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REPRODUCTIONRESEARCH

Mitogen-activated protein kinase (MAPK) blockade of bovine
preimplantation embryogenesis requires inhibition of both p38
and extracellular signal-regulated kinase (ERK) pathways
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Departments of Physiology and Pharmacology and Obstetrics and Gynecology, University of Western Ontario,
Child Health Research Institute, 5th Floor Victoria Research Laboratories, 800 Commissioners Road East, London,
Ontario, Canada, N6A 4G5

(Correspondence should be addressed to A J Watson; Email: awatson@uwo.ca)

Abstract

Blastocyst formation, as a critical period during development, is an effective indicator of embryonic health and reproductive

efficiency. Out of a number of mechanisms underlying blastocyst formation, highly conserved mitogen-activated protein

kinase (MAPK) signaling has emerged as a major mechanism involved in regulating murine preimplantation embryo develop-

ment. The objective of our study was to ascertain the role of MAPK signaling in regulating bovine development to the blasto-

cyst stage. Using reverse transcriptase PCR and immunohistochemical staining procedures we have demonstrated that mRNA

transcripts and polypeptides encoding p38 MAPK pathway constituents are detectable in preimplantation bovine embryos

from the one-cell to the blastocyst stage. Further, the effects on bovine embryo development following inhibition of p38a/b

and extracellular signal-regulated kinase (ERK) signaling by treatment with SB220025 and U0126, respectively, were investi-

gated. Eight-cell bovine embryos (50 per group; three replicates) were placed into treatments consisting of synthetic oviductal

fluid (SOF) medium: SOF 1 SB202474 (inactive analogue), SOF 1 SB220025, SOF 1 U0124 (inactive analogue),

SOF 1 U0126, and SOF 1 SB220025 1 U0126. Inhibition of p38 MAPK or ERK signaling individually did not affect develop-

ment to the blastocyst stage. However, when both pathways were blocked simultaneously there was a significant reduction

(P < 0.05) in blastocyst formation, cell number and immunofluorescence of phosphorylated downstream pathway constituents.

We have determined that, in variance to what was observed during murine preimplantation development, bovine early

embryos progress at normal frequencies to the blastocyst stage in the presence of p38 MAPK inhibitors.
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Introduction

Preimplantation embryogenesis, defined as the time inter-
val from conception to nidation or attachment of the
embryo to the uterus, is an important determinant of
embryonic health and reproductive efficiency. This period
is characterized by the development of the fertilized
zygote through cleavage divisions, the activation of
embryonic transcription, and the morphogenetic events of
compaction and cavitation, which result in the formation
of the blastocyst. Any aberration in the cascade of events
during this critical period of blastocyst formation and
hatching has a deleterious affect on the developmental
potential and/or the survival of the embryo (Niemann &
Wrenzycki 2000, Watson & Barcroft 2001, Niemann et al.
2002). Therefore, understanding the signals that regulate
preimplantation embryogenesis is key in comprehending
the spatiotemporal progression of the early embryo.

The mitogen-activated protein kinase (MAPK) pathways
transmit responses from ligand–receptor interactions and
convert them into a variety of cellular responses ranging
from apoptosis to immune response as well as growth and
differentiation, cytoskeletal re-arrangements and cell pro-
liferation (Kyriakis & Avruch 2001, Zhang & Liu 2002,
Cowan & Storey 2003, Ravingerova et al. 2003). The
MAPK superfamily of proteins consists of four separate sig-
naling cascades: the c-Jun N-terminal kinase or stress-acti-
vated protein kinases (JNK/SAPKs; Woodgett et al. 1996,
Whitmarsh & Davis 2001), the extracellular signal-regu-
lated kinases (ERKs; Boulton & Cobb 1991, Pouyssegur
et al. 2002), the ERK5 or big MAP kinase 1 (Lee et al.
1995, Zhou et al. 1995), and the p38 MAPK group of pro-
tein kinases (Han et al. 1994), all of which are highly con-
served throughout eukaryotic systems (Kyriakis & Avruch
2001).
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We have demonstrated recently that all principal con-
stituents of the p38 MAPK family are expressed throughout
murine preimplantation development (Natale et al. 2004).
This subfamily of the MAPK includes four protein iso-
forms, p38 a, b, g, and d, that regulate cellular processes
such as inflammation and cytoskeleton re-arrangements as
well as cell proliferation and apoptosis (Enslen et al.
2000, Ono & Han 2000, Kyriakis & Avruch 2001). p38
MAPK further regulates actin filament formation through
MAPKAPK 2/3 (MK2) or MAPKAPK 5 (PRAK) and sub-
sequently through heat-shock protein (Hsp) 25/27 (Lavoie
et al. 1995, Guay et al. 1997, Huot et al. 1998, Dalle-
Donne et al. 2001, Khurana & Dey 2003). More impor-
tantly we have discovered that inhibition of p38 MAPK
activity during murine preimplantation development
results in a blockade of development at the eight-to-16-cell
stage that is fully reversible for at least a 48-h treatment
interval (Natale et al. 2004, Paliga et al. 2005).
These results have implicated p38 MAPK as an important
regulator of filamentous actin and of preimplantation
development in mice (Natale et al. 2004). The effects of
p38 MAPK inhibition on filamentous actin can be
observed within 3 h of treatment with p38 MAPK
inhibitors applied to eight-cell-stage murine embryos and
this is accompanied by a decline in phosphorylated
MAPKAPK 2/3 and Hsp25/27 (Paliga et al. 2005). All of
these effects of p38 MAPK inhibition were reversible upon
removal of the inhibitor and development resumed in a
delayed but normal fashion to the blastocyst stage (Natale
et al. 2004, Paliga et al. 2005).

During the last decade, production of bovine embryos
in vitro has become a routine research method in many
laboratories, and is also being adopted in applied breed-
ing programs; however, there is dearth of information
related to understanding the mechanisms that regulate
bovine blastocyst formation. Perhaps of even greater
importance is the need to define common mechanisms of
regulation across all species so that insight relevant to
improving our understanding of early development in the
human can be discerned. Therefore, the objective of the
present study was to investigate the role of MAPK signal-
ing during bovine preimplantation embryo development.
Surprisingly, we have determined, that in variance to what
was observed during murine preimplantation develop-
ment, bovine early embryos progress at normal frequen-
cies to the blastocyst stage in the presence of p38 MAPK
inhibitors.

