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Abstract 

Concentrations of cadmium in the grain of durum wheat (Triticum turgidum L. var durum) are 

often above the internationally acceptable limit of 0.2 mg kg-1.  Cultivars that vary in 

concentrations of cadmium in the grain have been identified but the physiology behind 

differential accumulation has not been determined.  Three pairs of near-isogenic lines (isolines) 

of durum wheat  that vary in aboveground cadmium accumulation (8982-TL ‘high’ and ‘low’, 

W9260-BC ‘high’ and ‘low’, and W9261-BG ‘high’ and ‘low’) were used to test the hypothesis 

that the greater amounts of cadmium in shoots of the ‘high’ isolines are correlated with greater 

volumes of water transpired.  In general, cadmium content was positively correlated with 

transpiration only in the ‘low’ isolines.  Although shoots of the ‘high’ isolines of W9260-BC and 

W9261-BG contained higher concentrations of cadmium than did their corresponding ‘low’ 

isolines, they did not transpire larger volumes of water.  In addition, isolines of 8982-TL 

transpired less water than did the other pairs of isolines yet both ‘high’ and ‘low’ isolines of 

8982-TL contained higher amounts of cadmium than did the other pairs.  The difference between 

‘high’ and ‘low’ isolines appears to be related to the relative contribution of transpiration to 

cadmium translocation to the shoot.  Increased transpiration was associated with increased 

cadmium content in the ‘low’ isolines but in the ‘high’ isolines increased cadmium in the shoot 

occurred independently of the volume of water transpired. 

 

 

Keywords: cadmium, durum wheat, near-isogenic lines, transpiration, Triticum turgidum 
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Introduction 

Cadmium is a nonessential element that has the ability to form strong complexes with 

biomolecules (Bolton and Evans 1996), making it potentially harmful in small quantities.  The 

effects of cadmium on plants include reduced growth, inhibition of photosynthesis (Weigel 

1985) and changes in stomatal action that affect water relations (Barcelo et al. 1988).  Because 

cadmium can cause a number of adverse effects in humans (reviewed in Bernard and Lauwreys 

1984), the Codex Alimentarius Commission (CAC), which was established jointly by the Food 

and Agriculture Organization and World Health Organization, has set international food 

standards to help ensure food safety.  The limit for cadmium in wheat (Triticum spp) is currently 

0.2 mg kg-1 (CAC 2010).  As an added measure, some countries have established guidelines 

above which soils should not be used for food crops. For example, in Canada, soils that have a 

concentration of cadmium above 1.4 mg kg-1 dry weight are considered to be unsafe for 

agriculture (CCME 1999).  In the United Kingdom, the upper limit for cadmium in allotment soil 

(i.e. soil used for municipal and home gardens) is 1.8 mg kg-1 dry weight (EA 2009). 

 

Concerns have been raised due to increasing concentrations of cadmium in agricultural soils (cf. 

Williams and David 1976) and the propensity of certain crops, including durum wheat (Triticum 

turgidum L. var durum), to accumulate cadmium (reviewed in Grant et al. 2008).  Durum wheat 

grains grown in Canada (Garrett et al. 1998) and the USA (Zook et al. 1970) sometimes exceed 

the international cadmium standard of 0.2 mg kg-1;  however, the concentrations of cadmium in 

the grain can vary up to six-fold, depending on cultivar, location and year (Clarke et al. 2002).  

Contamination levels in crops could be reduced by means of chemical remediation (Makino et al. 

2008) or phytoremediation of the soil (Ishikawa et al. 2006; Murakami et al. 2007) as well as 
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adjusting agronomic practices to avoid soil and field sites in which cadmium mobility is high 

(Cieslinski et al. 1996; Wu et al. 2002).  Another approach to reducing cadmium in the crop, 

which has been applied to durum wheat, is through the selection of cultivars or lines that 

accumulate less cadmium. For example, Clarke et al. (1997a) derived five pairs of near-isogenic 

lines (isolines) of durum wheat (Table 1) by crossing different combinations of parental lines that 

are relatively ‘low’ or ‘high’ cadmium accumulators. The isolines were selected in agricultural 

soils that contained < 1.4 mg Cd kg-1.  

 

Explaining differential cadmium translocation in durum wheat 

Accumulation of cadmium in the grain is controlled by a single gene, dominant for low 

cadmium-accumulation (Clarke et al. 1997b).  Recently, Knox et al. (2009) mapped the locus of 

the gene for cadmium-accumulation (Cdu1) on chromosome 5B. The corresponding physiology 

behind differential cadmium translocation in durum wheat has not yet been elucidated. 

