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University of Western Ontario, London, Ontario, Canada

Abstract: Adaptation of the whole microbid norma flora residing in a hogt to its natura habitat over an evolutionary
peroid has resulted in peaceful coexistence with mutud benefits for both micrebiota and hodt in Steady dtate. This
symbictic relationship between host and microbiota has a significantimpact on shaping the immune response in the host
to achieve an immune tolerance to microbiota but retaining the ability to respond to invading pathogens. Perturbation of
this balance by manipulation of microbial communitiesin the host can lead to immune dysregulation and susceptibility to
diseases. By studying the hogt in the absence of microbiota or with dteration of microbiota the complexity of microbia
impact on the immune system can be resolved. Conversely, the study of microbiota in the absence of immune system
factors can show how the immune system contributes to preservation of the host-microbiota balance. The absence of
molecules involved in innate or adaptive immunity in knockout models can perturb the baance between hogt and
microbiota further adding to more immune dysregulation. A better understanding of Microbiome-immune system
interaction provides a new opportunity to identity biomarkers and drug targets. This will dlow the development of new
therapeutic agents for modulating the immune system to improve hedth with little or no toxicity. The study of interplay
between host and microbiota has a promising role in the design of thergpeutic interventions for immunopathological
diseasesarising from imbalanced host and microbiota interactions.
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MICROBIOTA AND IMMUNE SYSTEM DIALOGUE

In an evolutionary process over along period of interactions
between microbia agents and their hosts, microbes adapted
themselves to host environment for a peaceful coexistence,
mutual benefits, and symbiosis. The whole microbial population
residing in a host, especially at mucosal surfaces such as
gastrointestinal tract, gut microbiota, could have a big impact on
shaping cellular and humoral immunity of the host to
accomplish an immune tolerance to commensal bacteria,
fulfilling the requirements of biological mutualism. On the other
hand. it is plausible that anv change in cellular and humoral
immunity can perturb the steady state balance of microbial
populations in the gut and in turn, reshape the immune system
into a new format. The study of mice, either kept in germ free
conditions or being knocked out for specific genes of the
immune system, has revealed the intricate complexity of the
reciprocal interaction between mammalian host and normal
bacterial flora. Specific bacterial phyla have a role in
modulating adaptive immune responses and can influence the
shift to specific T cell subsets {1 5]. Conversely, the number of
anaerobic commensal bacteria drastically increases in mice
deficient for the activation induced cytidine deaminase (AID)
gene due to a failure of the humoral immune response in
restraining overgrowth of commensal bacteria[6].

Address correspondence lo thiSauthor a the Departinent of Microbiology
and Immunalogy, Universty of Western Ontario, London, Ontario N6A
5C1, Canada; Tel: 1-519-661-3228; Fax: 1-519-661-3499;

E-mail: bsingh@uwo.ca

1871-5281/14 $58.00+.00

Reconstitution of germ free mice with one or a
consortium of specific bacteria is a valuable tool to assess
the impact of bacteria on immune system development.
Colonization of germ free mice with gram negative
Bacteroides fragilis [7 10] leads to expansion of IL-10
producing regulatory T cells{Tregs}, mediated by binding of
bacterial capsular polysaccharide antigen (PSA) to TLR2 [9].
Bacteroides fragilis releases PSA in outer membrane
vesicles that could be recognized by TLR2 on dendritic cells
[11]. Interndization of these vesicles induces toleregenic IL-
10 producing dendritic cells that in turn drives the
development of IL-10 producing regulatory T cells{11]. The
induction of Tregs by B. fragilis is primarily a requirement
for efficient colonization of bacteria in a peaceful
environment of the gut in a symbiotic host. Furthermore,
PSA from B. fragilis is able to suppress antibacterial IL-17
oroduction in the eut lamina propria [8] for further provision
of friendly host environment and enhancement of its
colonization, Immunoregulatory effects of PSA on immune
system are not restricted to the gut and they adjust the
balance of Thi/Th2 subsets systemically [7]. Germ free mice
show a reduced [FN-y to IL-4 cytokine ratio compared to
conventional mice and colonization of mice with B. fragilis
increases [FN-y up to a normal level observed in
conventional mice [7]. In an experimenta setting,
colonization of mice with Bacteroides fragilis leads to
protection from colitis development due to PSA-mediated
expansion of IL-10 producing regulatory T cells and
suppression of IL-17 producing cells [8]. Capsular
polysaccharide A (PSA) of Bacteroides fragilis can also
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protect against central nervous system demyelinating
disease, EAE, by induction of IL-10 producing regulatory T
cells [12, 13]. These immunomodulatory features have also
been reported for the other commensal bacterial species [1,
14]. The homing of regulatory T cells to large intestine is
mediated through GPR15 receptor that its expression is
modulated by gut microbiota [15]. Conversely, colonization
of bacterial species in the gut requires the presence of
regulatory T cells and depletion of these cells or perturbation
of the Treg to Thl7 balance leads to less efficient
colonization of Bacteroides fragilis in the gut [10].