Materials and Methods

Production of bovine embryos in vitro

Bovine ovaries were transported from an abattoir in sterile
saline at 32–37 8C for oocyte collection using standard
protocols as described previously (Giritharan & Rajama-
hendran 2001). Briefly, cumulus–oocyte complexes
(COCs) from small follicles (3–6 mm) were aspirated into

the follicular aspiration medium consisting of Dulbecco’s
PBS (Gibco BRL; Invitrogen, Burlington, ON, Canada),
0.3% BSA (Sigma-Aldrich Canada, Oakville, ON, Canada)
and 50mg/ml gentamycin (Sigma-Aldrich, Canada) using
an 18 gauge needle attached to vacuum suction appar-
atus. COCs that contained an oocyte with an evenly
granulated cytoplasm and surrounded by more than three
layers of cumulus cells were selected for maturation in
vitro. For maturation and fertilization, standard insemina-
tion and embryo-culture protocols were used as described
previously (Vigneault et al. 2004)

Briefly, the COCs were cultured in oocyte maturation
medium composed of modified synthetic oviductal fluid
(SOF) medium (Holm et al. 1999) with 0.8% BSA, modi-
fied Eagle’s medium (MEM), non-essential amino acids
(Gibco), MEM essential amino acids (Gibco), 1 mM gluta-
mine, 0.5mg/ml follicle-stimulating hormone (FSH) and
1mg/ml 17b-estradiol. About 50 COCs were placed in
each well of a four-well culture plate and incubated in a
humidified atmosphere for 24 h at 38.5 8C and an atmos-
phere of 5% CO2 in air.

About 50 mature COCs were added to 330ml drops
containing modified Tyrode lactate medium (TLH) sup-
plemented with 0.6% fatty acid-free BSA (Sigma-Aldrich),
0.2 mM pyruvic acid, 10mg/ml heparin and 50mg/ml gen-
tamycin under mineral oil. Frozen semen was thawed at
37 8C for 1 min and placed at the bottom of a 5 ml tube
containing TLH. After 90 min of incubation at 38.5 8C and
5% CO2 the spermatozoa that had ‘swum up’ were col-
lected and centrifuged at 250 g for 5 min at room tempera-
ture. The supernatant was discarded and sperm pellet
were re-suspended in 1 ml TLH medium. Sperm number
was counted using a hemocytometer to obtain a final con-
centration of 1 £ 106 spermatozoa/ml in the COC drop.
The co-incubation of spermatozoa and COCs was carried
out in humidified air at 38.5 8C and an atmospshere of 5%
CO2 in air for 15–18 h.

Following fertilization, presumptive zygotes were
denuded by vortexing, washed three times in culture
media containing SOF medium containing 0.8% BSA,
MEM non-essential amino acids, 1 mM glutamine, 1.5 mM
glucose and 10mM EDTA (called SOF1 medium). Sub-
sequently, 20–30 presumptive zygotes were transferred to
each 50ml culture drop under mineral oil and cultured at
38.5 8C, 5% CO2, and humidified air with reduced-oxygen
atmosphere (7%). After 72 h of culture, SOF1 medium was
replaced with SOF2 medium, which contained 0.8%,
BSA, MEM non-essential amino acids, MEM essential
amino acids, 1 mM glutamine and 1.5 mM glucose. This is
done to prevent toxicity due to ammonium accumulation
resulting from amino acid degradation (Vigneault et al.
2004) and the efficacy of SOF in bovine in vitro embryo
development has been demonstrated previously (Ali &
Sirard 2002). Batches of 20 embryos were harvested
at timed stages of development (two, four, and eight
cells, morulae, and blastocysts) for RNA extraction
or immunohistochemistry.
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Primer design

Primer sets were designed to recognize and amplify con-
served nucleotide sequences encoding human and murine
MAPK pathway constituents. cDNA sequences and/or
homologue(s) were identified using the BLAST (Basic
Local Alignment Search Tool) computer program (National
Center for Biotechnology Information, Bethesda, MD,
USA). Primers were designed using the Primer3 computer
program (Whitehead Institute, Cambridge, MA, USA) and
the corresponding oligonucleotides (Table 1) were syn-
thesized (Invitrogen).

RNA extraction, reverse transcription and PCR

Total RNA was extracted from bovine embryos (pools of
20 embryos/stage at the one-, two-, four-, and eight-cell,
morula and blastocyst stages) using the phenol/chloroform
method of Chomczynski & Sacchi (1987). The total RNA
extracts were digested with DNase 1 to eliminate possible
contamination from genomic DNA. The reverse transcrip-
tase (RT) reactions were conducted using oligo-dT primers
(Gibco BRL) as described previously (Barcroft et al. 1998,
Offenberg et al. 2000, Natale et al. 2004). Briefly, samples
were incubated for 90 min at 42 8C in a total volume of
20ml consisting of 50 mM Tris/HCl (pH 8.3), 75 mM KCl,
3 mM MgCl2, 10 mM dithiothreitol, 0.5 mM dNTPs, and
200 units of Superscript II (Gibco BRL) followed by heat-
ing the samples to 95 8C for 5 min to terminate the
reaction.

PCR was conducted using a protocol described pre-
viously (Barcroft et al. 1998, Offenberg et al. 2000, Natale
et al. 2004). Briefly, two embryo equivalents for each
stage of development under investigation were used per
PCR reaction, which was repeated a minimum of three
times from pools of three different developmental series of
embryos. The primer sequences and the expected
amplication sizes are given in Table 1. PCR products were
resolved on 2.0% agarose gels containing 0.5mg/ml
ethidium bromide (Invitrogen). To confirm the specificity
of each PCR product, representative amplicons were
extracted from the gels and purified using a QIAquick Gel
Extraction Kit (Qiagen, Mississauga, ON, Canada) and

submitted for nucleotide sequencing (DNA Sequencing
Facility, Robarts Research Institute, London, ON, Canada).
The nucleotide sequence was subsequently compared
with sequences available from the GenBank Nucleotide
Sequence Database to confirm the specificity of each PCR
product. Sequence homology ranged from 76 to 92% for
bovine amplicons compared with known human
sequences.

Whole-mount indirect immunofluorescence

To analyze the distribution of proteins encoding MAPK
signaling pathway constituents during bovine preimplanta-
tion development, a whole-mount immunofluorescence
technique described previously by Natale et al. (2004)
for immunolocalization of p38 MAPK signaling
molecules in mouse preimplantation embryos was used.
Subsequently the immunofluorescence was detected using
laser-scanning confocal microscopy as described pre-
viously (Barcroft et al. 1998).