 

A number of characteristics related to metal uptake and translocation have been studied using 

cultivars of durum wheat that vary in the amounts of cadmium in their shoots and grain.  The two 

most commonly studied have been Kyle (a ‘high’ accumulator) and Arcola (a ‘low’ 

accumulator).  The amount of cadmium in the shoot and grain in the cultivar Kyle can be as 

much as twice that of Arcola (Chan and Hale 2004).  Cieslinski et al. (1998) reported that root 

exudates of Kyle contained higher concentrations of low molecular weight organic acids than did 

exudates of Arcola. They hypothesized that this might result in increased solubility of metals in 

the rhizosphere of Kyle, leading to increased uptake of cadmium from the soil.  Berkelaar and 

Hale (2000) found a positive relationship between accumulation of cadmium by roots and 
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number of root tips; Kyle had a smaller root surface area, fewer root tips and 35% less cadmium 

in the roots than did Arcola.  This result seems counterintuitive, since one might expect the 

‘high’ accumulator to take up more cadmium.  However, others have also reported that ‘high’ 

accumulators do not necessarily take up more cadmium per plant; thus, while ‘high’ 

accumulators have higher concentrations of cadmium in the leaves and grain, they often have 

lower concentrations of cadmium in the roots (Chan and Hale 2004; Greger and Lofstedt 2004; 

Hart et al. 2006; Van der Vliet et al. 2007).  

 

Once cadmium is taken up by a plant, the transpiration stream can carry it in the xylem from the 

roots into the aboveground tissues.  Concentrations of cadmium in grains of barley (Hordeum 

vulgare L.) were 40 – 50% lower in plants grown at 90% relative humidity than for plants grown 

at 60% or 30% relative humidity, presumably due to lower transpiration rates at the higher 

relative humidity (Chen et al. 2007).  Van der Vliet et al. (2007) examined a number of responses 

to cadmium in the ‘high’ accumulating cultivar Kyle and the ‘low’ accumulating cultivar Arcola; 

exposure to cadmium induced an increase in the transpiration rate for Kyle, but not Arcola.  This 

suggests that factors related to transpiration differ between ‘high’ and ‘low’ cadmium-

accumulators.   

 

While studies of cultivar pairs, such as Kyle and Arcola, provide important information about 

cadmium/plant interactions, the large number of genetic and physiological differences between 

cultivars makes it difficult to pinpoint the mechanism(s) behind ‘high’ and ‘low’ accumulators.  

For this reason, Clarke et al.’s (1997a) isolines of durum wheat provide an excellent 

experimental model system for investigating the physiology underlying differential accumulation 
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of cadmium.  The main difference between Clarke et al.’s (1997a) ‘high’ and ‘low’ isolines is in 

the distribution of cadmium within the plant – relatively more cadmium is translocated from root 

to shoot and grain in the ‘high’ isolines.  It follows that the physiological differences between the 

‘high’ and ‘low’ isolines are related to the differential distribution of cadmium.  

 

In an attempt to determine if the ‘high’ and ‘low’ isolines of durum wheat differ with respect to 

metal-binding molecules, both phytochelatins (Hart et al. 2006) and organic acids (Adeniji et al. 

2010) have been studied. In each case, no clear relationship between translocation of cadmium in 

the shoot and concentration of metal-binding molecules was found.  Given the expectation that 

increased transpiration could result in increased accumulation of cadmium in the plant in general, 

and in the aboveground tissues in particular, this experiment was designed to test the following 

hypotheses: (1) the accumulation of cadmium in the aboveground tissues is positively correlated 

with the volume of water transpired and (2) the ‘high’ isolines of durum wheat have higher 

transpiration rates than do the ‘low’ isolines. 

    

Materials and Methods 

Choice of experimental lines 

Three pairs of Clarke et al.’s (1997a) isolines of durum wheat (Triticum turgidum L. var durum; 

8982-TL ‘high’ and ‘low’, W9260-BC ‘high’ and ‘low’, and W9261-BG ‘high’ and ‘low’) were 

chosen for study. This choice was based on Bahrami (2006), who demonstrated that differential 

accumulation of cadmium in the ‘high’ and ‘low’ members of these pairs could be obtained in 

hydroponic culture. The other two pairs of isolines were not included because neither Bahrami 

(2006) nor Macfie (unpublished data) were able to reproduce differential cadmium accumulation 
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in the ‘high’ and ‘low’ isolines of these pairs when grown hydroponically, despite repeated 

attempts.  Seeds were obtained from Dr. John Clarke (Agriculture and Agri-Food Canada, Swift 

Current, SK).  

