 4.8 3.8 3.8 7.5 6.0 

B6 5.4 7.2 6.0 3.8 3.8 7.5 6.0 

B7 3.3 2.4 2.4 2.5 2.5 5.0 5.0 
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B8 3.4 4.8 4.0 2.5 2.5 5.0 4.0 

B9 3.4 7.2 4.0 2.5 2.5 5.0 4.0 

Edge Zone (Z1, in m) 

Building Experimental 
ASCE 7 (NBCC) EN 1991-1-4 AS/NZS 11702 

Current Modified Current Modified Current Modified 

B1 5.3 4.0 4.0 2.0 5.0 5.0 5.0 5.0 5.0 

B2 6.0 4.8 4.8 2.0 5.0 5.0 5.0 5.0 5.0 

B3 6.9 7.2 7.2 2.0 5.0 5.0 5.0 5.0 5.0 

B4 5.2 3.0 3.0 1.5 3.8 3.8 3.8 3.8 3.8 

B5 5.3 4.8 4.8 1.5 3.8 3.8 3.8 3.8 3.8 

B6 5.4 7.2 6.0 1.5 3.8 3.8 3.8 3.8 3.8 

B7 3.3 2.4 2.4 1.0 2.5 2.5 2.5 2.5 2.5 

B8 3.4 4.8 4.0 1.0 2.5 2.5 2.5 2.5 2.5 

B9 3.4 7.2 4.0 1.0 2.5 2.5 2.5 2.5 2.5 

 

 

Current corner/edge zones of AS/NZS 11702 are found to capture experimental boundary pressure coefficients 

higher in values than those provided by the AS/NZS 11702 (2011) for the interior zone. Thus, current pressure 

coefficients of the first interior zone are not appropriate with the actual wind pressure coefficients. Therefore, 

decreasing the size of the edge zone will make the guidelines worse. Application of the suggested exception to the 

current guidelines of AS/NZS 11702 (2011) does not affect the size of the edge zone (Z1) since the edge zone size 

(0.5H) is less than the proposed size (0.8H), whereas application of the of the suggested exception has reduced the 

size of the corner zones, see Table 3. Thus, a part area of the corner zone will be a part of the edge zone (interior). 

 

As a brief conclusion from the previous, the proposed exception has only effects on the guidelines of ASCE 7-10 

(NBCC 2015) and AS/NZS 11702 (2011). As already noted, the current guidelines of ASCE 7-10 (NBCC 2015) 

overdesigning the corner/edge zones of large roofs and very low height (H ≤ 7.5 m) by producing zones of width of 

4% of the least horizontal plan dimension. AS/NZS 11702 (2011) underestimates the interior zone wind pressure or 

the guidelines of AS/NZS 11702 (2011) create edge zones of sizes less than required. In spite of that the authors 

believe that application of this practical exception will effectively improve the current provisions by decreasing the 

size of the unjustified areas under the conditions that the design wind pressure coefficients of ASCE 7-10 (NBCC 

2015) and AS/NZS 11702 (2011) are kept as they are. 

 

To verify this exception, the proposed roof zones are figured on the experimental contours of most critical pressure 

coefficients distribution of all tested buildings. Undoubtedly, the final outcomes of these code/standard provisions 

become more reliable against wind loading for low-rise buildings. As an illustration, proposed roof zones and the 

experimental pressure coefficients over the roof building B9: 180X180X5 m are shown in Figure 5. 

 

Clearly, the gross area of the corner zones of ASCE 7-10 (NBCC 2015) and AS/NZS 11702 (2011) are reduced. The 

edge zones of ASCE 7-10 (NBCC 2015) are also decreased. These reductions in the sizes are treated for the 

overdesigning portion of the roof zones created by the current guidelines of these wind codes/standards. Thus, the 

corner zones of the modified provisions hold all local peak pressure coefficients higher than -1.8, whereas the corner 

zones of the current provisions hold all peak pressure coefficients higher than -1.3. In the same way, the edge zones 

of the modified provisions of ASCE 7-10 (NBCC 2015) hold all local peak pressure coefficients higher than -2.0 in 

comparison with the edge zones of the current provisions that hold all peak pressure coefficients higher than -1.3. 

 

Moreover, the design wind pressure coefficients provided by ASCE 7-10 (NBCC 2015) and AS/NZS 11702 (2011) 

become more consistent with the actual pressure distribution on large roofs with the modified zonal system. 
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Figure 5: Most critical negative peak pressure coefficient contours (envelope values for all wind directions) with 

roof zones for building B9: 180X180X5 m of the proposed provisions: (a) AS/NZS 11702 (2011) and (b) ASCE 7-

10 (NBCC 2015) 

For instance, the maximum local peak pressure coefficients measured on the modified interior zone are found to be 

roughly -1.8, which are consistent with the respective design values -2.0 and -1.8 of ASCE 7–10 and NBCC 2015, 

respectively. Also, the local peak pressure coefficients measured on boundary of the modified corner zone of 

AS/NZS 11702 (2011) are found to be in range of -1.8 to -2.3, which will be overestimated by the AS/NZS 11702 

(2011) design pressure coefficients -3.1 provided for the edge zone. Whereas in the case of the current provisions, 

these reduced parts of the corner zones are overestimated by the AS/NZS 11702 (2011) design pressure coefficients 

-6.2 provided for the corner zone. 

6. SUMMARY AND CONCLUSION 

This study has discussed roof zones of various wind codes/standards and their applicability for large low-rise 

buildings. A set of experimental results on large roofs have been acquired and applied for code comparisons, mainly 

including the roof wind pressures and roof zones. The main findings can be summarized as follows: 

1. There are significant discrepancies in the definitions of edge and corner roof zones among current wind 

codes and standards, including the roof zone sizes and their design wind pressures. These discrepancies 

are due to the differences in their methodologies and sources at development. 

2. The ASCE 7-10 and NBCC 2015 restriction (0.04Ds) may lead to oversized edge and corner zones for 

such buildings with large roofs and low heights (H ≤ 7.5 m and D ≥ 120 m).  

3. Narrow corner and edge zones with high design pressure coefficients are introduced by EN 1991-1-4 for 

large flat roofs. This approach may be too conservative. 

4. AS/NZS 11702, 2011 provisions overestimated the sizes of the roof corner zones. 
Extending the scope of the work done by Alrawashdeh and Stathopoulos (2015), their proposed exception for large 

low-rise buildings has been applied to the general definitions of the size of edge and corner zones of ASCE 7-10 

(NBCC 2015) and AS/NZS 11702 (2011). This exception reduced the sizes of the edge/corner zones of ASCE 7-

10 (NBCC 2015) and the corner zones of AS/NZS 11702 (2011). 
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