INNATE IMMUNE RECEPTORS

Interaction of bacterial associated molecular patterns
with innate immune receptors such as toll like receptors
(TLR) or NOD family of intracellular signaling molecules
(NLRs) in the gut is proposed as a plausible mechanistic link
between microflora and immune system for the induction of
tolerogenic response. Direct interaction of polysaccharide A
from Bacteroides fragilis with TLR2 on the surface of
dendritic cells or regulatory T cells provides immunologic
tolerance for bacterial colonization in the gut mucosa [10,
11]. Bacteroides fragilis lacking PSA are not able to restrain
T helper 17 cell response that is a negative regulator of
bacterial colonization [10]. Colonization of germ free mice
with a consortium of eight enteric bacterial species, altered
Schaedler flora (ASF), expands CD4+CD25+Foxp3+ Tregs
in the colon through TLR signaling [14]. Nonetheless, this
effect can occur even in the absence of TLRs. A mixture of
clostridia species induces IL-10 producing Tregs in the
colonic lamina propria of germ free mice that is independent
from MyD88 signaling pathway [1]. The effect of MyD88
pathway in microbiota-mediated modulation of immune
response has been described by using MyD88 knockout mice
[57]. To add another layer to the complexity of microbiome-
host interactions, a deficiency in TLR or MyD88 signaling
pathway in mice by itself could alter the composition of gut
microbiota that secondarily affects immune system. It has
been argued that the composition of gut microbiota in TLR
or MyD88 deficient mice might not be really different from
wild type mice and the apparent observed differences are
mainly due to different parental lineage and husbandry rather
than genetic difference [16]. Different TLR receptors could
have an activating or inhibiting function in one specific
setting and blocking of the MyD88 pathway that is common
to most of the TLR receptors that have opposing actions
could lead to misleading interpretations. Absence of
inflammasome signaling pathway molecules in NLR
deficient mice leads to disrupted intestinal homeostasis of
gut microbiota [17, 18].

MATURATION OF CELLULAR IMMUNE RESPONSE

Colonization of germ free mice with segmented
filamentous bacteria (SFB) induces an IL-17 response in the
gut lamina propria [5]. The induced Th17 cells are able to
protect mice against an intestinal pathogen, Citrobacter
rodentium [5], indicating that gut microbiota could empower
host defense mechanisms against environmental pathogens
or opportunistic pathogens. These Thl7 biased cellular
changes are not necessarily associated with the gut
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immunopathology because different subsets of Th17 have
been proposed that differ markedly in pathogenic potential
[19, 20]. Adoptive transfer of naturally occurring Th17 cells
from the gut does not result in colitis development but rather
have a regulatory function [21]. These cells express CTLA-4
and CCR6 while pathogenic Th17 cells produce IL-17, IFN-
v and TNF-o [21]. The impact of SFB in the gut is not
restricted to induction of Th17 cells and the complexity of
the overall balance of T cell responses should be considered
for pathogenic or protective clinical outcome. Earlier reports
indicated an induction of one specific T cell subset following
colonization of germ free mice with specific bacteria [1, 4].
For example, germ free mice colonized with clostridial
species clusters IV and XIVa promote regulatory T cell
expansion [1, 2] while mice colonized with SFB promote
Th17 cells [4]. However, the role of SFB in shaping immune
response is much broader than mere induction of one
specific subset and it contributes to full maturation of gut
immune response [22] and induction of a wide range of T
cell responses comprising of Th17, Thl, Th2 and Treg cells
[23]. This might explain why SFB colonization is associated
with protection in some experimental models of disease such
as the NOD mouse model of type 1 diabetes [24, 25], while
it is pathogenic in other experimental settings such as EAE
and arthritis [26, 27]. One possible mechanism for a
protective role of IL-17 in a mouse colitis model is through
modulation of Thl response [28]. Colitis is more severe in
IL-17 deficient mice that are associated with unrestrained
Thl activity [28]. In an arthritis mouse model, segmented
filamentous bacteria (SFB) lower the activation threshold for
T cells encountering chronic antigenic exposure in gut
draining lymphoid tissues, and thus promote differentiation
of pathogenic Thl cells and enhance the severity of an
autoimmune response [3]. In sum, upregulation of both T
helper and regulatory T cell subsets after colonization of
germ free mice with SFB as a prototype of microbiota
strongly suggests maturation of the whole cellular immune
response rather than preferential expansion of one specific T
cell subset in the gut.