 
Germination and Growth Conditions 

Modifications of Archambault et al.’s (2001) method were used to grow the durum wheat. The 

seeds were surface-sterilized for 20 min in 1% sodium hypochlorite (Javex), rinsed three times 

with distilled water, and placed in an aerated solution containing 0.005 g L-1 Vitavax (a systemic 

fungicide; Uniroyal Chemical Ltd., Calgary, Canada) for 24 h. The flasks were covered with foil 

to prevent light from reaching the seeds and Parafilm was placed over the top of the flasks to 

prevent evaporation of the solution.  After the seeds germinated (~ 24 h) they were sown at 3 – 5 

mm depth in a pot filled with coarse sand (1 – 2 mm grain size).  Pots were watered with nutrient 

solution containing 1.0 mM Ca(NO3)2, 1.0 mM K2HPO4, 0.4 mM KNO3, 0.3 mM NH4NO3, 0.1 

mM K2SO4, 0.01 mM FeCl3, 0.01 mM Na2EDTA, 6.0 µM H3BO3, 2.0 µM MnCl2, 0.5 µM 

ZnSO4, 0.15 µM CuSO4, and 0.1 µM Na2MoO4, adjusted to pH 6. Pots were placed in a 

controlled environment room set to 20°C with a 16 h light period and an 8 h dark period; the 

fluorescent light intensity was 187 ± 1.5 µmol m-2 s-1.   

 

After one week, seedlings of uniform size were selected for hydroponic culture experiments. 

Groups of five seedlings were suspended in folded upholsterer’s foam (approximately 0.5 x 1.0 x 

8 cm) and placed in a slot cut into the black lid of a 1.4 L glass jar. Each treatment had six 

replicates. The jars were covered in black cloth to prevent algal growth and were filled with 1.4 

L nutrient solution containing 0 or 0.1 μM CdCl2 adjusted to pH 6. Cadmium concentrations 

greater than 0.1 μM have been demonstrated to cause stress in durum wheat (Archambault et al. 
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2001) and when investigating differential cadmium accumulation patterns it is important that the 

plants do not experience cadmium stress. Each jar was hooked up to an aeration system.  

 
Experimental measurements 

Each day, the length of the longest shoot in each jar was taken as a measure of growth and the 

mass of each jar was recorded to measure water loss. Evaporation from a set of three jars filled 

with distilled water was negligible over the experimental period (0.020 + 0.001 ml per week).  

Therefore, mass lost by each jar was deemed to be equal to the mass of water lost through 

transpiration. The nutrient solution (including the corresponding cadmium treatment) was fully 

replaced in each jar every second day to ensure adequate nutrition for the growing plants.  

 

Twelve days after the cadmium was added, the plants were harvested; the five seedlings per jar 

were pooled to represent one replicate sample. For each sample, the shoots were separated from 

the roots using a razor blade, and root and shoot fresh weight as well as total leaf area were 

measured. Cadmium concentrations in the shoots of seedlings are a good predictor of the 

cadmium concentrations of the grain (Archambault et al. 2001), and were used to evaluate the 

relative ‘high’ versus ‘low’ classification of the isolines. The roots were rinsed in distilled water 

for 30 s then placed in 1 mM CaCl2 for 30 min followed by another 30 s rinse in distilled water 

(Taylor et al. 1998). This procedure removes cadmium adsorbed to the root surface by means of 

a cation exchange reaction between Cd2+ and Ca2+. All tissues were oven-dried (60ºC) to 

constant weight (5 – 6 days) then dry weight was recorded. Dry portions were processed for 

cadmium content. 
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 Cadmium content 

Three samples of seeds (approx. 20 – 25 seeds each) of each isoline were homogenized in a 

mechanical grinder and processed to determine their initial concentrations of cadmium.  Ground 

seeds were oven-dried (60oC) to constant weight, then 1 g of each sample was placed into 

individual 15 mL test tubes; 2.0 mL of nitric acid (OmniTrace®) was added to each test tube to 

digest the seeds. Dried plant tissues were finely chopped using a razor blade and approximately 

