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Load Transfer at the Distal Ulna Following

Simulated Distal Radius Fracture Malalignment

Louis M. Ferreira, PhD, Gillian S. Greeley, PhD, James A. Johnson, PhD, Graham J. W. King, MD, MSc

Purpose To measure the effects of distal radius malalignment on loading at the distal ulna.

Methods Using an adjustable mechanism to simulate angulated and translated malalignments,
clinically relevant distal radius deformities were simulated in a cadaveric model. A custom-
built load cell was inserted just proximal to the native ulna head to measure the resultant force
and torque in the distal ulna. Loads were measured before and after transecting the triangular
fibrocartilage complex (TFCC).

Results There was an increase in distal ulna load and torque with increasing dorsal translation
and angulation. Combined conditions of angulation and translation increased force and torque
in the distal ulna to a greater extent than with either condition in isolation. Transecting the
TFCC resulted in a reduction in distal ulna load and torque.

Conclusions A progressive increase in load at the distal ulna was observed with increasing
severity of malalignment, which may be an important contributor to residual ulnar wrist pain
and dysfunction. However, no clear-cut threshold of malalignment of a dorsally angulated and
translated distal radius fracture was identified. These observations suggest that radius de-
formities cause articular incongruity, which increases TFCC tension and distal radioulnar joint
load. Cutting of the TFCC decreased distal ulna loading, likely by releasing the articular
constraining effect of the TFCC on the distal radioulnar joint, allowing the radius to rotate
more freely with respect to the ulna.

Clinical relevance Anatomical reduction of a distal radius fracture minimizes the forces in the
distal ulna and may reduce residual ulnar wrist pain and dysfunction. (J Hand Surg Am.
2015;40(2):217—223. Copyright © 2015 by the American Society for Surgery of the Hand.

All rights reserved.)
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ISTAL RADIUS FRACTURES COMPRISE one-sixth of
D all fractures,'f(’ with a cumulative lifetime

incidence of 15% for women and 3% for
men.”® Displaced fractures have a tendency to redis-
place with cast immobilization, commonly resulting in
residual deformities.” Radial shortening and dorsal
angulation are associated with a high incidence of re-
sidual ulnar wrist pain, weakness and stiffness.''°
Corrective osteotomies frequently do not restore
normal osseous alignment or function,'® and more
than 50% will exhibit posttraumatic arthritis.'” With
improved methods of fixation and computer-assisted
surgery, ™' anatomical positioning and healing of distal
radius fractures is possible; however, the magnitude and
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218 DRUJ LOADS WITH DISTAL RADIAL MALALIGNMENT

pattern of displacement where surgical treatment is
indicated are not yet defined. '’

A variety of studies have examined the kinematic
effects of a malunion after Colles fractures,'**°~** and
1 quantified the effect of malalignment on joint
loads.”” This in vitro biomechanical study by Hirahara
et al”’ examined the effects of dorsally angulated
fractures and found that resistance torque during
forearm rotation increased with increasing degrees of
distal radius malalignment. Another study quantified
the magnitude of the distal radioulnar joint (DRUJ)
reaction force throughout motion using an instru-
mented ulna head implant capable of measuring load
transfer across the DRUJ, finding that the primary
influence on joint load was related to the position of
the ulna within the sigmoid notch of the radius, a
function of the forearm position in rotation.”*

Our objective was to measure the effects of distal
radius malalignment and dividing triangular fibro-
cartilage complex (TFCC) on loading at the distal
ulna. Using an adjustable mechanism previously
designed and detailed by Fraser and coworkers,” we
simulated clinically relevant distal radius deformities
in a cadaveric model. A custom-built load cell was
inserted just proximal to the native ulna head to
measure the distal ulna load. We hypothesized that
distal radius malalignment increases loading at the
distal ulna and that ulna loads are lowest with the
simulated distal radius fragment in its native position.