Briefly, embryos at timed stages of development (oocytes,
two-, four-, and eight-cell, morula and blastocyst stages)
were washed in 1 £ PBS and then fixed in 2% para-
formaldehyde in PBS for 20 min at room temperature. These
fixed embryos were washed in 1 £ PBS and either pro-
cessed immediately for immuno-staining or stored at 4 8C in
PBS þ 0.09% sodium azide for a maximum of 3 weeks.

For immuno-staining, fixed embryos were permeabi-
lized and blocked in 1 £ PBS þ 5% donkey
serum þ 0.01% Triton X-100 for 1 h at room temperature.
Embryos were washed in 1 £ PBS and incubated with
primary antibody diluted 1:100 in 1 £ PBS þ 1% donkey
serum þ 0.005% Triton X-100 for 1 h at room temperature
followed by additional washes totaling 1 h at 37 8C.
Primary antibodies were detected by exposure for 1 h to
FITC-conjugated secondary antibodies (Jackson Immunor-
esearch Laboratories, Bar Harbour, ME, USA) diluted
1:200. Embryos were then treated with rhodamine-conju-
gated phalloidin (5mg/ml; 1:20) and DAPI (1 mg/ml;
1:2000) for 30 min at 37 8C followed by two washes for
2 h each at 37 8C. Embryos were mounted in Fluoro-
Guard antifade mounting reagent (BioRad, Mississauga,

Table 1 Nucleotide sequences for PCR amplification of MAPK-pathway constituents; namely p38 a, b, g and d, MK2, and Hsp25/27.

Gene product Primer orientation Primer sequence Size (bp)

p38 MAPK a 50 GCCCCAGTAGTCAGAAGCAG 241
30 TAGGGGCTGAAGAGAGGTGA

p38 MAPK b 50 GCTGTGAACGAGGACTGTGA 233
30 CGCTTCAGCTGGTCAATGTA

p38 MAPK g 50 GCTAAGGTGGCCATCAAGAA 181
30 ACGGCATCACCAGGTAAAAG

p38 MAPK d 50 CTCACCCATCCCTTCTTTGA 243
30 ATACTGGTCCTTGGGCAGTG

MK2 50 AACGCCATCACCGACGACTAC 537
30 CAGGACTTCCGGAGCCACATA

Hsp25/27 50 CTCTTCGATCAAGCTTTCGG 393
30 CTCAGGGGATAGGGAAGAGG

MAPK blockade in bovine preimplantation embryo 43
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ON, Canada). Fluorescence patterns were examined using
a Zeiss LSM 410 laser-scanning microscope with
an inverted Axiovert 100 microscope under 20–40 £

magnification. The images were then captured and stored
as TIFF files by the Zeiss LSM software package.

All primary antibodies (p38, phospho-p38, MK2, phos-
pho-MK2, Hsp25/27, phospho-Hsp25/27, ERK1/2 and
phospho-ERK1/2) were obtained from Cell Signaling Tech-
nology (Beverly, MA, USA). The efficacy of phospho-p38
and phospho-ERK1/2 in detecting proteins extracted from
granulosa cells of the bovine ovary was evaluated using
Western blotting (data not shown).

Pharmacological inhibition of the p38 and ERK MAPK
pathways

In vitro-produced and cultured eight-cell bovine embryos
were treated with CSAID SB220025, an inactive ana-
logue SB202474 or with vehicle alone (0.2% DMSO in
SOF). These pharmacological inhibitors specifically inhibit
p38 MAPK a and b isoforms at the concentrations used in
this study (Jackson et al. 1998, Davidson & Morange
2000, Cirillo et al. 2002, English & Cobb 2002). Specifi-
cally, eight-cell bovine preimplantation embryos were
divided into three treatment groups: (a) control
(SOF þ 0.2% DMSO), (b) SOF þ 20mM SB202474 (inac-
tive analogue), and (c) SOF þ 20mM SB220025. A similar
protocol was repeated using 10mM UO126, an inactive
analogue, 10mM UO124, or vehicle alone (DMSO in
SOF). These inhibitors are specific for the ERK1/2 MAPK
pathway (Favata et al. 1998, Satoh et al. 2000)

In a final experimental series we conducted trials where
eight-cell embryos were treated with a combination of
both p38 MAPK- and ERK-pathway inhibitors. Eight-cell
embryos were incubated in one of the following
treatment groups: (a) control (SOF þ 0.2% DMSO), (b)
SOF þ 20mM SB202474 (c) SOF þ 20mM SB220025, (d)
SOF þ 10mM UO124, (e) SOF þ 10mM UO126, and
(f) SOF þ 20mM SB220025 þ 10mM UO126. Embryos
were removed at specific treatment times, including
embryos treated for 5 days (long culture or LC) and
embryos treated for 2 days and then placed into drug-free
medium for 3 days (short culture or SC), for assessment of
their development prior to fixation in 2% paraformalde-
hyde. Embryos were either processed for whole mount
immunofluorescence immediately or they were stored
in embryo-staining buffer for no longer than 3 weeks
before processing.

Statistical analysis

The results are presented as the means^S.E.M. from three
independent experiments. Statistical differences between
time points were assessed by analysis of variance
(ANOVA). Differences were considered significant when
P , 0.05. Significant differences between the means were
determined using the least-significant-difference test.

Results

mRNA transcripts for constituents of the p38 MAPK
signaling pathway

Transcripts encoding three of the four p38 MAPK isoforms
(a, b, and g), MK2, and Hsp25/27 were detected during
bovine preimplantation embryo development (Fig. 1).
Whereas the mRNA transcripts encoding p38 MAPK a

and b, MK2, and Hsp25/27 were detected in all develop-
mental stages from the one-cell to the blastocyst stage,
transcripts for p38 MAPK g were detected only in the
early stages of preimplantation embryogenesis, i.e. two-,
four-, and eight-cell stages. In addition, mRNA transcripts
encoding p38 MAPK d could not be detected in any of the
stages of bovine preimplantation embryo development.

Localization and distribution of p38 MAPK and
ERK1/2 MAPK signaling pathway proteins in the
preimplantation bovine embryo

Whole-mount immunofluorescence revealed immuno-
reactive proteins for p38 MAPK and ERK1/2 pathways
at timed stages of bovine preimplantation development
(Fig. 2). p38 MAPK protein maintained a predominantly
cytoplasmic distribution in all blastomeres from the one-
cell to the blastocyst stage. The localization pattern for the
phosphorylated form of p38 MAPK completely mirrored
the pattern observed for p38 MAPK protein.