0.1 g of each sample (shoots or roots) were weighed into individual 15 mL test tubes; 1.0 mL of 

nitric acid (OmniTrace®) was added to each test tube to digest the tissues. Reagent blanks and 

tomato leaves (NIST Standard Reference Material 1573a, National Institute of Standards and 

Technology, Gaithersburg, USA) were processed similarly to aid in determining possible 

contamination and percentage recovery of cadmium in the tissue samples, respectively. Each test 

tube was caped with a clean marble to ensure the sample remained in the test tube and allowed 

for pressure release. The test tubes were placed in a rack and left overnight at room temperature 

under a fume hood. The rack of test tubes was then placed in a tray filled with a 3 – 4 cm depth 

of fine sand (0.2 – 0.5 grain size) and heated to 95 – 100ºC on a hot plate until tissues were 

completely digested. Samples were considered to be completely digested when the vapours 

became colourless.  When samples returned to room temperature, they were filtered (qualitative 

paper #413, VWR International, Mississauga, Canada) into sterile disposal centrifuge tubes. 

Deionized water was used to rinse the test tubes and bring the volume up to 25 mL.  

 

Samples were analyzed for cadmium content using an inductivity-coupled plasma optical 

emission spectrometer (ICP-OES) using the following conditions: Perkin-Elmer Optima 3300 

dual view ICP-OES, with a RF generator power of 1300 Watts; gas flow rate: 15 L min-1: 
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auxiliary flow rate: 0.5 L min-1; nebulizer flow rate: 0.8 L min-1; pump (for sample) flow rate:1.0 

L min-1; analyte line: Cd, 226.507 nm; with a detection limit of 0.0010 mg L-1 for cadmium.  

Duplicate samples and calibration standards were run every 10 – 15th sample to verify instrument 

accuracy. 

 

Statistical analysis 

Statistical analysis was performed using SigmaPlot version 11. If data did not meet the 

requirements of normality or homogeneity of variance, the data were transformed prior to 

analysis.  Two-way analysis of variance (ANOVA) was performed to compare the initial 

concentrations of cadmium in the seeds, as well as to determine the effects due to isoline and 

cadmium treatment on each of plant biomass, cadmium content and total volume of water 

transpired.  The Tukey’s test was used to determine the significant differences among means (p < 

0.05).  Two-way repeated measures ANOVA were performed to determine the effects of time 

and cadmium treatment, and the effects of time and isoline, on the maximum shoot length as well 

as the cumulative daily transpiration by plants. Once again the Tukey’s test was used to 

determine the significant differences among means.  

 

Results  

Effect of cadmium on plant growth 

Cadmium affected neither shoot nor root dry weight in the isolines 8982-TL (p > 0.43) and 

W9260-BC (p > 0.49); the root dry weight of the two isolines of W9621-BG were similarly 

unaffected by cadmium (p = 0.06; Figure 1).  However, the dry weights of the shoots of both 

‘high’ and ‘low’ isolines of W9621-BG were reduced by approximately 20% when exposed to 
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cadmium (Figure 1).   All plants grew over the course of the experiment and appeared healthy.  

While cadmium did not affect shoot length (p > 0.29), the ‘high’ isolines were 1 – 1.5 cm 

(approx. 3%) shorter than the corresponding ‘low’ isolines at the end of the experimental period 

(data not shown).  

 
Cadmium content  

The initial concentrations of cadmium in seeds confirmed the expected pattern: concentrations of 

cadmium in seeds of the ‘high’ isolines were 1.6 – 2.4 times higher than those of the 

corresponding ‘low’ isolines’ (Table 2).  Concentrations of cadmium in shoots and roots of the 

isolines are shown in Figure 2.  Trace amounts of cadmium were measured in tissues of plants 

grown in control solution. Within the cadmium-treated plants, the concentrations of cadmium 

were 5 – 6 times higher in roots than in shoots.  When the isolines of 8982-TL were grown with 

0.1 µM cadmium, there were no differences in concentrations of cadmium in the shoots (p = 

0.90) or roots (p = 0.57) of the ‘high’ isoline compared to those of the ‘low’ isoline. Within the 

shoots of the isoline pairs of W9260-BC and W9261-BG, the ‘high’ isolines had 15 – 20% 

higher cadmium concentrations compared to the ‘low’ isolines. The roots of the ‘low’ isoline of 

W9260-BC had a 25% higher concentration of cadmium compared to the ‘high’ isoline; the 

concentrations of cadmium in roots of the ‘high’ and ‘low’ isolines of W9261-BG did not differ 

(p = 0.76). 

