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Abstract

Mammalian blastocyst formation is dependent on establishment of trophectoderm (TE) ion and fluid transport mechanisms. We have
examined the expression and function of aquaporin (AQP) water channels during murine preimplantation development. AQP 3, 8, and 9
proteins demonstrated cell margin-associated staining starting at the 8-cell (AQP 9) or compacted morula (AQP 3 and 8) stages. In
blastocysts, AQP 3 and 8 were detected in the basolateral membrane domains of the trophectoderm, while AQP3 was also observed in cell
margins of all inner cell mass (ICM) cells. In contrast, AQP 9 was predominantly observed within the apical membrane domains of the TE.
Murine blastocysts exposed to hyperosmotic culture media (1800 mOsm; 10% glycerol) demonstrated a rapid volume decrease followed by
recovery to approximately 80% of initial volume over 5 min. Treatment of blastocysts with p-chloromercuriphenylsulfonic acid (pCMPS,
�100 �M) for 5 min significantly impaired (P � 0.05) volume recovery, indicating the involvement of AQPs in fluid transport across the
TE. Blastocysts exposure to an 1800-mOsm sucrose/KSOMaa solution did not demonstrate volume recovery as observed following
treatment with glycerol containing medium, indicating glycerol permeability via AQPs 3 and 9. These findings support the hypothesis that
aquaporins mediate trans-trophectodermal water movements during cavitation.
© 2003 Elsevier Science (USA). All rights reserved.

Introduction

Mammalian preimplantation development culminates in
the formation of the fluid-filled blastocyst, composed of a
group of apolar cells (the inner cell mass; ICM) and a fluid
cavity whose boundary is formed by the trophectoderm
epithelium (TE). Differentiation of the trophectoderm oc-
curs at the morula stage of development, when molecular
and cellular events leading to the maturation of the epithe-
lial junctional complexes (adherens and tight junctions) are
initiated (reviewed by Collins and Fleming, 1995; Fleming
et al., 2001). E-cadherin-mediated cell–cell adhesion coor-
dinates cellular polarity and maturation of the tight junction,
resulting in the formation of distinct apical and basolateral
membrane domains within the TE cell layer. The resulting

polarity of ion/solute transporters mediates the establish-
ment of ionic gradients across the TE, leading to accumu-
lation of water within the nascent blastocoel cavity in re-
sponse to the newly established trans-trophectoderm
osmotic gradient (reviewed by Biggers et al., 1988; Watson,
1992; Watson and Barcroft, 2001).

Unidirectional Na� movements occur predominantly in a
trophectoderm-to-blastocoel direction, similar to that ob-
served in other transporting epithelia (Neilsen et al., 1987).
Borland et al. (1976) demonstrated active Na� and Cl�

transport into the blastocoel cavity in response to hyperos-
motic conditions induced by sucrose supplementation of
blastocyst culture media in vitro. Addition of 2 mM su-
crose to culture media results in increased accumulation of
Na� and Cl� (1 mM each) across the trophectoderm in a
stoichiometery indicative of active Na� transport (Borland
et al., 1976). Establishment of the trans-trophectoderm
ionic gradients appears to be energized by activity of the
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Na/K-ATPase within the basolateral membrane domains of
the TE (Betts et al., 1997; Biggers et al., 1978; Watson et
al., 1988; Wiley, 1984) as Na�-pump inhibition blocks
blastocyst formation in vitro (Biggers et al., 1978; Wiley,
1984) and following experimental collapse of blastocysts
with cytochalasins (Betts et al., 1997; DiZio and Tasca,
1977). Expression of the NHE-3 Na�/H�-exchanger has
been demonstrated in the apical membranes of mouse tro-
phectoderm cells (Barr et al., 1998). Apical Na�/glucose
and Na�/amino acid cotransporter expression has also been
identified within the apical margins of the trophectoderm
(DiZio and Tasca, 1977; Manejwala et al., 1989; Miller and
Schultz, 1985). An amiloride-sensitive Na� conductance
also occurs within the trophectoderm (Manejwala et al.,
1989; Notarianni and Hirst, 1999; Robinson et al., 1991)
where a high-amiloride affinity Na�-channel has been lo-
calized within the apical membranes (Robinson et al.,
1991). In a porcine trophectoderm cell line, Notarianni and
Hirst (1999) demonstrated that amiloride treatment resulted
in loss of the Na� and Cl� gradient across these cells,
suggesting that amiloride-sensitive Na� channels play an
important role in the apical entry of Na� in trophectoderm
cells.