MATERIALS AND METHODS
Design of an instrumented implant

A load cell capable of measuring medial-lateral (ML)
force, anterior-posterior (AP) force and inferior-
superior (IS) axis torque was developed. To posi-
tion the load cell in the distal ulna, an implant was
designed with a distal component stem, a proximal
component stem, a removable spacer, and the load
cell (Fig. 1). The implant has both a spacer for
specimen preparation and the instrumented load cell
for testing. The spacer and load cell were designed
similarly except that the spacer has a slightly smaller
diameter (6 mm) than the instrumented load cell
(8 mm). The smaller diameter facilitated maintaining
an intact bone bridge during the insertion and
cementing process.

The distal component was designed with a rect-
angular, notched stem for cementing into the head of
the ulna, and the opposite end accepts the spacer and
load cell. Similarly, the proximal component includes
a square, notched end, and the reverse end has pro-
visions to accept the proximal end of the spacer or
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FIGURE 1: Distal ulna load cell system. A An exploded view of
the instrumented distal ulna load cell. This implantable system
comprises 4 parts: the distal component stem, the proximal

component stem, the spacer, and the load cell. For surgical setup,
a spacer was used (left); however, for testing purposes, this was
removed and replaced with the instrumented load cell (right). B
The distal implant system is shown in situ. Also visible is the
distal radius malalignment implant.

load cell. The stem diameter was chosen to be an
appropriate size to fit even the smallest specimens
while allowing for an adequate cement mantle, and
the notching assists with fixation. Figure 1 shows the
ulna implant in sifu, with the adjustable mechanism
that simulates malalignment deformities of dorsal
angulation and dorsal translation.

To quantify load, 4 shear-sensitive rosette strain
gauges (Model #062TV, Vishay Intertechnology Inc.,
Malvern, PA) were placed at 90° from one another
around the circumference of the load cell. Each
rosette gauge was made up of 2 strain elements,
which were wired into independent quarter bridges.
These 8 quarter bridges were combined into 6 axis-
dependent strain values and the load cell was cali-
brated with a custom-designed appliance according to
the Berme Calibration Technique.”® From this, the
clinically relevant AP force, ML force, and IS torque
were quantified.

Specimen preparation and surgical procedures

Eight fresh frozen upper extremities (mean age, 71 y;
range, 49—84 y; 6 male, 4 right) were used. All were
radiographed before testing to exclude specimens
with arthritis or previous fracture. The specimens
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were amputated through the midhumerus, and pre-
pared for testing using a forearm motion simulator
(Fig. 2), which has been previously described.”’**
The distal radius was exposed through a volar
approach. An osteotomy was performed just proximal
to the sigmoid notch and the 3-degree of freedom
modular implant designed to simulate distal radius
deformities was secured to the distal radius.” This
allowed for accurate adjustment of dorsal angulation
and translation. Anatomical alignment of the distal
radius was maintained by a bone bridge technique
previously described by Fraser et al”” using the same
adjustable instrumented implant.

The distal ulna was approached through a longi-
tudinal incision on the subcutaneous border, just
proximal to the ulna head. The interval between the
extensor and the flexor carpi ulnaris tendons was
developed to expose the ulna. Using a microsagittal
saw, a 16-mm volar segment of the ulna was removed
approximately 1.5 cm proximal to the ulna head to
accommodate insertion of the load cell while pre-
serving a bone bridge on the dorsal side of the ulna.
This ensured that the alignment of the native head
with respect to the proximal ulna was maintained
both during and after load cell insertion. The med-
ullary canal and ulna head were reamed and poly-
methylmethracrylate was injected into the canals. The
ulna load cell was separated, the distal stem was
inserted into the ulna head cavity, and the proximal
stem was inserted into the medullary canal. Once in
position, the spacer was reattached to the proximal
and distal ends to maintain the implant’s default
configuration, and the construct was held firmly in
position until the cement had cured. The ulna bone
bridge was then divided.

The specimen was mounted in a forearm motion
simulator (Fig. 2). Two servo motors were used to
actuate the prime movers (ie, agonist and antagonist)
of forearm rotation (ie, biceps and pronator teres).
Linear pneumatic actuators were used for muscle
loads to triceps, wrist flexors/extensors, and pronator
quadratus. In-line load cells were used to monitor and
control loads to the biceps and pronator teres as per
Gordon et al.”’ An electromagnetic tracker (Flock of
Birds, Ascension Technologies Corp, Shelburne, VT)
was used for closed-loop control of forearm rotation,
by rigidly mounting a receiver to the radius and ulna.