   

Effect of cadmium on transpiration 

Daily transpiration per plant increased with time (Figure 3a). As assessed by repeated measures 

ANOVA, the daily cumulative transpiration did not differ between plants grown under different 

cadmium treatments (p = 0.35) but it did differ among isolines.  Over the course of the 
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experiment, the daily transpiration volumes of the ‘high’ and ‘low’ isolines of 8982-TL were 

lower than those of the other isolines, for both control and cadmium-treated plants.  Intermediate 

volumes of water were transpired by cadmium-treated ‘low’ isolines of W9260-BC and W9261-

BG, as well as the ‘low’ isoline of W9261-BG grown in control conditions.  The remaining 

isolines transpired higher volumes of water.   The total volume of water transpired per plant by 

day 12 was also assessed (Figure 3b).  By this measure, cadmium treatment did not affect the 

volume of water transpired (p = 0.79), and isolines of 8982-TL transpired less water than did the 

other two pairs of isolines. 

 

When transpiration was standardized based on leaf area, a significant difference was found 

between cadmium-treated and control plants for isoline W9261-BG only (Figure 4). Cadmium 

treated plants had 35% and 16% higher transpiration rates for W9261-BG ‘high’ and ‘low’ 

isolines, respectively.   

 

Relationship between cadmium accumulation and transpiration 

To determine the relationship between transpiration and cadmium uptake, correlations between 

the total volume of water transpired per jar and the amount of cadmium in the plant samples 

were determined. Positive correlations were found between the total amount of water transpired 

and the total cadmium content for each of the ‘low’ isolines, whereas no correlations were 

observed for the ‘high isolines (Figure 5a, Table 3). When only the amounts of cadmium in the 

shoots were considered, positive correlations between transpiration and cadmium content were 

observed only for the ‘low’ isolines of W9260-BC and W9261-BG (Figure 5b, Table 3). 
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Discussion 

Isolines of durum wheat that differ only in the relative amounts of cadmium in aboveground 

tissues provide an opportunity to test theories about physiological controls over the distribution 

of cadmium among plant tissues. However, the isolines derived by Clarke et al. (1997a) are not 

especially cadmium-tolerant.  For example, Archambault et al. (2001) reported a 30% reduction 

in root dry weight for isolines of 8982-TL grown in solution with only 0.5 µM CdCl2.  Nor do 

the isolines retain their characteristic ‘high’ or ‘low’ concentrations of cadmium in aboveground 

tissues when exposed to concentrations of cadmium in solution above 0.5 µM CdCl2 (Macfie 

unpublished data).  For these reasons, experiments designed to test physiological differences that 

might explain differential cadmium accumulation patterns in durum wheat must be done under 

conditions free of cadmium-stress.  In this experiment, neither isolines of 8982-TL and W9260-

BC had symptoms of cadmium-induced stress as measured by dry weight, shoot length and 

visible appearance. Despite a slight reduction in shoot biomass in cadmium-treated plants, the 

isolines of W9261-BG appeared similarly healthy.   

 

Ideally, experiments designed to investigate the mechanisms behind ‘high’ and ‘low’ isolines 

should verify differential patterns of cadmium accumulation. Under this study’s experimental 

conditions, only isolines W9260-BC and W9261-BG showed the expected greater cadmium 

concentration in the shoots of the ‘high’ isoline relative to the ‘low’ isoline, even though the 

initial concentrations of cadmium in the seeds of the ‘high’ isolines were consistently higher than 

those in the ‘low’ isolines for each pair, and were well within the ranges reported by Clarke et al. 

(2002).   Bahrami (2006) grew all five pairs of Clarke et al.’s (1997a) isolines of durum wheat in 

solutions with 0.1 µM CdCl2 for 12 days and reported higher concentrations of cadmium in the 
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‘high’ isolines of 8982-TL, W9260-BC and W9261-BG, but not in 8982-SF nor W9262-339A.  