Although fluid accumulation during cavitation has been
historically attributed to the process of simple diffusion, it is
evident that blastocyst formation occurs in the absence of a
steep osmotic gradient across the trophectoderm of rabbit
blastocysts, where the blastocoel fluid has been demon-
strated to be hyperosmotic to culture media by approxi-
mately 8 mOsm/kg (Biggers et al., 1988; Borland et al.,
1977). Recent evidence also suggests that, in some species,
such as the horse, cavitation occurs in the presence of
blastocoel fluid that is hypoosmotic to the surrounding en-
vironment of the embryo (Waelchli and Betteridge, 1996).
Despite the presence of shallow osmotic gradients across
the TE cell layer, fluid accumulation occurs rapidly, increas-
ing in the rabbit blastocyst from 6.8 nL/h on embryonic day
5 to 18 �L/h by day 8 (Borland et al., 1976).

Aquaporins (AQPs) are transmembrane channel proteins
within animal and plant cells, that function as molecular
water channels allowing water to flow rapidly across the
membrane in the direction of osmotic gradients, mostly in
epithelial tissues (Shiels and Griffin, 1993). To date, 11
mammalian homologues belonging to this family of water
channel proteins have been identified (reviewed by Badaut
et al., 2001). This protein family can be further subdivided
into 2 groups based on selectivity of the water pore for
water and small solutes. The “true” aquaporins (AQPs 0, 1,
2, 4, 5, 6, 8, and 10) have a pore structure that is highly
selective for water molecules, while the “aquaglyceropor-
ins” (AQPs 3, 7, and 9) have less selectivity, allowing
passage of small solutes, such as glycerol, urea, purines,
pyrimidines, carbamides, and polyols (Borgnia et al., 1999;
Ko et al., 1999; Kuriyama et al., 1997; Sansom and Law,
2001; Tsukaguchi et al., 1998; van Os et al., 2002). In
addition to differences in solute permeability, aquaporins

also differ in their global sensitivity to mercuric inhibition,
with AQPs 4 and 7 representing the mercury-insensitive
water channels (Jung et al., 1994; Ishibashi et al., 1997a).

Rapid fluid transport during cavitation in response to a
relatively small osmotic gradient suggests that a channel-
mediated process for trans-trophectodermal fluid accumu-
lation exists. In various epithelial systems, aquaporins are
involved in mediating rapid near-isosmotic fluid transport
across cell layers (Verkman et al., 1996; Verkman, 1999,
2000). Data from our lab and others have demonstrated that
murine preimplantation embryos express mRNAs for mul-
tiple AQPs throughout preimplantation development
(Edashige et al., 2000; Offenberg et al., 2000). We have
demonstrated that murine preimplantation embryos express
mRNAs for AQP1, 3, 5, 6, 7, 8, and 9 (Offenberg et al.,
2000). AQP3 mRNA expression increased at the morula–
blastocyst transition, and AQP 8 mRNA expression was
first detected at the morula stage (Offenberg et al. 2000).
Expression of aquaporin family member mRNAs by the
preimplantation embryo (Edashige et al. 2000; Offenberg et
al. 2000) predicts that AQPs could be involved in mediating
fluid transport during mammalian cavitation. Although
there may be mouse strain-specific differences in the AQP
mRNA subtypes present during preimplantation develop-
ment, expression of mRNA for AQPs 3, 7, 8, and 9 are all
observed at the morula/blastocyst stage in both ICR (Edash-
ige et al., 2000) and CD-1 � CB6F1/J (Offenberg et al.,
2000) mice. In the present study, we have examined expres-
sion of the mercury-sensitive AQPs, AQP3, 8, and 9, in
order to determine their role in mediating fluid accumula-
tion during blastocyst formation. We have characterized the
expression of AQP 3, 8, and 9 proteins during murine
preimplantation development and have established a role for
AQP-mediated fluid transport across the trophectoderm of
the murine blastocyst.