In contrast, the MK2 immunofluorescence was found
primarily within the cytoplasm at the two- and eight-cell
stages; however, at the blastocyst stage MK2 protein immu-
nofluorescence was concentrated more in the nucleus
of each blastomere (Fig. 2). MK2 immunofluorescence

Figure 1 Detection of transcripts encoding p38 MAPK isoforms and
ERK-pathway constituents during bovine preimplantation develop-
ment. RT-PCR products encoding p38 MAPK a, b, g, and d, MK2,
and Hsp27 were investigated at timed stages of development (O,
matured oocytes; 2, two-cell; 4, four-cell; 8, eight-cell; M, morula;
B, blastocyst; L, ladder).
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was also detected throughout the trophectodermal cell
cytoplasm (Fig. 2). The phospho-MK2 protein immuno-
fluorescence mirrored that of the MK2 protein at the two-
cell stage (Fig. 2). However, from the eight-cell stage
onward the phospho-MK2 protein expression differed from

that of MK2 protein since it was observed predominantly
in the nuclei of each blastomere (Fig. 2). This localization
pattern for phospho-MK2 was maintained right up to the
blastocyst stage. Hsp25/27 and phospho-Hsp25/27 were
detected throughout all bovine preimplantation embryo

Figure 2 Distribution of p38 MAPK,
phospho-p38 MAPK, MK2, phospho-
MK2, Hsp25/27, phospho-Hsp25/27,
ERK1/2, and phospho-ERK1/2 during
bovine preimplantation embryo devel-
opment at timed stages of develop-
ment. Green, red, and blue colors in
each representative photomicrograph
indicate positive staining for the
respective primary antibody, F-actin
(rhodamine-phalloidin), and nuclei
(DAPI) respectively. Control-panel
photomicrographs are representative
of embryos that were exposed to FITC-
conjugated secondary only (no primary
antibody) in addition to rhodamine-
phalloidin and DAPI.
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stages (Fig. 2). At the two-cell stage, immunoreactive pro-
teins for Hsp25/27 and phospho-Hsp25/27 were detected
throughout the cytoplasm. Eight-cell-stage embryos, how-
ever, exhibited both nuclear as well as cytoplasmic localiz-
ation. At the blastocyst stage, both Hsp25/27 and its
phosphorylated form were co-localized with filamentous
actin, as indicated by the yellow fluorescence that forms
following merging of the green Hsp25/27 fluorescence
with the red rhodamine-phallodin fluorescence. This co-
localization of Hsp25/27 with the actin cytoskeleton was
more prominent with the phosphorylated form of
Hsp25/27. In addition to co-localization to actin,
Hsp25/27 as well as phospho-Hsp25/27 could be detected
in the cytoplasm.

During all the stages of preimplantation embryogenesis
in the bovine embryo, ERK1/2 and phospho-ERK1/2 pro-
teins displayed cytoplasmic and nuclear distribution at the
two- and eight-cell stages (Fig. 2). However at the blasto-
cyst stage, whereas ERK1/2 was detected both in the
nucleus and cytoplasm of trophectodermal cells, its phos-
phorylated form was only detected in the cytoplasm
associated with the actin cytoskeleton (Fig. 2).

Inhibition of the p38 MAPK signaling pathway in the
bovine embryo

The treatment of eight-cell bovine embryos with 20mM
SB220025, a specific inhibitor of p38 MAPK a/b isoforms,
did not result in any significant differences in the pro-
portion of embryos progressing to the blastocyst stage as
compared with untreated controls. In addition, SB220025
treatment did not affect the timing of cavitation, as
embryos in all three treatment groups progressed to the
blastocyst stage at the same time (Fig. 3).

Having ascertained that p38 MAPK a/b isoform inhi-
bition does not block bovine preimplantation embryogen-
esis, we focused our attention on blocking the ERK1/2
pathway. Treatment of eight-cell embryos with 10mM
UO126, a specific inhibitor of ERK1/2, also did not result
in any significant differences in the proportion of eight-
cell embryos that progressed to the blastocyst stage as
compared with untreated controls and embryos treated
with UO124 the inactive analogue. Those embryos treated
with UO126 also underwent cavitation at the same times
as observed in control groups (Fig. 3).

In our next experiment we investigated whether block-
ade of both p38 MAPK and ERK pathways affected bovine
preimplantation development. Although the inactive
inhibitors and control groups displayed a similar develop-
mental frequency and were blastocysts by days 7–9, the
group of embryos treated with the combination of
SB220025 and UO126 (LC) failed to develop to the blas-
tocyst stage. Most of the embryos in the LC group were
halted at about the eight-to-16-cell stage (Fig. 3). Like-
wise, for eight-cell-stage embryos treated with both
SB220025 and UO126 together for only 48 h (SC) prior to
removal from these treatments and placement in fresh
drug-free culture medium only a very small proportion of
these treated embryos progressed to the blastocyst stage
(Fig. 3). Thus we conclude that treatment of bovine
zygotes with both inhibitors for 48 h or longer significantly
reduces development to the blastocyst stage.

Effect of p38 MAPK and ERK inhibitors on
phosphorylation of downstream proteins

In order to assess the ability of pharmacological inhibitors
SB220025 and UO126 to inhibit p38 MAPK and ERK
pathway constituents, either individually or in tandem,

Figure 3 The effect of treatment with pharmacological inhibitors of the p38 MAPK or ERK pathway on preimplantation bovine embryos. Eight-
cell embryos were treated in culture with 0mM (Control), p38 MAPK-inactive analogue SB202474 (20mM), p38 MAPK-active inhibitor
SB220025 (20mM), ERK1/2-inactive analogue UO124 (10mM), ERK1/2-active inhibitor UO126 (10mM), 20mM SB220025 þ 10mM UO126
treated for 2 days (SC), and 20mM SB220025 þ 10mM UO126 treated for 5 days (LC). Treatment with specific inhibitors alone or with their
inactive analogues did not result in any significant differences (P , 0.05) in the proportion of eight-cell embryos that progressed to the blastocyst
stage However, with both p38 MAPK and ERK1/2 inhibitors there was a significant reduction (*) in the developmental competency of the eight-
cell embryos. Most of the embryos in the LC group were halted at about the eight-to-16-cell stage and none of them developed to the blastocyst
stage. In the SC group, a very small proportion of treated embryos progressed to the blastocyst stage.
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we investigated the phosphorylation of the downstream
substrates MK2 and Hsp25/27 after treatment with specific
inhibitors. Whole-mount indirect immunofluorescence
was used to evaluate the phosphorylation state of p38
MAPK, ERK1/2, MK2, and Hsp25/27. The control groups
displayed fluorescence patterns consistent with those
already described for phospho-p38 MAPK, phospho-
ERK1/2, phospho-MK2, and phospho-Hsp25/27 (Fig. 4). In
embryos treated with either of the pharmacological inhibi-
tors alone, there were no significant differences in the
phospho-immunofluorescence patterns from that of
controls. This result was unexpected and indicates that
phosphorylation of these downstream kinases is not

completely dependent upon maintaining activity of
upstream p38 MAPK or MEK (MAPK/ERK kinase) kinases
in this species. However, when the combination of
p38 MAPK and ERK inhibitors were used, phospho-
fluorescence of phospho-p38 MAPK, phospho-MK2,
phospho-Hsp25/27, and phospho-ERK1/2 (Fig. 4) were
downregulated in the eight-to-16-cell-stage embryos.