Adeniji et al. (2010) grew isolines of W9260-BC and W9261-BG in solution with 0.1 µM CdCl2; 

after 8 days exposure to cadmium the ‘high’ isolines of W9260-BC contained twice as much 

cadmium as did the ‘low’ isolines but there was no difference in cadmium content between 

‘high’ and ‘low’ isolines of W9261-BG.  The expected difference in cadmium accumulation 

between the ‘high’ and ‘low’ isolines does not, therefore, appear to be reliably obtained in 

solution culture.  Nevertheless, a general relationship between transpiration and cadmium 

accumulation can be determined from our experiment, and differences in transpiration between 

‘high’ and ‘low’ isolines of the two pairs that did show the expected pattern (W9260-BC and 

W9261-BG) might be expected to correlate with differential cadmium accumulation. 

 

As expected, daily transpiration per jar increased with time for all isolines. As a plant grows, its 

surface area increases and so will the volume of water transpired. When measured on a per jar 

basis, there was no difference in daily transpiration or total volume of water transpired between 

any pair of ‘high’ and ‘low’ isolines nor between cadmium-treated and control plants (Figure 3).  

However, the isolines of 8982-TL consistently transpired less water over the experimental 

period, which can be explained by their smaller size as compared to the other isolines.  After 

correcting for leaf area (Figure 4), isolines of 8982-TL and W9206-BC are seen to have 

transpired equal volumes of water per cm2 of leaf tissue.  Interestingly, the isolines of W9261-

BG grown in the presence of cadmium transpired more per unit leaf area than did their respective 

controls.  Barcelo and Poschenrieder (1990), in their review, provide a possible explanation: in 

some species, low doses of cadmium induce a higher stomatal density, inhibit stomatal closing 

and, if the photosynthetic rate is not affected, sugar concentrations and reduced osmotic 
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potentials can increase in leaf tissues – all resulting in higher rates of transpiration. The reason 

why the isolines of W9261-BG showed this effect, when the others did not, might be related to 

the observation that they were the only isolines to experience a slight reduction in biomass in 

response to cadmium.  In isolines of W9621-BG, 0.1 µM CdCl2 may have been sufficient to 

trigger cadmium-induced changes in stomatal density or functioning but not affect 

photosynthetic rate. 

 

The hypothesis that greater cadmium accumulation in shoots of the ‘high’ isolines would be 

positively correlated with volume of water transpired was not supported by our data.  Indeed, the 

individual replicates of the ‘high’ isolines of W9260-BC and W9261-BG contained higher 

concentrations of cadmium relative to their ‘low’ counterparts across a range of volumes of 

water transpired (approx. 200 – 300 ml; Figure 5b).  However, our experiment has identified an 

important difference between ‘high’ and ‘low’ isolines with respect to transpiration.  Strong 

positive correlations indicate that transpiration was related to cadmium uptake from solution and 

translocation to the shoot in the ‘low’ isolines.  In contrast, the uptake and translocation of 

cadmium to the shoots of the ‘high’ isolines did not vary with volume of water transpired.  This 

means that the ‘low’ isolines likely retain more cadmium in the root tissues, as compared to the 

‘high’ isoline, making proportionately less cadmium available to enter the transpiration stream.  

Others have also speculated that the physiological difference between ‘high’ and ‘low’ cadmium-

accumulators might lie in the sequestration of cadmium in the roots.  This idea has been applied 

to isolines of durum wheat (Adeniji et al. 2010; Harris and Taylor 2004) as well as the cultivars 

Kyle and Arcola (Chan and Hale 2004) and relative cadmium translocation in bread wheat 

(Triticum aestivum L.) and durum wheat (Hart et al. 1998).  
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From this study we can conclude that, while transpiration contributes to the total amount of 

cadmium in a plant, further investigations must be performed to determine the physiological 

difference between ‘high’ and ‘low’ accumulating isolines of durum wheat  – a difference that 

results in relatively less cadmium entering the transpiration stream of the ‘low’ isolines.  
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Table 1. Five pairs of near-isogenic durum wheat derived by Clarke et al. (1997a). The letter 
following the cultivar name indicates a ‘low’ cadmium accumulator (L) or a ‘high’ cadmium 
accumulator (H).  