Materials and methods

Superovulation and mouse embryo collection

Female CD-1 mice (Charles River, Canada; 3–5 weeks
old) were injected with 5 IU PMSG (Intervet Canada Ltd,
Whitby ON), followed by 5 IU hCG (Intervet) 47 h later and
mated with CB6F1/J males. Successful mating was deter-
mined the following morning (day 1) by detection of a
vaginal plug. Time post-hCG was used to measure the
developmental age of the embryos. Preimplantation mouse
embryos were collected at 18 (unfertilized oocytes), 48
(2-cell), 60 (4-cell), 65–68 (8-cell and compacting 8-cell),
80–85 (morulae), and 90 h (blastocysts) post-hCG. Zygote
through compacted 8-cell-stage embryos were flushed from
the reproductive tract by using the method of Spindle (1980)
employing Flushing Medium I (1.71 mM calcium lactate,
0.25 mM sodium pyruvate, and 3 mg/ml bovine serum
albumin added to 10� Leibovitz-modified Hank’s Balanced
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Salt Solution (HBSS) and diluted to 1� with water), while
morulae and blastocysts were recovered by using Flushing
Medium II [1.8 mM CaCl2; amino acids: 0.1 mM L-argi-
nine, 0.5 mM L-cysteine, 1.03 mM L-histidine, 0.2 mM
L-isoleucine, 1.0 mM L-leucine, 2.0 mM L-lysine, 0.25 mM
L-methionine, 0.5 mM L-phenylalanine, 2.0 mM L-threo-
nine, 0.1 mM L-tryptophan, 0.1 mM L-tyrosine, 1.0 mM
L-valine, and 2.0 mM L-glutamine (Sigma, St. Louis, MO);
and 1� BME vitamins (GIBCO, Mississauga ON, Canada)
in 10� Leibovitz-modified HBSS, diluted to 1� with wa-
ter]. Embryos were washed four to five times in flushing
media and either fixed for immunofluorescence or trans-
ferred to 20-�l drops of KSOMaa (Jones et al., 1997) under
light paraffin oil and maintained in culture under 5% CO2 in
air atmosphere at 37°C, depending on their experimental
destination.

Antibodies

Immunolocalization of AQPs 3, 8, and 9 during murine
preimplantation development was determined by using
proven commercially available antisera from Alpha Diag-
nostic Int. (San Antonio, TX) consisting of: (1) rabbit poly-
clonal anti-rat AQP3, directed against a 15-amino-acid se-
quence from the C terminus of rat AQP3; (2) rabbit
polyclonal anti-rat AQP8, directed against a 16-amino-acid
synthetic peptide from the C-terminal domain of rat AQP8;
and (3) rabbit polyclonal anti-rat AQP9, raised against a
19-amino-acid synthetic peptide from the rat AQP9 C-ter-
minal domain. All three antisera were employed at a dilu-
tion of 1:100 in conjunction with a goat anti-rabbit whole
IgG secondary antibody (Jackson ImmunoResearch, West
Grove, PA). Each antiserum has been extensively charac-
terized in Western blot and immunocytochemistry studies
on mouse and rat tissues and established as specific for their
target proteins (Ishibashi et al., 1994, 1997b, 1998; Ecel-
barger et al., 1995; Echevarria et al., 1996; Koyama et al.,
1997; Ma et al., 1994).

Indirect immunofluorescence detection of AQPs 3, 8, and
9 during murine preimplantation development

Murine embryos were collected from the reproductive
tracts of superovulated female CD-1 mice as described
above. Embryo pools were washed in 1� PBS (GIBCO)
and fixed for indirect immunofluorescence in 2% parafor-
maldehyde in PBS at room temperature for 30 min. Fixed
embryos were washed once in 1� PBS and either used
immediately or stored at 4°C in Embryo Storage Buffer (1�
PBS � 0.9% sodium azide) for up to 1 week before pro-
cessing for whole-amount indirect immunofluorescence as
previously described (Barcroft et al., 1998, 2002; Betts et
al., 1998; Jones et al., 1997; MacPhee et al., 2000). Fixed
embryos were permeabilized in Blocking Buffer (0.1 M
lysine � 0.01% Triton X-100 � 1% normal Goat Serum in
1� PBS) at room temperature for 30 min followed by two

washes in fresh PBS. Embryos were incubated with primary
antisera for AQPs 3, 8, or 9 at a 1:100 dilution in Antibody
Dilution/Wash Buffer (ADB; 0.1 M lysine � 0.005% Triton
X-100 � 1 % normal Goat Serum in 1� PBS) at 4°C
overnight. Embryos were then washed 3 times for 20 min in
ADB and incubated with rhodamine-conjugated secondary
antibody (1:50 in ADB) at room temperature for 2 h, fol-
lowed by 3 washes for 20 min in ADB. Fully processed
embryos were mounted onto glass slides in 20 �l of Flu-
oroGuard Anti-fade Reagent (BioRad, Montreal PQ) under
elevated 22 � 22-mm glass coverslips (No. 1 thickness),
and slide preparations were sealed with nail polish. Slides
were stored for up to 2 days at �20°C in a light tight box
prior to immunofluorescence imaging employing a BioRad
MRC600 Confocal Laser Scanning Microscope in conjunc-
tion with the COMOS Image Capture System (BioRad). In
total, 20–30 embryos of each developmental stage were
examined for each of the 3 primary antisera.

Western blot analysis of control mouse tissues was per-
formed in order to confirm efficacy of each of the antisera to
their target proteins (data not shown). Secondary control
preparations for embryos were also generated by treating
samples with secondary antiserum alone to control for non-
specific staining contributing to the second antibody.