HUMORAL IMMUNE RESPONSE

In addition to cellular response, SFB has been reported to
induce a strong IgA response [23, 29]. This could prevent
overwhelming expansion of SFB or other commnensal
bacteria in the gut to preserve intestinal homeostasis. An
increased expansion of SFB in the small intestine of IgA
deficient AID”" mice has been reported [30]. The activation-
induced cytidine deaminase (AID) enzyme is required for
immunoglobulin class switching and affinity maturation of
antibodies in the germinal center of B cell follicles. High
affinity IgA is essential for control of commensal species
such as SFB and protection against pathogens such as
Salmonella typhimurium [31]. Mouse IgA secreting plasma
cells produce antimicrobial mediators such as tumor-necrosis
factor-alpha (TNF-a) and inducible nitric oxide synthase
(INOS) in response to microbial stimulation. These cells are
absent in germ free mice and colonization of germ free mice
with microbiota restores the secretory IgA response [6, 32].
Deletion of TNF-o and iNOS in plasma cells leads to
reduction in IgA production, concomitant change in the
composition of gut microbiota, and perturbed intestinal
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homeostasis [33]. Point mutation in the AID gene results in
hyperplasia of germinal center B cells in gut-associated
lymphoid tissues and expansion of microflora in the small
intestine [34]. These findings indicate that somatic hyper-
mutation, affinity maturation, and secretory IgA responses
have a critical role in the maintenance of intestinal homeo-
stasis and mucosal defense.

REGULATION OF Th17 RESPONSE

Gut microbiota could also modulate the number and
function of dendritic cells to eschew T cell response toward a
specific T cell subset. The number of CX3CRI1" dendritic
cells is reduced in germ free mice. This subset of dendritic
cells preferentially supports Thl and Th17 CD4" T cell
differentiation [35], in contrast to CD103" DCs that
preferentially induce differentiation of Foxp3" regulatory T
cells [36]. In general, the commensal bacteria in the gut have
a significant impact on maturation of the gut immune system
[37] and intestinal colonization contributes to combined
effector and regulatory T cell responses. It is interesting that
some bacteria such as SFB could depict the overall impact of
whole microbiota on immunity in the gut [23]. Microbiota-
derived ATP activates purinergic receptors on dendritic cells
to induce Th17 cells in lamina propria [38]. The percentage
of Th17 cells in gut lamina propria depends on the presence
of microbiota, therefore the level of Th17 cells are markedly
low in germ free mice [4]. Differences in composition of gut
microbiota in mice from different animal facilities
contributed to the varied proportions of Th17 cells in lamina
propria [4]. The severity of EAE in germ free mice is
reduced as a result of lower levels of IL-17 and IFN-y [27].
However colonization of mice with SFB leads to increased
infiltration of Th17 cells in the central nervous system and
exacerbation of disease [27]. In a mouse model of
autoimmune arthritis, germ free mice show attenuation of
disease accompanied with lower Th17 cell frequency [26],
whereas SFB monocolonization in those mice leads to an
increase in Th17 cell numbers in the lamina propria and
exacerbation of disease [26]. Contrary to clinical
manifestations in EAE and arthritis models [26, 27], the
presence of SFB-induced lamina propria resident Th17 cells
in NOD mice protect mice from diabetes [24]. This might
occur as a result of the regulation of Th17 cells in the small
intestine [39]. Migration of Th17 cells to the small intestine
through a CCR6/CCL20 chemokine receptor/ligand interact-
ion leads to either deletion of these cells or acquisition of a
regulatory IL-10 producing phenotype in the gut [39]. These
Th17 cells express the IL-10 receptor and suppress
pathogenic Th17 cells in gut via IL-10 signaling [40].
Commensal bacteria can induce expression of IL-25 (IL-
17E) in intestinal epithelial cells that inhibits production of
IL-23, a major survival factor for Th17 cells, to restrain
Th17 response [41].