 
Cultivar Name Genetic Stock, 

Registration Number 

Derived from crossing 

8982-SF-(L) 

8982-SF-(H) 

GS-81, PI591058  

GS-82, PI591059 

Kyle/Nile 

8982-TL-(L) 

8982-TL-(H) 

GS-83, PI591060 

GS-84, PI591061 

Kyle/Nile 

W9260-BC-(L) 

W9260-BC-(H) 

GS-85, PI591062 

GS-86, PI591063 

DT61/DT471 

W9261-BG-(L) 

W9261-BG-(H) 

GS-87, PI591064 

GS-88, PI591065 

DT630/DT471 

W9262-339A-(L) 

W9262-339A-(H) 

GS-89, PI591066 

GS-90, PI591067 

Kyle/Biodur 
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Table 2. Concentrations of cadmium in the seeds of near-isogenic durum wheat. The 
measurements were taken from seed samples collected prior to the start of the experiment. 
Significant differences (p < 0.05) in cadmium concentrations among the isolines are indicated by 
different lower case letters. 
 
Cultivar 

name 

Concentration (+ SE) of cadmium 

in ‘high’ isolines (µg g-1) 

Concentration (+ SE) of cadmium in 

‘low’ isolines (µg g-1) 

8982-TL 0.280 + 0.008 a 0.110 + 0.005 c 

W9261-BC 0.217 + 0.001 b 0.131 + 0.001 c 

W9261-BG 0.195 + 0.002 b 0.093 + 0.003 c 
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Table 3.  The Pearson Product Moment correlation coefficient (r) and the significance level 
(p) for the relationship between amount of cadmium and the volume of water transpired by 
each isoline grown in 0.1 µM CdCl2. The letter following the cultivar name indicates a ‘low’ 
cadmium accumulator (L) or a ‘high’ cadmium accumulator (H). The top half of the table 
contains information for the amount of cadmium in the entire plant (corresponding to Figure 5a); 
the bottom half contains information for the amount of cadmium in the shoot (corresponding to 
Figure 5b).  Significant correlations (p < 0.05) are indicated in bold. 

Cultivar Name r p 

Cd in entire plant   

8982-TL-(L) 

8982-TL-(H) 

0.92 

0.51 

0.010 

0.304 

W9260-BC-(L) 

W9260-BC-(H) 

0.86 

- 0.08 

0.027 

0.877 

W9261-BG-(L) 

W9261-BG-(H) 

0.96 

0.40 

0.003 

0.432 

Cd in shoot   

8982-TL-(L) 

8982-TL-(H) 

- 0.03 

- 0.52 

0.951 

0.291 

W9260-BC-(L) 

W9260-BC-(H) 

0.84 

- 0.04 

0.035 

0.946 

W9261-BG-(L) 

W9261-BG-(H) 

0.88 

- 0.50 

0.020 

0.318 
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Figure 1.  Dry weight of shoots and roots of three pairs of isolines of durum wheat.  Within 
each pair, H denotes the ‘high’ cadmium-accumulating isoline and L denotes the ‘low’ cadmium-
accumulating isoline. Plants were harvested after twelve days growth in nutrient solution (white) 
or nutrient solution with 0.1 µM CdCl2 (black). Bars represent SE of six replicates. Asterisks 
indicate a significant difference between control and cadmium-treated plants within an isoline. 
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Figure 2. Concentration of cadmium in shoots and roots of three pairs of isolines of durum 
wheat.  Within each pair, H denotes the ‘high’ cadmium-accumulating isoline and L denotes the 
‘low’ cadmium-accumulating isoline. Plants were harvested after twelve days growth in nutrient 
solution (white) or nutrient solution with 0.1 µM CdCl2 (black). Bars represent SE of six 
replicates. Asterisks indicate a significant difference between ‘high’ and ‘low’ pairs of isolines. 



25 
 

 

Figure 3. Cumulative daily volume of water transpired (a) and total volume of water 
transpired (b) by three pairs of isolines of durum wheat.  Within each pair, H denotes the 
‘high’ cadmium-accumulating isoline and L denotes the ‘low’ cadmium-accumulating isoline. 
Plants were grown in nutrient solution (white) or nutrient solution with 0.1 µM CdCl2 (black). 
Bars represent SE of six replicates.  Lower case letters indicate significant differences in 
transpiration over the 12-day growth period (a) and significant differences in the total volume of 
water transpired (b) 



26 
 

 

Figure 5. Relationships between amount of cadmium in entire plant (a) or shoot only (b) 
and total volume of water transpired for three pairs of isolines of durum wheat.  Within 
each pair, H denotes the ‘high’ cadmium-accumulating isoline (black) and L denotes the ‘low’ 
cadmium-accumulating isoline (white). Plants were grown for twelve days in nutrient solution 
with 0.1 µM CdCl2. Regression lines indicate significant correlations (see Table 3). 
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