Analysis of aquaporin mediated water transport in murine
blastocysts

In order to determine the mechanism of water transport
across the trophectoderm, acute changes in media osmola-
lity were induced to examine the osmotic behavior of mouse
blastocysts. Acute osmolality changes were achieved by
employing a 10% glycerol solution as previously described
in bovine blastocysts by Kaidi et al. (2000). Murine blas-
tocysts collected at 90 h post-hCG were transferred individ-
ually to 1 �l KSOMaa (288 mOsm) drops under light
paraffin oil in a 5% CO2 in air incubator at 37°C. All
experimental manipulations were performed at room tem-
perature. Initial blastocyst volume was recorded by making
a measurement of diameter along two axes of the embryo
and assuming that the blastocyst represents a prolate sphere
as described previously by Manejwala et al. (1989, 1986).
Hyperosmotic conditions were induced by the addition of 1
�l of 20% glycerol in KSOMaa to individual blastocyst
culture drops (final glycerol � 10% v/v; approximately
1800 mOsm final), and osmotic response of each embryo
was recorded starting at 15 s postglycerol addition at 10-s
intervals for a period of 5:30 min on a Nikon TS100 in-
verted microscope employing the Nikon DXM1200 digital
camera in conjunction with the Act-1 Image Capture Sys-
tem (Version 2.0; Nikon). Post hoc measurements of blas-
tocyst diameter were made every 10 s, and data were ex-
pressed as % initial blastocyst volume over the treatment
interval. Involvement of aquaporins in mediating the os-
motic response of murine blastocysts to 10% glycerol so-
lutions was determined by employing the mercuric com-
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pound p-chloromercuriphenylsulfonic acid (pCMPS;
Sigma), which has been employed at concentrations of 1–2
mM in other studies to inhibit AQP-mediated water trans-
port in experimental systems (Abrami et al., 1996; Cooper
and Boron, 1998; Echevarria et al., 1996; Virkki et al.,
2001). For murine blastocysts, concentration dependence
for pCMPS inhibition of water transport was determined by
pretreating embryos for 5 min at 37°C with 10, 100, or 500
�M pCMPS prior to determining initial blastocyst volume
and addition of glycerol. Osmotic response was measured as
for embryos treated without pCMPS and plotted as % initial
blastocyst volume over the 5-min interval of 10% glycerol
exposure. Data from the first minute of blastocysts reexpan-
sion for each treatment were converted to pL/s fluid trans-
port and plotted as cumulative rate of reexpansion in rela-
tion to experimental treatment.

The involvement of glycerol diffusion into the blastocoel
cavity in the osmotic response to murine blastocysts was
demonstrated by treating embryos with either 10% glycerol
(approximately 1800 mOsm) or 1.4 M sucrose (approxi-
mately 1800 mOsm) solutions. Osmotic response of em-
bryos under hyperosmotic conditions generated by these
two solutions was determined as described above by mea-
suring embryo response to hyperosmolality as % of initial
blastocyst volume over the 5-min experimental interval.

Statistical analysis

Rate of reexpansion (pL/s) of blastocysts treated with
10% glycerol, for control vs 10–500 �M pCMPS, was
determined, and inhibition of the rate of fluid accumulation
over the first 60 s of blastocyst reexpansion in the 10%
glycerol/pCMPS concentration-dependence assay was de-
termined by analyzing the rates of fluid accumulation (pL/s)
over the first minute of blastocyst reexpansion by one-way
ANOVA with Bonferroni’s Test (P � 0.05). Differences in
mean blastocyst shrinkage (minimum % of initial blastocyst
volume for blastocysts in each group) for pCMPS vs control
treatments were assessed by one-way ANOVA with Bon-
ferroni’s T-test for differences (P � 0.05).

Results

Expression of AQP3, 8, and 9 polypeptides during murine
preimplantation development

In total, 30–40 embryos from each developmental stage
were examined from 3 replicate embryo collections for
immunolocalization employing each of the antisera. The
described immunolocalization patterns were consistently
observed in all embryos examined for each antiserum.

AQP3 immunolocalization was not observed in mem-
brane regions in one-cell, two-cell, and eight-cell embryos
(Fig. 1a–c), although levels of fluorescence above those
observed for control embryos (Fig. 1f) suggest that AQP3 is

present within the cytoplasm of early cleavage-stage em-
bryos. Cytoplasmic localization of AQP3-associated immu-
nofluorescence was particularly evident in the blastomeres
of the eight-cell-stage embryo (Fig. 1c), where distinct foci
of fluorescence were seen throughout the cytoplasm of all
embryonic cells. At the morula stage, AQP3 was localized
in an apolar fashion within the membrane domains of all
blastomeres of the compacted morula (Fig. 1d). At the
blastocyst stage, an apolar distribution of membrane-asso-
ciated AQP3 was maintained within the inner cell mass,
while trophectoderm expression became restricted to the
basolateral cell margins (Fig. 1e).