INTESTINAL HOMEOSTASIS AND IMMUNE RESPONSES

Alteration of gut microbiota with diet, antibiotic
treatment, or intestinal pathogens could predispose hosts to
immunopathological disorders [42-44]. Interaction of dietary
derived natural ligands for aryl hydrocarbon receptor (AhR)
helps to maintain intestinal intraepithelial lymphocytes [42].
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Disruption of this mechanism as a result of dietary changes
compromises the epithelial integrity, increases immune
response, and changes composition of gut microflora [42].
Commensal bacteria and their interaction with TLR receptors
and MyD88 signaling pathway are required for protection
from intestinal epithelial injury in experimental colitis [43].
Elimination of gut normal microflora with antibiotics
contributes to high susceptibility of mice to experimental
colitis induction with dextran sodium sulfate (DSS) [43]. An
entropathogenic bacterium Salmonella enterica inhibits the
growth of microbiota in the gut and subsequently
predisposes mice to colitis development [44]. Alteration of
the gut microbiome by antibiotics in humnas can lead to the
development of pathogenic Clostridium difficile infection
[45]. In germ free mice, invariant natural killer T (iNKT)
cells in lamina propria contribute to inflammatory bowel
disease and asthma. Colonization of germ free mice with
conventional microbiota helps to normalize the number and
function of iINKT cells and reduce the severity of the
immunopathology [46].

MICROBIOME AND IMMUNE SYSTEM BASED DISEASES
Infectious Diseases

Microbiota in the gut protect the host from environmental
pathogens [47, 48] in a process called colonization resistance
[49]. Germ-free animals are unable to eradicate Citrobacter
rodentium. However, commensals in conventionally raised
mice are able to outcompete C. rodentium growth [50]. In
response to commensal bacteria, paneth cells in the crypts of
intestinal epithelial layer produce antibacterial peptides,
alpha-defensin or cryptdin, through a TLR dependant
pathway [48] to combat invading microorganisms [47, 48].
Intestinal colonizatioin of germ free mice with Bacteroides
thetaiotamicron induces expression of antibacterial peptides,
RegllIB and Regllly in paneth cells [51]. The antibacterial
lectin ReglIly isolates microbiota in the gut from intestinal
epithelial surface [52]. This MyD88 pathway dependent
production of ReglIly protects the intestinal mucosa against
bacterial invasion [53]. Colonization of gut with Bacteroides
thetaiotaomicron and B. fragilis suppresses pathogen-medi-
ated colitis [8]. Tryptophan metabolites from Lactobacilli
contribute to colonization resistance against Candida species
by promoting IL-22 response in innate lymphoid cells in the
gut [54].

Allergic Diseases

In developed countries, changes in human gut microflora
as a result of a western style diet or consumption of
antibiotics contribute to a higher incidence of atopy and
allergic diseases [55]. A significant reduction in intestinal
microbial species including Clostridium cluster 1V,
Faecalibacterium prausnitzii, Akkermansia muciniphila has
been reported in atoptic children [56]. In an allergic disease
mouse model, intestinal microbiota, particularly during early
infancy, play a critical role in regulating immune responses
to avoid atopy. In this respect, administration of antibiotics
in neonatal mice changes the composition of the bacterial
population and exacerbates experimental murine allergic
asthma [57]. An inverse relation between Helicobacter
pylori presence in human stomach and allergic asthma has
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been proposed [58]. Eradication of Helicobacter pylori by
antibiotics abolishes this protective effect [58].