The load cell spacer was removed and the instru-
mented load cell was installed. The incisions were
repaired and the specimens were kept moist using
saline irrigation of the soft tissues as well as by
repeated closure of the skin following each implant
adjustment.

Prime Movers to
Servo Motors

Tone Loads to
Pneumatic Actuators

In-Line Load Cell

FIGURE 2: Motion-controlled upper limb testing system. Two
servo motors were used to actuate the prime movers (ie, agonist
and antagonist) of forearm rotation (ie, biceps and pronator teres).
Linear pneumatic actuators were used for muscle loads to triceps,
wrist flexors/extensors, and pronator quadratus. The in-line load
cells were used to monitor and control loads to the biceps and
pronator teres. An electromagnetic tracker was used for closed-
loop control of forearm rotation. Inset: Device to simulate
angular and translation malalignments of the distal radius.

During motion control, the relative muscle loading
ratios for the pronator agonists (pronator teres and
pronator quadratus) were maintained at 56% and
44%, respectively, and for the supinator agonists
(biceps brachii and supinator) were 67% and 33%,
respectively.”” Muscle load magnitudes were auto-
matically adjusted through the feedback loop with the
apportioning approach. The tendon forces required to
simulate active supination and pronation across all
conditions of malalignment were quantified.

Testing procedure

Active pronation and supination motions were simu-
lated in each specimen while the elbow was flexed
at 90°, and kinematic data were recorded in this intact
configuration. The electromagnetic tracking system
quantified the position of the radius relative to the ulna.

This study consisted of 2 phases to examine
the effects before and after simulated soft tissue
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TABLE 1. Ulna Load and Torque (£ 1 SD) Across Forearm Rotation With the Distal Radius in the Native
Position
Force (N)

Pronated Neutral Supinated
Pronation trial 6.4 (5.6) 6.5 (7.1) 9.0 (10.6)
Supination trial 5.9 (5.8) 6.1 (6.0) 8.2 (10.3)

Torque (Nmm)

Pronated Neutral Supinated
Pronation trial —40.0 (25.1) —50.0 (38.0) —66.3 (50.7)
Supination trial —40.4 (31.3) —50.8 (39.9) —68.3 (59.1)

Notes: Loading at the distal ulna was found to range between 5 and 9 N. Supinated data are at 45° of supination and pronated are at 30° of pronation.
There was greater distal ulna load and torque with the forearm in supination relative to pronation (P = .01; P = .01). The ulna torque decreased

following TFCC sectioning (P = .03), but not the ulna load.

disruption of the DRUJ. All soft tissue stabilizers of
the DRUJ were intact in the first phase of the study
while the effects of simulated distal radius deformities
were evaluated. The instrumented implant was used
to simulate dorsally angulated and translated distal
radius deformities. Two factors were simulated: con-
ditions of 0°, 10°, 20°, and 30° of dorsal angulation
from the original palmar tilt, and conditions of 0, 5, and
10 mm of dorsal translation. Each of these dorsal
angulation and translation factors were evaluated
independently and in combination.

The testing protocol was repeated after dividing of
the TFCC to examine the effects of a simulated ulnar-
sided ligament injury on distal ulna loading, which
commonly occurs in association with distal radius
deformities. The TFCC was divided by detaching it
from its attachment on the ulna using an open surgical
approach. We confirmed a complete sectioning at the
end of the testing protocol by disarticulating the wrist.

Outcome variables and statistics

Following completion of testing, the joints were dis-
articulated and ulna surface landmarks were digitized
in order to create a clinically relevant ulna reference
frame. Calibrated load cell output was transformed to
the ulna frame so that loads were expressed in
anatomical directions. The forces in the AP and ML
directions measured at the distal ulna were resolved
into the resultant transverse distal ulna load, hereafter
referred to as the (distal) ulna load. In addition, torque
about the IS axis of the ulna was quantified.