Expression of AQP8 protein was first detected by immu-
nofluorescence at the eight-cell stage of mouse development
(Fig. 2a–c) as distinct foci within the cytoplasm of embry-
onic blastomeres. Within the compacted morula, AQP8 im-
munostaining was evident within the cell margins of the
outer blastomeres at cell–cell contacts (Fig. 2d) and was
associated with the basolateral cell margins of the trophec-
toderm with no detectable expression in the inner cell mass
(Fig. 2e).

Murine one-cell embryos immunostained with the AQP9
antisera demonstrated a low level of membrane-associated
immunofluorescence (Fig. 3a) that was not evident by the
two-cell stage (Fig. 3b). Membrane-associated AQP9 im-
munofluorescence was again observed at the eight-cell stage
at cell–cell contacts (Fig. 3c) and also in the outer blas-
tomeres of the compacted morula (Fig. 3d) with some evi-
dence of perinuclear staining within the cytoplasm of indi-
vidual blastomeres. At the blastocyst stage, AQP9
immunofluorescence was observed within the cytoplasm of
inner cell mass cells and was associated with the apical
membrane domains of mural and polar trophectoderm
(Fig. 3e).

Mercury-sensitive water transport in murine blastocysts

Exposure of murine blastocysts to a 10% glycerol gra-
dient (media osmolality shift from 290 to �1800 mOsm)
resulted in a rapid decrease in blastocyst volume followed
by sustained reexpansion over the 5.5-min data collection
interval (Fig. 4A). At the end of this time interval, blasto-
cysts had recovered to 85.9 � 0.81% of initial blastocyst
volume. Aquaporin-mediated water transport during this
recovery interval was demonstrated by a concentration-
dependent inhibition of blastocyst reexpansion following
exposure to a 10% glycerol gradient in the presence of
increasing concentrations of the mercuric compound pC-
MPS (Fig. 4A). Over the 5.5-min data collection interval,
embryos treated with 10, 100, and 500 �M pCMPS recov-
ered from initial hyperosmolarity-induced blastocyst col-
lapse to 81.44 � 1.16%, 49.47 � 0.96%, and 50.08 � 1.0%
of initial blastocyst volume, respectively (Fig. 4A). Deter-
mination of the rate of blastocyst reexpansion for each
treatment over the first 60 s in which the blastocyst under-
went volume recovery demonstrated that control blastocysts
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transported water at a rate of 3.15 � 0.55 pL/s (Fig. 4B).
Treatment with 10 �M pCMPS resulted in no significant
decrease in the rate of blastocyst reexpansion compared with
control (10 �M � 2.95 � 0.25 pL/s; P � 0.05). Exposure of
murine blastocysts to 100 and 500 �M pCMPS, however,
resulted in a significant (P � 0.05) decrease in the rate of
reexpansion compared with controls, with rates of expansion
of 1.48 � 0.23 and 0.9 � 0.2 pL/s, respectively (Fig. 4B).

Immunofluorescence localization of AQPs 3 and 9
within murine blastocysts suggests that part of the mecha-
nism of blastocyst volume recovery following exposure to a
10% glycerol gradient involves the movement of glycerol
through the “aquaglyceroporins.” In order to determine
whether the nature of the solute used to generate the osmotic
gradient impacts on blastocyst reexpansion behavior, we
exposed murine blastocysts to either a 10% glycerol solu-

Fig 1. Immunofluorescence localization of AQP3 in murine preimplantation embryos. (a) One-cell; (b) two-cell; (c) eight-cell; (d) morula; (e) blastocyst, and
(f) secondary control. AQP3 protein expression is first detected as cytoplasmic foci, followed by association with the cell margins of all blastomeres of the
compacted morula (d). Within the blastocyst, AQP3 remains apolar within the inner cell mass (ICM) while becoming confined to the basolateral cell margins
of trophectoderm cells (e). Scale bars represent 50 �M.
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tion or an equiosmolar sucrose solution (1.4 M sucrose;
�1800 mOsm). Exposure to the 10% glycerol solution
resulted in blastocyst shrinkage and reexpansion (Fig. 5) as
observed in the pCMPS concentration-dependence assay.
Exposure to an equiosmolar sucrose solution, however, re-
sulted in continued blastocyst volume decrease over the
5.5-min recording interval (Fig. 5). Following 45 min of
exposure to the 1800-mOsm sucrose solution, blastocyst
volume showed no signs of recovery, whereas blastocysts
treated with or without 500 �M pCMPS and exposed to the

1800-mOsm glycerol solution all recovered to approxi-
mately their initial volume in 45 min (Fig. 6).