Autoimmune Diseases
Type 1 Diabetes

It is well known that there is a sex-based difference in
susceptibility to autoimmune diseases with higher female to
male incidence rate of disease [59]. Differences in gut
microbial composition between two sexes play a major role
in this sex bias and contribute to the differential testosterone
levels in male and female NOD mice [60, 61]. Accordingly,
germ free NOD mice lose the sex bias for diabetes incidence
and both sexes show a similar rate of disease incidence [61].
Colonization of germ free NOD mice in early life with
commensal  bacteria  increases  testosterone levels
accompanied by protection from diabetes development [61].
The difference in number and composition of microbiota
between male and female mice occurs after puberty.
Analysis of microbiota composition before and after
adulthood demonstrates that male mice after puberty
gradually show variation from initial bacterial flora whereas
microbiota from female mice remain stable [61]. These
alterations in microbial composition are associated with rise
in male hormonal levels and conversely male NOD mice
undergoing castration show a bacterial composition similar
to female NOD mice [61]. This points to the critical role of
male hormones in shaping gut microflora. Transfer of gut
microbiota from adult male to young female NOD mice
induces elevation of testosterone levels that is beneficial in
reducing diabetes incidence [60]. Blocking of androgen
receptors in recipient mice abolishes this protective effect
[60] that points to the prime role of male hormone signaling
in disease prevention. Whereas androgenic hormones protect
mice from autoimmunity [62], castration of male mice
increases disease susceptibility [63]. The altered microbiota
and hormonal differences change the pathogenic potential of
T cells so that adoptive transfer of T cells from manipulated
NOD to NOD/SCID mice is no longer pathogenic in
recipient mice [60]. The contribution of microbiota to the sex
bias in susceptibility to autoimmune diseases might be
beyond mere modulation of hormonal levels [61]. Thus, a
two signal model proposed that both microbes and hormones
in parallel or in series have a role in the development of
autoimmune disease [61]. Hormones can change microbiota
composition but not all observed changes in microbiota
necessarily lead to change in diabetes incidence [61].
Colonization of germ free mice with gut microbiota
increases testosterone levels, but there is no linear
relationship between testosterone level and protection from
diabetes [61]. The incidence of diabetes development in
germ free MyD88-deficient NOD is high [64] and
monocolonization of these mice with SFB leads to protection
only in male mice that indicates both microbes and sex
hormones are critical for protection [61]. In a contrasting
report that indicates there is no evidence for the association
of germ free status with an increased incidence of diabetes,
monoclonization of female NOD mice with an aerobic spore
forming bacteria, Bacillus cereus, reduces disease incidence
[65]. In sum, sex hormones influence composition of gut
microbiota and alternatively, gut microbiota change sex
hormone levels.
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Nonobese diabetic mice deficient for MyD88 signaling
do not develop type 1 diabetes. However, germ free
MyD88 "~ NOD mice are highly susceptible to diabetes [64].
The composition of gut microbiota in MyD88-deficient
NOD mice and wild type NOD mice is remarkably different
[64]. It seems that the immune insult on islet cells occurs
independently from MyD88 pathway for the interaction of
gut microbiota with host cells. The other possibility would
be that different TLRs have opposing effects in host-
microbiota interaction and disruption of the MyD88
signaling pathway that is common for many TLRs masks the
potential clinical phenotype. Arguing against these
interpretations, the observed differences in microbiota
between wild type and TLR or MyD88 deficient mice could
be a mere reflection of different parental lineage of mice and
not genetic differences [16].

Microbial agents have a role in regulating IFN-y levels
[7] that could have a role in protection from type 1 diabetes.
Disruption in IFN-y signaling in NOD mice abolishes sex
based differences in susceptibility for diabetes development
[61]. NOD mice deficient for IFN-y or IFN-y receptor show
similar incidence of T1D in both sexes [61]. Of note, the
protection observed after immunotherapy with mycobacterial
products [66-69] also depends on IFN-y response [68] and
administration of recombinant IFN-y inhibits diabetes
process in NOD mice [70]. High levels of IFN-y and TNF-a
cytokines following adjuvant immunotherapy could have a
role in induction of apoptosis in diabetogenic T cells [67].
The mechanism of adjuvant effect is not restricted to IFN-y
regulation and all changes induced upon adjuvant admin-
istration might be primarily under influence of mycobacterial
adjuvant-induced alterations in compostion of gut micro-
biota. Adjuvant immunotherapy leads to upregulation of
Regll and Reglll genes in islet of NOD mice [69, 71]. This
effect is associated with an increase in IL-22 levels and
neutralization of IL-22 abolishes Regll and Reglll gene
expression [72]. Mice with IL-22 deficiency demonstrate
changes in gut microbiota compostion [73]. Thus, we
speculate that mycobacterial adjuvant-induced IL-22 res-
ponse could go through an intermediary stage for induction
of Reg family of antibacterial peptides from intestinal
epithelial cells that consequently changes gut microbiota in
NOD mice for protection from diabetes development.