Force and torque on the distal ulna were analyzed
independently. In order to determine whether differ-
ences existed between pronation and supination motion

trials for force and torque, 2-way repeated measures
analyses of variance were conducted examining the
factors of TFCC state and forearm motion. Four-way
repeated measures analyses of variance were used to
determine whether there were differences in force or
torque (dependent variable) as a result of the factors of
TFCC state, angulation, translation, and rotation (in-
dependent variables). Using the active simulation
method, the range of rotation achieved commonly by all
specimens was 90° for supination motion (45° pronated
to 45° supinated) and 75° for pronation motion
(45° supinated to 30° pronated). Statistical analysis was
performed at 15° increments with significant set at
P less than .05.

RESULTS

Ulna load increased during forearm supination (P =
.01) with the distal radius in the native position
(Table 1); however, there was no effect from the di-
rection of forearm rotation. Similarly, there was
greater torque on the ulna when the forearm was in
supination than in pronation (P = .009) (Table 1).
Although the distal ulna load tended to decrease
following sectioning of the TFCC, this was not sta-
tistically significant (Fig. 3). The decrease in torque
observed with sectioning the TFCC was significant
(P = .03) (Table 1).

Ulna load was greater with increasing dorsal
translation (P = .008) and angulation (P = .002) of the
simulated distal radius deformities (Fig. 3). This was
most evident in terminal pronation and supination.
Combined angulation and translation caused a greater
ulna load than either of the conditions in isolation (P =
.002). Dividing the TFCC resulted in a statistically
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FIGURE 3: Distal radius malalignment and its effect on distal ulna load. The relationship between the deformity of the distal radius and
the ulna load for intact A and sectioned B TFCC ligaments at neutral rotation. Increasing translation or angulation caused an increase in
ulna load (P = .008 and P = .002, respectively). Combining these deformities had a greater effect than either in isolation (P = .002).

Sectioning the TFCC trended toward decreased ulna load for all conditions, but not significantly. Maximum SD across all conditions

was 8.8 N (intact) and 6.3 N (sectioned).

insignificant reduction in ulna load for all malalign-
ment conditions.

There was an increase in torque with increasing
dorsal translation (P = .001) and angulation (P = .002)
(Table 1). There was greater torque when the forearm
was in the supinated position than in the pronated po-
sition (P = .005), with no effect from the direction of
forearm rotation. Similar to ulna load, when the angu-
lation and translation conditions were combined, a
larger torque was evident than with either of the con-
ditions in isolation (P = .03). Sectioning the TFCC
resulted in a reduction in ulna torque (P = .02).

DISCUSSION

The results of this study support the concept of
Adams'" that displaced fractures and malunions of the
radius alter the configuration of the TFCC causing
increased tissue tension. Our findings agree with
Hirahara et al,” showing that increasing dorsal
angulation and translation result in a progressive in-
crease of force and torque at the distal ulna. We also
observed that combined radius angulation and trans-
lation resulted in greater ulna load and torque than
isolated deformities. The additional tension in the
TFCC increased loading at the distal ulna. The
magnitude of distal ulna load in this study increased to
165% of the native load with the most extreme mala-
lignment. We speculate that this increased loading at
the distal ulna may be why patients commonly complain

of pain in the setting of healed angulated and translated
fractures of the distal radius.

There are a variety of biomechanical reasons for
the increase in distal ulna load that occurs with larger
magnitudes of distal radius malalignment. Radius
shortening and dorsal translation, as a consequence of
dorsal angulation in isolation, effectively increase the
tension on the TFCC. Joint incongruity produced by
dorsal angulation and dorsal translation causes an
interosseous membrane tightness”” and dorsal radio-
ulnar ligament strain.”’ Distal radius malalignment
increased the load by 165% of the native condition,
and transecting the ligaments decreased the load to
60% of the native condition. These studies support
our finding that the biomechanics of the DRUJ can
be altered with relatively small changes in native
osseous position and ligamentous integrity.