Discussion

We have demonstrated for the first time that aquaporin
proteins are expressed within the mammalian blastocyst and
are involved in the trans-trophectoderm water movements
occurring during the process of cavitation. The presence of

Fig. 2. Expression of AQP8 polypeptides during murine preimplantation development. Immunolocalization of AQP8 was not evident in one-cell (a) and
two-cell (b) embryos. Expression of AQP8 was first evident as cytoplasmic foci in the eight-cell embryo (c), becoming localized within the cell margins of
the layer of outer cells in the compacted morula (d; tangential section through outer cells of morula). At the blastocyst stage, AQP8 associated
immunofluorescence was primarily localized within the basolateral cell margins of the trophectoderm (e). Secondary control (f). Scale bars represent 50 �M.
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both apical and basolateral AQPs within the murine tro-
phectoderm establishes a mechanism whereby channel-me-
diated trans-cellular water movements can occur during
fluid accumulation within the nascent blastocoel cavity.
Increasing evidence suggests that localization of distinct
AQP family members within opposing membrane domains
of transporting epithelia of the renal collecting duct (re-
viewed by Knepper et al., 1996; Verkman, 1999), secretory
glands (Gresz et al., 2001; Moore et al., 2000; Wellner et al.,
2000), and airway epithelium (Song and Verkman, 2001)

mediate trans-cellular water movements in these tissues.
The patterns of immunolocalization observed within the
trophectoderm epithelium for AQPs 3, 8, and 9 are consis-
tent with membrane localization patterns in other epithelial
tissues. AQP3 has been localized to the basolateral mem-
branes of principle cells of the renal collecting duct (Ecel-
barger et al., 1995; Ishibashi et al., 1997b), urinary tract
(Spector et al., 2002), and salivary glands (Gresz et al.,
2001; Moore et al., 2000). Localization of AQP3 within the
trophectoderm provides a major entry/exit point for water

Fig. 3. Immunolocalization of AQP9 polypeptides in the murine preimplantation embryo. Membrane-associated expression in one-cell zygotes (a; arrow)
disappeared by the two-cell stage (b) and was again detectable at the cell surface of blastomeres in eight-cell-stage embryos (c). At the compacted morula
stage, AQP9 immunofluorescence was detected at cell contacts between the outer most blastomeres (d; tangential section through presumptive TE cells).
Blastocyst-stage embryos (e) demonstrated a high level of cytoplasmic immunofluorescence in ICM and trophectoderm cells in conjunction with localization
to the apical cell margins of trophectoderm cells. (f) secondary antibody control. Scale bars, 50 �M.
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Fig. 4. Concentration-dependent inhibition of water transport by pCMPS following exposure of murine blastocysts to a 10% glycerol (�1800 mOsm)
gradient. (A) Effect of pCMPS concentration on the response of murine blastocysts to 10% glycerol. Data are presented as percent of initial blastocyst volume
following exposure to 10% glycerol following treatment with or without 50, 100, or 500 �M pCMPS (mean % � S.E.; n � 9 blastocysts per treatment).
(B) Rate of blastocyst expansion (pl/s) over the first 60 s of reexpansion following exposure of murine blastocysts to 10% glycerol (reexpansion data were
measured starting at 55 s postosmolarity shift for control, 10 and 500 �M pCMPS and at 85 s for the 100-�M pCMPS treatment). Reexpansion rate was
significantly decreased by pretreatment of blastocysts with 100 and 500 �M pCMPS (P � 0.05; n � 9 embryos per treatment). Bars with different letters
represent significant differences in rate of fluid accumulation (P � 0.05).
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across the basolateral membranes during blastocyst forma-
tion. In contrast, AQP3 has been localized to the apical
membrane domains of human syncytiotrophoblast (Dami-
ano et al., 2001) and ovine cytotrophoblast (Johnston et al.,
2000) cells, suggesting that this early localization pattern
may undergo a marked shift during later trophoblast differ-
entiation. Localization of the aquaglyceroporins AQP3 and
9 within the apical membranes of the human syncytiotro-
phoblast are suggested to facilitate transport of water and
solutes from the mother to fetus due to their broad perme-
ability to neutral solutes in addition to water (Damiano et
al., 2001). Similar to the observation of apical AQP9 ex-
pression within the syncytiotrophoblast (Damiano et al.,
2001), murine blastocysts express AQP9 within the apical
membrane domains of the trophectoderm. This localization
pattern would provide a mechanism for channel-mediated
water movement across the apical domains of the trophec-
toderm epithelium, and may also allow movement of other
solutes such as glycerol, urea, purines, and pyrimidines
across the apical membrane. Cytoplasmic localization of all
three of the AQP proteins examined prior to the eight-cell/
morula stage suggests that a mechanism for near-isosmotic
fluid transfer may not be required by the preimplantation
embryo prior to the onset of cavitation.