Presence of SFB in the gastrointestinal tract of NOD
mice is associated with protection from diabetes [24]. While
SFB is associated with Thl7 cells in NOD mice, no
immunopathology is observed in these mice [24]. Th17 cells
are not always pathogenic [19, 39]. Th17 polarized cells after
mycobacterial adjuvant immunotherapy in NOD mice
acquire a regulatory phenotype with increased IFN-y, IL-17,
IL-22 and IL-10 [74]. Th17 cells might not be a main source
of pathogenic T cell as diabetes can happen even in the
absence of IL-17A and IL-17F genes in NOD mice [75].
However, the colonic lamina propria of NOD mice show
higher levels of Th17 cells and IL-23 mRNA that could be
abolished with the use of an anti-diabetogenic diet [76]. In
germ-free NOD mice, equal incidence of diabetes, high
incidence of insulitis, increased numbers of Th17 and Thl
cells, and diminished numbers of Tregs in mesenteric and
pancreatic lymph nodes compared to conventional NOD
mice have been reported [77]. In another diabetes model,
distinct bacterial populations have been reported in the
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diabetes resistant and diabetes susceptible Bio-Breeding
(BB) rats. The protection from diabetes in this animal model
is associated with Th17 response in the gut and draining
mesenteric lymph nodes. Oral transfer of Lactobacillus
Jjohnsonii from diabetes-resistant BB rats to diabetes -prone
BB rats conferred resistance to diabetes development [78].

Inflammatory Bowel Disease (IBD)

The human gut environment in a steady state shows a
tolerant immune response to microbes residing in the gut. In
this respect, an excessive derailed immune response to the
gut microbiota might be the main feature of IBD. Intestinal
microbiota could be protective against the development of
inflammatory diseases and there are reports of alterations in
gut microbial communities in patients with IBD [79, 80].
Elimination of gut flora in mice with antibiotics leads to
higher susceptibility to experimentally induced colitis [43].
Presence of clostridia clusters IV and XIVa was associated
with the presence of regulatory T cells in the gut lamina
propria [1] and maintenance of these bacterial species is
necessary for prevention of IBD. Intestinal microbiota
convert dietary fiber into short-chain fatty acids (SCFAs)
comprised of acetic, propionic, and butyric acids [81].
Interaction of these SCFAs with a G protein-coupled
receptor, GPR43, on gut epithelial cells is necessary for
dampening inflammatory responses in the gut [81], as mice
deficient for GPR43 receptor demonstrate exacerbated
intestinal inflammation and colitis. These SCFAs modulate
regulatory T cell responses in terms of number and function
in the gut and protect against colitis [82-84]. These three
metabolites demonstrate distinct modes of action [82].
Butyrate and propionate exclusively expand regulatory T
cells generated outside the thymus [82]. While acetate just
promotes accumulation of regulatory T cells in colon,
butyrate induces de novo generation of regulatory T cells in
the periphery [82]. These metabolites are known as histone
deacetylase (HDAC) inhibitors that regulate transcription of
Foxp3 gene epigenetically to confer more stability to Foxp3
function in regulatory T cells [82, 83]. Regulatory T cells
that are induced in periphery do not express Helios and
neurophilin 1, markers of thymic derived Tregs [83]. T cells
in the colon express high levels of GPR43 receptor in
response to microbiota and receptor engagement contributes
to homeostasis of colonic regulatory T cells and their
enhanced suppressive activity for prevention of colitis
development [84]. Butyrate also modulates the immune
response of macrophages in the gut lamina propria and
reduces the production of proinflammatory mediators, IL-6,
IL-12 and nitric oxide (NO) [85]. The CX3CR1"CD103"
intestinal macrophages are hyporesponsive to the gut
microbiota [85]. In comparison to regulatory T cells, the
anti-inflammatory effect of butyrate on lamina propria
macrophages is not mediated by GPR43 receptor but it acts
as a histone deacetylase (HDAC) inhibitor [85]. A feature of
human ulcerative colitis is a change in normal gut microbiota
such as Bifidobacterium and Bacteriodes that lead to reduced
production of SCFAs metabolites. Accordingly, germ free
mice are not able to produce SCFAs and therefore, are more
susceptible to inflammatory responses [81].

Interaction of TLRs with commensal bacteria in the gut
helps to maintain intestinal epithelial homeostasis [43].
Disruption of this protective mechanism with the use of
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broad spectrum antibiotics in mice and consequent changes
in the gut microbiota could lead to higher susceptibility to
colitis induction in animal models [43]. Deficiency in the
inflammasome pathway also leads to increased risk of
experimental colitis that is accompanied with changes in
commensal microbiota [86, 87]. Deficiency of NLRP6 in
mouse colonic epithelial cells results in expansion of the
bacterial phyla Bacteroidetes (Prevotellaceae) and TM7 and
high susceptibility to experimental colitis that is transferable
to normal wild type mice through sharing of gut microbiota
[18].