Effect of p38 MAPK and ERK inhibitors on embryonic
actin

Our previous studies have demonstrated that p38 MAPK is
a potent regulator of filamentous actin in the mouse

Figure 4 Distribution of phospho-p38 MAPK, phospho-MK2, phospho-Hsp25/27, and phospho-ERK1/2 during bovine preimplantation embryo
development after exposure to either SB220025 or UO126, or both, at timed stages of development. Green, red, and blue colors in each
representative photomicrograph indicate positive staining for respective primary antibody, F-actin (rhodamine-phalloidin), and nuclei (DAPI)
respectively. SC represents embryos kept in specific inhibitors for 48 h and LC for 96 h.
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embryo. Therefore, we also investigated the effect of
specific MAPK inhibitors on actin cytoskeleton of the
developing bovine preimplantation embryo. Filamentous
actin was evaluated using rhodamine-phalloidin immuno-
fluorescence as demonstrated previously using mouse
embryos (Natale et al. 2004, Paliga et al. 2005). Whereas
embryos treated with individual inhibitors showed identi-
cal filamentous actin patterns to that of controls, embryos
treated with the combination of inhibitors displayed a
marked reduction in rhodamine-phalloidin fluorescence
by the eight-to-16-cell stage (Fig. 4). However, in a small
number of SC embryos treated for only 48 h that devel-
oped to the blastocyst stage, there was not only a marked
reduction in the rhodamine-phalloidin immunofluores-
cence but also distinct loss of pattern. The filamentous
actin appeared indistinct as compared with the controls,
where filamentous actin was localized at trophectodermal
cell junctions.

Discussion

This study investigates, for the first time, the role of MAPK
signaling during bovine preimplantation embryo develop-
ment. We have determined that mRNAs and proteins
encoding the principal constituents of the p38 MAPK
pathway are present throughout the first 8 days of bovine
preimplantation development, similar to what we have
already reported for the mouse preimplantation embryo
(Natale et al. 2004, Paliga et al. 2005),. However, our
results demonstrate that bovine preimplantation develop-
ment (unlike that observed for mouse preimplantation
development) is not dependent upon p38 MAPK activity.
Treatment of mouse embryos with SB220025 at either the
two-, four-, or eight-cell stage of development results in a
reversible developmental blockade at the eight-to-16-cell
stage (Natale et al. 2004, Paliga et al. 2005). Our present
study has demonstrated that treatment of eight-cell bovine
preimplantation embryos with the same inhibitor does not
affect development to the blastocyst. Furthermore, treat-
ment with SB220025 does not result in a loss of down-
stream kinase (MK2 or Hsp25/27) phosphorylation in the
bovine embryo as it does in the mouse early embryo
(Natale et al. 2004, Paliga et al. 2005). This suggests that,
in the bovine preimplantation embryo, alternative path-
ways also regulate the downstream targets of p38 MAPK
activation. In the mouse early embryo it would appear
that p38 MAPK is the primary if not sole activator of MK2
and thus Hsp25/27 at the eight-to-16-cell stage (Natale
et al. 2004, Paliga et al. 2005). To investigate this further,
we conducted experiments with an inhibitor of the ERK
MAPK pathway, UO126. Bovine preimplantation embryos
treated alone with UO126 did not display an impaired
ability to develop to the blastocyst stage. This result is in
accordance with outcomes from similar experiments
applied to the mouse embryo, suggesting that the ERK
pathway is not required to sustain development to the

blastocyst stage (Haraguchi et al. 1998, Natale et al.
2004). When both inhibitors are combined, we observed
an unexpected outcome. Bovine early embryos treated
with both SB220025 and UO126 displayed a develop-
mental blockade at the eight-to-16-cell stage and did not
complete development to the blastocyst stage. The results
suggest that there are important species differences in the
activation and function of MAPK signaling. For the bovine
species, it is likely that the ERK pathway is capable of acti-
vating p38 MAPK downstream kinases in the absence of
p38 MAPK activity to maintain development to the blasto-
cyst stage. Thus bovine embryos require both p38 MAPK
and ERK signaling for their development to the blastocyst
stage.

MAPK pathways regulate several cellular processes,
including cell proliferation, growth, differentiation, and
death (Kyriakis & Avruch 2001, Ravingerova et al. 2003, Ji
2004). Generation of a p38a MAPK-null mouse line
demonstrated that p38a MAPK is a key regulator of pla-
cental formation but not of preimplantation development,
as the null mutants in this line display an embryonic leth-
ality associated with placental defects (Adams et al. 2000,
Allen et al. 2000, Mudgett et al. 2000). As several p38
MAPK isoforms have been identified in murine embryos
(Natale et al. 2004), it is likely that other isoforms com-
pensate for the loss of the p38a isoform in the null line.
This was subsequently proven when simultaneous inhi-
bition of p38a/b impeded the development of murine
embryos to the blastocyst stage (Natale et al. 2004). How-
ever, no information has been available until now on the
role of MAPK signaling in the bovine embryo and it is
imperative that experiments contrast the expression and
activation of MAPK pathways in species beyond the
mouse. Using a gene-specific RT-PCR technique we have
identified mRNA transcripts encoding p38 MAPK isoforms
(a, b, and g), MK2, and Hsp25/27 in the bovine embryo.
That we could not detect p38 MAPK d isoform in the
bovine preimplantation embryo at any of the developmen-
tal stages under study could signify that p38d is not
required by the bovine preimplantation embryo during
these early stages of development. This result is in contrast
to what was observed in the mouse preimplantation
embryo as mRNAs encoding both the g and d p38 MAPK
isoforms were detected throughout preimplantation devel-
opment in this species (Natale et al. 2004).