There was a 60% decrease in distal ulna load and a
35% decrease in torque after transecting the TFCC.
Most investigators agree that the TFCC is the primary
stabilizer of the distal radioulnar joint.””*"~' With
the TFCC intact, 2 forces are registered at the load
cell: DRUIJ contact force and tension in the TFCC.
When the TFCC is divided, this 1 component of force
is removed, causing a decrease in the load at the distal
ulna. With simulated distal radius malalignment, the
relative position of the radius with respect to the
ulna changes. This lengthens and strains the TFCC as
exhibited by the increased loading observed at the
distal ulna. Transecting the TFCC simulates ligament
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rupture or a basal ulna styloid fracture such as
commonly occurs clinically in patients with distal
radius fractures. This releases the constraining effect
of the TFCC on the DRUJ and causes a reduction in
joint loading.

The overall performance of the instrumented distal
ulna implant in this study was found to be acceptable.
The interposed implant design allowed the use of the
native ulna head, and the bone-bridge implantation
technique ensured that the ulna head remained in its
intact location. No loosening of the load cell was
observed in any specimen during testing, and the forces
and torque were within the load cell’s design range.

Others have examined DRUJ loads using in vitro
models. Shaaban et al’’ employed an externally
applied axial load of 5 and 10 kg through the hand
and found that DRUJ loading peaked at 6 N
throughout forearm rotation for both levels of applied
load. These authors used pressure-sensitive film
inserted into the DRUJ to quantify load. Gordon
et al”* developed an instrumented ulna head implant
to examine joint loading at the distal ulna. That study
reported ulna load of 2 to 8 N but did not maintain the
native ulna head, and so it may not be representative
of the native condition. Despite differences in testing
methodologies, the values reported in this study are in
general agreement overall, because the magnitude
of joint load through the distal ulna with the distal
radius in the native position was found to range be-
tween 5.9 + 5.8 N and 9.0 £ 10.6 N, and the torque
values were between 40 £ 24 Nmm and 68 + 59
Nmm, similar to other studies.”**”

The greatest ulna loads occurred when the forearm
was fully supinated, which agrees with 2 previous
studies.”**” Despite muscle loads were markedly
different between pronation and supination, the di-
rection of forearm rotation did not influence ulna
loads. The absence of this influence was also found in
a previous study, which also concluded that the pri-
mary factor in distal ulna loading was the position of
the ulna head within the sigmoid notch.”*

There are some limitations of this study. First, we
performed all of our testing with the elbow at 90° of
flexion. Previous studies have shown load-sharing at
the wrist depends on the varus-valgus position of the
elbow.™ *® However, althoughwe did constrain the
elbow at 90° of flexion, it was free to move in varus
and valgus. Second, the net tension measured by
the load cell included TFCC tension, and as such, we
were unable to isolate the individual effects of TFCC
tension and articular loading on the distal ulna. To
measure loading directly at the DRUIJ is challenging.
Although pressure-sensitive films have been employed

with some success in static applications (Rajaai SM,
Walsh WR, Schindhelm K. Cadaver studies to obtain
articular pressure in the distal radioulnar joint using
Fuji prescale pressure sensitive film. Engineering in
Medicine and Biology Society, Proceedings of the 18th
Annual International Conference of the IEEE.
1996;489—490),32’37 the invasiveness and challenges
with placement and stability while testing preclude
their use for a motion-based study. Third, this was an
in vitro biomechanical study and the simulation of
muscle loading to achieve forearm rotation may not
have precisely replicated those loads that occur in vivo.
Despite these limitations, our data do provide a valid
tool for comparative measurements across the radius
deformities assessed.

Our results improve understanding of the causes of
pain with distal radius deformities and provide clearer
indications for surgical treatment. This study ad-
vances previous research that examined single-plane
distal radius malalignment and further elucidates the
effects of complex deformities on distal ulna load and
torque. Limited pronation and supination, which has
been reported following distal radius deformities,
may be caused by the lack of congruency at the
DRUI and increased tension in the TFCC; this work
demonstrates how this is manifested by a progressive
increase in force and torque in the distal ulna.
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