Commensal bacteria such as Bacteroides species could
induce disease only in IBD susceptible hosts that are
deficient for IL-10 and TGF-J cytokines and pre-treated with
antibiotics [88]. Antibiotics could be used to reduce the
burden of commensal bacteria for the treatment of IBD [89].
Spontaneous colitis in IL-10 deficient mice could be
prevented with the disruption of the MyD88 signaling
pathway [90], which indicates that IL-10 regulates
commensal bacteria driven colitis through the MyD88
pathway. The altered microbiota profile seen in IBD does not
necessarily reflect the etiology of the disease and there might
be a complex interplay between susceptibility genes and
microbiota for disease progression. The extent of
colonization of Bacteroides species in both IBD susceptible
and non-susceptible stains of mice is the same [88]. Despite
preponderance of Enterobacteriaceae in the intestine of the
IBD afflicted mice, transfer of these bacteria to IBD
susceptible mice does not induce disease [88].

In a TRUC mouse model, RAG deficient mice lacking
the T-bet transcription factor, spontaneous colitis devolops
that resembles human ulcerative colitis [91]. Gut microbiota
in these mice are different from wild type mice and transfer
of microbiota to wild type mice results in colitis induction
[91, 92]. T-bet regulates production of TNF-o in dendritic
cells to prevent pro-inflammatory response to gut microbiota
and thus excessive production of TNF-o by colonic dendritic
cells in the TRUC colitis model causes tissue injury in the
colon [91].

IL-22 from different cellular sources such as innate
lymphoid cells, Th17 cells and natural killer cells can have a
protective role in inflammatory bowel disease [73, 93, 94].
IL-22 induces the expression of Reg family of antimicrobial
peptides, RegIIIf} and RegllIly in colonic epithelial cells [95].
In the absence of antibacterial effects of IL-22, commensal
bacteria can be overwhemingly expanded. IL-22 deficient
mice have an altered composition of gut microbiota and
demonstrate more severe colitis in an experimental mouse
model [73]. Of note, the Lactobacillacae family of normal
gut microflora is reduced in these mice [73]. Gut microbiota
could be exchanged between co-housed mice because of
copraphagia in mice. Transfer of the altered microbiota of
IL-22 deficient mice to wild type mice during co-housing
leads to colitis development in wild type mice [73]. It is
likely that altered flora in turn have a negative feedback on
IL-23-IL-22 pathway. In contrast to its role in experimental
colitis, IL-22 deficient mice are not susceptible to
spontaneous colitis which indicates that IL-22 is not a sole
factor for maintaining intestinal homestasis [94]. However,
IL-22 from NK cells and CD4" T cells is protective in
experimental colitis induced by DSS or by transfer of
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CD4+CD45RB" cells to RAG deficient mice [94]. In a
steady state, intestinal IL-22 producing NKp46™ cells are
generated in response to commensal bacteria [96]. A dual
protective or pathogenic role for IL-22 in different disease
contexts has been reported. The cellular source of IL-22 or
accompanying other cytokines in those cells might dictate
the protective or pathogenic role of IL-22 in various disease
backgrounds.

Multiple Sclerosis and EAE Mouse Model

Oral administration of antibiotics can modify the
composition of gut microbiota to protect mice against
experimental autoimmune encephalomyelitis (EAE), an
experimental model of multiple sclerosis in humans [97].
This protective effect is associated with a reduced production
of inflammatory cytokines, an increased IL-10 producing
Foxp3" regulatory T cell response [97], and an enhanced IL-
10 producing regulatory CD5" B cell response [98]. A
probiotic mixture of lactobacilli also induces regulatory T
cells that leads to protection from EAE [99]. Oral treatment
with purified PSA antigen derived from human commensal
microbiota, Bacteroides fregilis protects mice against EAE
by enhancing CD103" dendritic cells for induction of
regulatory T cells in the gut, mesenteric, and cervical
lymphoid nodes [12, 13]. Similar to a NOD mouse model,
administration of mycobacyterial adjuvant has a protective
role in an EAE model [100].