Although the expression of p38 MAPK a and b, MK2,
and Hsp25/27 were observed throughout bovine preim-
plantation development, expression of p38 MAPK g could
be detected only at the early stages of preimplantation
embryo, i.e. from oocyte to eight-cell stages. This suggests
that whereas the pattern of expression for p38 MAPK a

and b, MK2, and Hsp27 is both maternal and embryonic,
p38 MAPK g shows only a maternal pattern of expression.
The maternal-to-embryonic transition is a crucial phase in
early development that occurs at the eight-cell stage in
bovine embryos and is characterized by onset of transcrip-
tion and subsequent translation of mRNA transcripts

48 P Madan and others

Reproduction (2005) 130 41–51 www.reproduction-online.org



(Telford et al. 1990, Memili et al. 1998, Natale et al.
2000, Schultz 2002).

Although the expression patterns of p38 MAPK isoform
transcripts in the bovine embryo differ from those of mur-
ine embryos (Natale et al. 2004), the data still support the
presence of an active p38 MAPK pathway in the bovine
preimplantation embryo. Environmental/culture stresses,
such as changes in osmolarity, temperature, oxygen ten-
sion, and oxygen radical metabolites, are activators of p38
MAPK (Ono & Han 2000). Since, embryos are exposed to
such conditions both in vitro and in vivo it is quite likely
that p38 MAPK signaling could be playing an important
role in mediating and transmitting signals from the
environment and thereby play a role in coordinating
bovine embryonic development.

Localization of specific proteins of the MAPK pathway
indicates that p38 MAPK, MK2, Hsp27, and ERK proteins
are present in the bovine preimplantation embryo from
the two-cell to the blastocyst stage. Since all these pro-
teins were also identified in their phosphorylated forms,
this provides further evidence that these proteins are
active and play a distinct role in these early stages of
development. Whereas p38 MAPK and ERK1/2 proteins
show a similar distribution, with the proteins being pre-
sent both in the cytoplasm and the nucleus in the blasto-
meres of the cleavage stages and also in the
trophectodermal cells of the blastocyst, MK2 showed a
distinct shift in its localization pattern. Although MK2 pro-
tein could be detected in both the nuclei and cytoplasm,
its phosphorylated form was present predominantly only
in the nuclei, suggesting that once MK2 is phosphorylated
it becomes associated with the nuclei. This is in accord-
ance with other studies that have shown that MK2 phos-
phorylation is triggered in response to p38 activation,
which in turns stimulates Hsp25/27 phosphorylation (Sto-
koe et al. 1992, New & Han 1998). The localization pat-
tern observed for Hsp25/27 during bovine early
development suggests that once Hsp25/27 becomes phos-
phorylated, it associates with the actin cytoskeleton. This
is in accordance with several other studies demonstrating
that Hsp25/27 interacts with the actin cytoskeleton
(Landry & Huot 1995, Davidson & Morange 2000, Dalle-
Donne et al. 2001, Natale et al. 2004). It can be con-
cluded that the p38 MAPK pathway is active in the bovine
embryo.

Immunolocalization of ERK proteins was predominantly
cytoplasmic in the early cleavage stages; however, at the
blastocyst stage some of the trophectodermal cells also
showed a nuclear presence of this protein. It can be con-
cluded that ERK protein was localized in the cytoplasm
and the nucleus, suggesting that the ERK pathway is also
active in bovine embryos. This finding is different from
that in mouse where there are conflicting reports about the
role of ERK in preimplantation embryogenesis (Haraguchi
et al. 1998, Iwamori et al. 2000, Wang et al. 2004). It has
been suggested that ERK is not phosphorylated at any
stage during the cell cycle of the mouse early embryos

(Iwamori et al. 2000); although ERK proteins are
expressed, MAPKs other than ERKs are activated during
the early cleavage divisions of mouse embryos (Haraguchi
et al. 1998). However, recently it has been reported that
ERK1/2 mRNA could be detected from the oocyte to the
blastocyst stage in the mouse embryo and, in addition,
ERK1/2 proteins are activated by phosphorylation (Wang
et al. 2004).

The most important finding of our study is that pharma-
cological inhibition of p38 MAPK during bovine embryo
development had a different outcome from that of our pre-
vious studies in mouse (Natale et al. 2004, Paliga et al.
2005). In mouse, a significant number of two-cell embryos
incubated with either 2.0 or 20mM SB220025 failed to
progress to the blastocyst stage and halted their develop-
ment at the eight-to16-cell stage (Natale et al. 2004).
Similar results were achieved when eight-cell mouse
embryos were treated with SB220025 (Paliga et al. 2005).
However, treatment of bovine embryos with 20mM
SB220025 at the eight-cell stage failed to induce any
developmental blockade and a normal rate of develop-
ment to the blastocyst stage was observed. Treatment of
eight-cell bovine embryos with 10mM UO126 also did
not affect embryo development negatively. This is consist-
ent with findings that the ERK-null murine line progresses
through preimplantation development without problem
(Saba-El-Leil et al. 2003). The results of our present study
certainly suggest that in the bovine embryo the ERK path-
way is able to compensate when p38 MAPK is blocked
and that when this compensatory pathway is also blocked,
p38 MAPK-blocked embryos fail to progress to the blasto-
cyst stage.

In support of this view, when embryos were treated
with SB220025 alone the levels and patterns of phospho-
MK2 and phospho-Hsp27 localization were maintained,
suggesting that an alternative mechanism might be activat-
ing these kinases in the absence of p38 MAPK activity.
Similar results were seen when embryos were cultured in
the presence of the ERK inhibitor UO126 alone. A number
of studies have demonstrated that several signaling-path-
way constituents are held in common between parallel
MAPK pathways (Kyriakis & Avruch 2001, Zhang & Liu
2002, Cowan & Storey 2003, Ravingerova et al. 2003).
We would propose that when the p38 MAPK pathway is
inhibited, the ERK pathway might be compensating for the
loss of p38 MAPK. An alternative possibility is that an
additional MAPK pathway such as the JNK/SAPK or big
MAPK pathway might be active in the preimplantation
embryo. Our results would suggest, however, that neither
of these pathways is capable of compensating for the loss
of both the ERK and p38 MAPK pathways as blastocyst for-
mation was blocked in the presence of both p38 MAPK
and ERK inhibitors. Further studies are required to ascer-
tain the reason for this.