AQP8 immunolocalization within the basolateral mem-
brane domains of the trophectoderm provides and additional
route for water passage across this membrane. This pattern
of AQP8 localization has been observed in MDCK cells
(Wellner and Baum, 2001) and submandibular gland acinar
cells (Wellner et al., 2000). At the mouse eight-cell stage,
AQP8 immunofluorescence was observed as distinct cyto-

plasmic foci that underwent a shift to a membrane localized
pattern by the compacted morula stage within the mouse
embryo. Cytoplasmic immunolocalization of AQP8 has
been documented in a variety of tissues (Calamita et al.,
2001; Elkjaer et al., 2001; Garcia et al., 2001; Hurley et al.,
2001), and in hepatocytes, this protein undergoes a shift in
distribution from intracellular vesicles to the plasma mem-
brane in response to cAMP stimulation (Garcia et al., 2001).
It is possible that a similar mechanism is involved in the
subcellular shift observed during murine preimplantation
development, as adenylate cyclase levels undergo a marked
increase at the morula/blastocyst stage (Manejwala et al.,
1986) and intracellular cAMP levels are increased in blas-
tocysts (Dardik and Schultz, 1992). Expression of multiple
AQP family members within the trophectoderm may ex-
plain the observation that ablation of individual AQPs by
gene targeting do not result in preimplantation developmen-
tal lethality (reviewed by van Os et al., 2000; Verkman,
2000), although a significant reduction in null offspring is
observed at day 5 postpartum in the AQP1 knockout (Ma et
al., 1998; Verkman, 1999), suggesting impaired in utero
survival. We have demonstrated the expression of seven
AQP mRNA subtypes within the preimplantation embryo,
suggesting that the three AQPs examined in the present
study may not be the only members of this family present at
the time of blastocyst formation.

Immunolocalization of AQP polypeptides in apical and
basolateral membrane domains of the mammalian trophec-
toderm suggested that trans-trophectodermal water move-
ments occur via a channel-mediated process. This idea has
been confirmed by the observation that murine blastocysts
exposed to a 10% glycerol gradient undergo volume recov-
ery via a mercury-sensitive mechanism. All three of the
AQP family members localized within the trophectoderm in
the present study are inhibited by exposure to mercuric
compounds, and we have demonstrated mercuric-inhibition
of trans-trophectodermal water movements at concentra-
tions of pCMPS 10- to 20-fold lower than those routinely
employed in previous studies involving Xenopus oocyte
expression systems (Abrami et al., 1996; Cooper and Boron,
1998; Echevarria et al., 1996; Virkki et al., 2001). We also
observed that a 20-min exposure to 100 and 500 �M pC-
MPS did not prevent subsequent blastocyst hatching follow-
ing transfer to fresh embryo culture drops free of pCMPS,
suggesting that the concentrations utilized in the present
study were not detrimental to further embryo development
and thus did not compromise embryo viability (data not
shown).

The observed response of murine blastocysts to a 10%
glycerol gradient is consistent with that observed previously
in the bovine blastocyst by Kaidi et al. (2000). Bovine
blastocysts transferred to a 10% glycerol solution under-
went rapid decrease in blastocyst volume and reexpanded to
approximately 80% of initial volume over the 5-min data
collection interval (Kaidi et al., 2000). This study suggested
that embryo response to 10% glycerol was predictive of

Fig. 5. Effect of solute composition in the response of murine blastocysts
to acute exposure to hyperosmolarity (1800 mOsm). Embryos exposed to
a 10% glycerol solution underwent blastocyst shrinkage and reexpansion to
approximately 80% of initial blastocyst volume over a 5-min recording
interval. Substitution of glycerol with sucrose in the 1800-mOsm solution
resulted in continued blastocoel shrinkage over a 5-min interval following
induction of hyperosmotic conditions. Data presented as mean % of initial
blastocyst volume (� S.E.) for each time point (n � 9 blastocysts per data
point for each treatment).
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postcryopreservation survival. Coupled with our data dem-
onstrating that this response is mediated by aquaporins in
the murine embryo, these studies suggest that AQP expres-
sion by mammalian blastocysts may have important impli-
cations for success of cryopreservation and post-freezing
embryo transfer success in assisted reproductive technolo-
gies. Kaidi et al. (2000) suggested that the rapid decrease in
blastocyst volume was due to two factors. First, the 10%
glycerol solution represents a hyperosmotic shift from
�290 to 1800 mOsm, and second, that the higher perme-
ability of plasma membranes to water than to glycerol
(2000–3000 times more permeable to water than most per-
meating cryoprotectants; Jakowski et al., 1980; Saha and
Suzuki, 1997) results in rapid efflux of water from the
blastocoel cavity. Efflux of water from the blastocoel, how-