An additional difference observed in this study as com-
pared with that from studies applied to the mouse embryo
was that whereas treatment with p38 MAPK inhibitors
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lead to a complete loss of filamentous actin in eight-to-
16-cell murine embryos, there was a marked down-regu-
lation of filamentous actin in bovine embryos cultured in
the presence of both p38 MAPK and ERK-pathway inhibi-
tors but the rhodamine-phalloidin fluorescence never
completely disappeared. This result also suggests that the
regulation of filamentous actin is more complex in the
bovine embryo and may be subject to multiple pathways,
whereas in the eight-to-16-cell mouse embryo p38 MAPK
is the dominant if not exclusive pathway that regulates
actin (Natale et al. 2004, Paliga et al. 2005). In con-
clusion, this is the first study to investigate the role of p38
MAPK signaling in bovine preimplantation embryos. We
report that the mechanism of MAPK signaling in the
bovine embryo differs from that of the murine embryo.
Unlike mouse embryos, inhibition of p38 MAPK individu-
ally did not significantly disrupt development to the blas-
tocyst stage. However, when both inhibitors were
combined, there was a significant reduction in the immu-
nofluorescence of phosphorylated downstream mediators
of MAPK signaling and a blockade of development to the
blastocyst stage. In view of these observations, it can be
concluded that in variance to what was observed during
murine preimplantation development, bovine early
embryos do not rely exclusively on p38 MAPK activity to
complete development to the blastocyst stage.

Acknowledgements

Work was supported by funds from the Canadian Institute for
Health Research (CIHR), Canada. We thank Julie Andrassy,
Barry Fong, and Michelle Violette for assistance with ovary and
embryo collections. A J W is a recipient of a Premier’s Research
Excellence Award by the Ontario Provincial Government.
The authors declare that there is no conflict of interest that
would prejudice the impartiality of this scientific work.

References

Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S,
Valladares A, Perez L, Klein R & Nebreda AR 2000 Essential role
of p38alpha MAP kinase in placental but not embryonic cardiovas-
cular development. Molecular Cell 6 109–116.

Ali A & Sirard MA 2002 Effect of the absence or presence of various
protein supplements on further development of bovine oocytes
during in vitro maturation. Biology of Reproduction 66 901–905.

Allen M, Svensson L, Roach M, Hambor J, McNeish J & Gabel CA
2000 Deficiency of the stress kinase p38alpha results in embryonic
lethality: characterization of the kinase dependence of stress
responses of enzyme-deficient embryonic stem cells. Journal of
Experimental Medicine 191 859–870.

Barcroft LC, Hay-Schmidt A, Caveney A, Gilfoyle E, Overstrom EW,
Hyttel P & Watson AJ 1998 Trophectoderm differentiation in the
bovine embryo: characterization of a polarized epithelium. Journal
of Reproduction and Fertility 114 327–339.

Boulton TG & Cobb MH 1991 Identification of multiple extracellular
signal-regulated kinases (ERKs) with antipeptide antibodies. Cell
Regulation 2 357–371.

Chomczynski P & Sacchi N 1987 Single-step method of RNA iso-
lation by acid guanidinium thiocyanate-phenol-chloroform extrac-
tion. Analytical Biochemistry 162 156–159.

Cirillo PF, Pargellis C & Regan J 2002 The non-diaryl heterocycle
classes of p38 MAP kinase inhibitors. Current Topics in Medicinal
Chemistry 2 1021–1035.

Cowan KJ & Storey KB 2003 Mitogen-activated protein kinases: new
signaling pathways functioning in cellular responses to environ-
mental stress. Journal of Experimental Biology 206 1107–1115.

Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P & Colombo R
2001 The actin cytoskeleton response to oxidants: from small heat
shock protein phosphorylation to changes in the redox state of
actin itself. Free Radical Biology Medicine 31 1624–1632.

Davidson SM & Morange M 2000 Hsp25 and the p38 MAPK path-
way are involved in differentiation of cardiomyocytes. Develop-
mental Biology 218 146–160.

English JM & Cobb MH 2002 Pharmacological inhibitors of MAPK
pathways. Trends in Pharmacological Sciences 23 40–45.

Enslen H, Brancho DM & Davis RJ 2000 Molecular determinants that
mediate selective activation of p38 MAP kinase isoforms. EMBO J
19 1301–1311.

Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser
WS, Van Dyk DE, Pitts WJ, Earl RA & Hobbs F et al. 1998 Identifi-
cation of a novel inhibitor of mitogen-activated protein kinase
kinase. Journal of Biological Chemistry 273 18623–18632.

Giritharan G & Rajamahendran R 2001 In vitro embryo production
using ovaries removed from culled cows. Canadian Journal of
Animal Science 81.

Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J & Landry J
1997 Regulation of actin filament dynamics by p38 map kinase-
mediated phosphorylation of heat shock protein 27. Journal of Cell
Science 110 (Pt 3) 357–368.

Han J, Lee JD, Bibbs L & Ulevitch RJ 1994 A MAP kinase targeted by
endotoxin and hyperosmolarity in mammalian cells. Science 265
808–811.

Haraguchi S, Naito K & Sato E 1998 MAP kinase cascade, but not
ERKs, activated during early cleavage of mouse embryos. Molecu-
lar Reproducation and Development 51 148–155.

Holm P, Booth PJ, Schmidt MH, Greve T & Callesen H 1999 High
bovine blastocyst development in a static in vitro production sys-
tem using SOFaa medium supplemented with sodium citrate and
myo-inositol with or without serum-proteins. Theriogenology 52
683–700.

Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM & Landry J
1998 SAPK2/p38-dependent F-actin reorganization regulates early
membrane blebbing during stress-induced apoptosis. Journal Cell
Biology 143 1361–1373.

Iwamori N, Naito K, Sugiura K, Kagii H, Yamashita M, Ohashi S,
Goto S, Yamanouch K & Tojo H 2000 Phosphorylation of mitogen-
activated protein kinase cascade during early embryo development
in the mouse. Reproduction, Fertility and Development 12
209–214.

Jackson JR, Bolognese B, Hillegass L, Kassis S, Adams J, Griswold DE
& Winkler JD 1998 Pharmacological effects of SB 220025, a
selective inhibitor of P38 mitogen-activated protein kinase, in
angiogenesis and chronic inflammatory disease models. Journal of
Pharmacology and Experimental Therapeutics 284 687–692.

Ji RR 2004 Mitogen-activated protein kinases as potential targets for
pain killers. Current Opinion in Investigational Drugs 5 71–75.