ever, was halted when a balance between glycerol influx and
water efflux was reached (Kaidi et al., 2000). We have
demonstrated in the present study that the sequential events
of blastocyst shrinkage and reexpansion characteristic of
exposure to 10% glycerol solutions is likely mediated by
glycerol movement through apical AQP9 and basolateral
AQP3 within the murine trophectoderm. The greater degree
shrinkage observed in blastocysts treated with 100 and 500
�M pCMPS is likely due to inhibition of glycerol move-
ment through these water channels, such that it takes longer
to reach a balance between water efflux and glycerol influx.
Water efflux, however, is not affected due to the scale of the
hyperosmotic gradient across the trophectoderm (approxi-
mately a 6-fold increase), providing a sufficient driving
force for rapid diffusive water loss across this cell layer. We

Fig. 6. Phase contrast images of murine blastocysts exposed to 10% glycerol, 500 �M pCMPS � 10% glycerol, or sucrose (1.4 M). At 1 min post-exposure
to hyperosmotic conditions, all blastocysts demonstrate marked decreases in volume. By 5 min, glycerol-treated embryos have recovered to approximately
initial blastocyst volume, although reexpansion is retarded in embryos treated with 500 uM pCMPS. Embryos exposed to sucrose demonstrate further volume
decrease at the 5-min time point. Following 45 min of exposure to hyperosmotic conditions, embryos from treatments consisting of 10% glycerol and 10%
glycerol � 500 �M pCMPS have recovered to approximately initial volume. Sucrose exposure completely prevented the reexpansion observed following
exposure to glycerol. Scale bar, 25 �m.
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have further demonstrated that this response is dependent on
glycerol movement into the blastocoel cavity, as substitu-
tion of sucrose for glycerol in induction of acute hyperos-
molarity resulted in continued blastocyst volume decrease
with no evidence of reexpansion following 5 or 45 min of
exposure to the sucrose solution.

Involvement of the AQP family of proteins in mediating
fluid movements across the trophectoderm layer may ex-
plain the ability of the preimplantation embryo to exhibit
rapid near-isosmotic water transport as previously described
(Borland et al., 1977; Biggers et al., 1988; Waelchli and
Betteridge, 1996). Diffusion of water across the cell mem-
brane requires a relatively large osmotic gradient, as the
activation energy (Ea � 10 kcal/mol) of trans-cellular water
transport is much higher than that observed in the presence
of AQP water channels (Verkman et al., 1996). In general,
an osmotic permeability (Pf) higher than 10 �m/s and an
Arrhenius activation energy (Ea) lower than 6 kcal/mol is
suggestive of water transport through AQPs (Verkman et al.
1996). A role for AQPs in oocytes is debatable as Pf values
have been measured as 9.86 � 0.67 �m/s (0.44 �m/min/
atm; Leibo, 1980) in mouse and 10.53 � 4.7 �m/s (0.47
�m/min/atm; Ruffing et al., 1993) in cow oocytes at 20°C
with Ea values between 14.5 (Leibo, 1980) and 7.84 kcal/
mol (Ruffing et al., 1996), respectively. Biggers et al. (1988)
reported hydraulic conductivity values (Lp) for rabbit tro-
phectoderm that were 1188 �m/min/atm on day 5 and 1033
�m/min/atm on day 6 of embryonic development. These
values are considerably higher than those calculated for
oocytes (Leibo, 1980; Ruffing et al., 1993) and may reflect
the change in membrane-associated AQP expression ob-
served by immunofluorescence in the present study. Further
evidence for the role of membrane association of AQPs
(particularly AQPs 3 and 9) in the process of cavitation is
provided by the observation that glycerol permeability oc-
curs at very low rates in oocytes (Jackowski et al., 1980;
Pedro et al., 1996) but increases dramatically at the morula/
blastocyst stage (Kasai, 1996; Pedro et al., 1996). These
findings are consistent with our observation that membrane
association of the AQPs examined in the current study is not
observed until the late 8-cell to compacted morula stages of
murine development in addition to the ability of murine
blastocysts to respond rapidly to the introduction of a glyc-
erol gradient.

In summary, we have demonstrated that mammalian
blastocysts possess aquaporin water channel-mediated
mechanisms for fluid transport across the trophectoderm
epithelium. Expression of AQP polypeptides in both api-
cal and basolateral membrane domains provides a route
for trans-trophectoderm water fluxes during blastocyst
formation. These findings greatly advance our under-
standing of the cellular and physiological mechanisms
that underlie fluid accumulation in the mammalian blas-
tocyst.
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