Khurana A & Dey CS 2003 p38 MAPK interacts with actin and
modulates filament assembly during skeletal muscle differen-
tiation. Differentiation 71 42–50.

Kyriakis JM & Avruch J 2001 Mammalian mitogen-activated protein
kinase signal transduction pathways activated by stress and inflam-
mation. Physiology Reviews 81 807–869.

Landry J & Huot J 1995 Modulation of actin dynamics during stress
and physiological stimulation by a signaling pathway involving
p38 MAP kinase and heat-shock protein 27. Biochemistry and Cell
Biology 73 703–707.

Lavoie JN, Lambert H, Hickey E, Weber LA & Landry J 1995 Modu-
lation of cellular thermoresistance and actin filament stability
accompanies phosphorylation-induced changes in the oligomeric

50 P Madan and others

Reproduction (2005) 130 41–51 www.reproduction-online.org



structure of heat shock protein 27. Molecular Cell Biology 15
505–516.

Lee JD, Ulevitch RJ & Han J 1995 Primary structure of BMK1: a new
mammalian map kinase. Biochemical and Biophysical Research
Communications 213 715–724.

Memili E, Dominko T & First NL 1998 Onset of transcription in
bovine oocytes and preimplantation embryos. Molecular Repro-
duction and Development 51 36–41.

Mudgett JS, Ding J, Guh-Siesel L, Chartrain NA, Yang L, Gopal S &
Shen MM 2000 Essential role for p38alpha mitogen-activated pro-
tein kinase in placental angiogenesis. PNAS 97 10454–10459.

Natale DR, Kidder GM, Westhusin ME & Watson AJ 2000 Assess-
ment by differential display-RT-PCR of mRNA transcript transitions
and alpha-amanitin sensitivity during bovine preattachment devel-
opment. Molecular Reproduction and Development 55 152–163.

Natale DR, Paliga AJ, Beier F, D’Souza SJ & Watson AJ 2004 p38
MAPK signaling during murine preimplantation development.
Developmental Biology 268 76–88.

New L & Han J 1998 The p38 MAP kinase pathway and its biological
function. Trends in Cardiovascular Medicine 8 220–228.

Niemann H & Wrenzycki C 2000 Alterations of expression of devel-
opmentally important genes in preimplantation bovine embryos by
in vitro culture conditions: implications for subsequent develop-
ment. Theriogenology 53 21–34.

Niemann H, Wrenzycki C, Lucas-Hahn A, Brambrink T, Kues WA &
Carnwath JW 2002 Gene expression patterns in bovine in vitro-
produced and nuclear transfer-derived embryos and their impli-
cations for early development. Cloning Stem Cells 4 29–38.

Offenberg H, Barcroft LC, Caveney A, Viuff D, Thomsen PD &
Watson AJ 2000 mRNAs encoding aquaporins are present during
murine preimplantation development. Molecular Reproduction
and Development 57 323–330.

Ono K & Han J 2000 The p38 signal transduction pathway: acti-
vation and function. Cell Signal 12 1–13.

Paliga AJ, Natale DR & Watson AJ 2005 p38 mitogen activated pro-
tein kinase (MAPK) regulates actin and compaction during murine
pre-implantation development. Biologie Cellulaire (submitted).

Pouyssegur J, Volmat V & Lenormand P 2002 Fidelity and spatio-
temporal control in MAP kinase (ERKs) signalling. Biochemical
Pharmacology 64 755–763.

Ravingerova T, Barancik M & Strniskova M 2003 Mitogen-activated
protein kinases: a new therapeutic target in cardiac pathology.
Molecular and Cellular Biochemistry 247 127–138.

Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N,
Ang SL & Meloche S 2003 An essential function of the

mitogen-activated protein kinase Erk2 in mouse trophoblast devel-
opment. EMBO Reports 4 964–968.

Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H & Namura S
2000 Neuroprotection by MAPK/ERK kinase inhibition with
U0126 against oxidative stress in a mouse neuronal cell line and
rat primary cultured cortical neurons. Neuroscience Letters 288
163–166.

Schultz RM 2002 The molecular foundations of the maternal to zygo-
tic transition in the preimplantation embryo. Human Reproduction
Update 8 323–331.

Stokoe D, Engel K, Campbell DG, Cohen P & Gaestel M 1992 Identi-
fication of MAPKAP kinase 2 as a major enzyme responsible for
the phosphorylation of the small mammalian heat shock proteins.
FEBS Letters 313 307–313.

Telford NA, Watson AJ & Schultz GA 1990 Transition from maternal
to embryonic control in early mammalian development: a com-
parison of several species. Molecular Reproduction and Develop-
ment 26 90–100.

Vigneault C, McGraw S, Massicotte L & Sirard MA 2004 Transcrip-
tion factor expression patterns in bovine in vitro-derived embryos
prior to maternal-zygotic transition. Biology of Reproduction 70
1701–1709.

Wang Y, Wang F, Sun T, Trostinskaia A, Wygle D, Puscheck E &
Rappolee DA 2004 Entire mitogen activated protein kinase (MAPK)
pathway is present in preimplantation mouse embryos. Develop-
mental Dynamics 231 72–87.

Watson AJ & Barcroft LC 2001 Regulation of blastocyst formation.
Frontiers in Bioscience 6 D708–D730.

Whitmarsh AJ & Davis RJ 2001 Analyzing JNK and p38 mitogen-
activated protein kinase activity. Methods in Enzymology 332
319–336.

Woodgett JR, Avruch J & Kyriakis J 1996 The stress activated protein
kinase pathway. Cancer Surveys 27 127–138.

Zhang W & Liu HT 2002 MAPK signal pathways in the regulation of
cell proliferation in mammalian cells. Cell Research 12 9–18.

Zhou G, Bao ZQ & Dixon JE 1995 Components of a new human
protein kinase signal transduction pathway. Journal of Biological
Chemistry 270 12665–12669.

Received 2 November 2004
First decision 26 November 2004
Revised manuscript received 11 February 2005
Accepted 21 February 2005

MAPK blockade in bovine preimplantation embryo 51

www.reproduction-online.org Reproduction (2005) 130 41–51


	Western University
	Scholarship@Western
	7-1-2005

	Mitogen-activated protein kinase (MAPK) blockade of bovine preimplantation embryogenesis requires inhibition of both p38 and extracellular signal-regulated kinase (ERK) pathways.
	Pavneesh Madan
	Michele D Calder
	Andrew J Watson
	Citation of this paper:


	146702 41..51