Rheumatoid Arthritis

Analysis of gut microbiota from patients with recent-
onset rheumatoid arthritis (RA) indicates that there is a
strong association of the disease with the presense of
Prevotella copri and reduction in Bacteroides and other
beneficial gut bacteria [101]. Accordingly, the prevalance of
P. copri in patients treated for rheumatoid arthrits is similar
to healthy individuals [101]. Mice that are genetically prone
to arthritis and colonized with P. copri are more susceptible
to the experimental induction of colits with DSS [101]. In
animal mouse models of arthritis, germ free mice do not
develop arthritis but upon colonization with specific gut
microbiota demonstrate joint inflammmation [26, 102].
Colonization of germ free mice with segmented
filammentous bacteria, SFB, is associated with an elevated
Th17 cell response and exacerbation of arthritis [26]. Mice
deficient for an IL-1 receptor antagonist (IL-1ra) develop
arthritis spontaneously [102]. While these mice in germ free
status do not develop arthritis, colonization with a specific
gut microbiota, Lactobacillus bifidus results in rapid onset of
arthrits [102]. Differential engagement of Toll like receptors
by normal microflora impacts the pathogenesis of arthritis in
this mouse model. Deficiency for TLR2 in these mice
exacerbates the disease, lowers regualtory T cells and
enhances Thl response, whereas deficiency in TLR4 protects
from arthritis and attenuates Th17 response [102]. There
might be a connection between the genetic background of
host and the compostion of gut microbiota. Analysis of gut
microbiome in HLA-DR transgenic mice carrying either the
RA susceptible or resistant HLA-DR alleles indicates a
differential pattern with the dominance of Clostridium
species in RA susceptible transgenic mice [103].
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MICROBIOTA AND HEALTH

The whole bacterial genome from the human gut has
been characterized with metagenomic sequencing [104-106].
Analysis of microbiota that could be grown in cultures in
vitro indicates that healthy people have similar bacterial
species in gut [104]. However, culture independent
sequencing shows variations in bacterial species between
human populations [104]. Factors such as genetic
background, age, diet and consumption of antibiotiotics in
host together with environmental agents contribute to
variability in the composition of gut microbiota [104].
Monozygotic and dizygotic twins have similar microbiota
which indicates that environmental factors are more
important in shaping individual variations [104].

Nutrition and Obesity

Diet can change the composition of gut microbiota to
promote obesity. Germ free mice are resistant to obesity that
is induced by a western style high fat diet [107]. Transfer of
microbiota from mice with diet-induced obesity to germ-free
recipient mice promotes fat deposition [108]. Lymphotoxin {3
receptor (LTPR) regulates the microbiota in the gut to induce
obesity after intake of high fat diet [109], which indicates
that both genetic background of host and composition of
microbiota are involved in obesity. A hallmark of diet-
induced obesity is the loss of diversity in microbial
communities and lower frequency of SFB in the gut [109].
Diet-induced obesity in mice is transferable from susceptible
to resistant mice after co-housing of two groups of mice
[109]. A High fat diet induces a LTBR dependent activation
of the IL-23-IL-22 cytokine pathway in innate lymphoid
cells to produce IL-22 [109], which is a key player in the
process of diet-induced obesity and reduction of SFB
colonization [109]. IL-22 driven production of the
antibacterial peptide, Regllly, limits the outgrowth of SFB in
the gut [109]. Study of fecal microbial communities in twin
individuals, being either lean or obese, has shown phylum-
level differences in the gut microbiota [110]. Long-term diet
modulates composition of gut microbiome so that diets rich
in protein and fat are associated with presence of Bacteroides
species whereas diets rich in carbohydrates are associated
with Prevotella species [111]. Analysis of gut microbiota in
two groups of children from Europe and Africa showed that
there is a higher number of Bacteroidetes phylum (Prevotella
and Xilanibacter species) and lower number of Firmicutes
phylum in African children compared with the European
children [112]. The diet of the African children was low in
fat and protein and rich in carbohydrate. The presence of
specific bacterial communities in these children resulted in
more production of short chain fatty acids (SCFA) [112].
Obesity is associated with a decrease in Bacteroidetes
phylum and an increase in Firmicutes phylum in the gut
[113]. Colonization of germ-free mice with microbiota from
genetically leptin-deficient obese mice results in an increase
in total body fat in recipient mice [113, 114]. Microbiota in
obese animals are adapted to more efficient energy
harvesting and higher absorption of nutrients in the diet
[114]. Diets enriched with saturated fat induce dysbiosis in
the gut, which leads to a high incidence of colitis in IL-10
deficient mice [115]. Dietary derived natural ligands for aryl
hydrocarbon receptor (AhR) help maintain intestinal



Reciprocity in Microbiome and Immune System Interactions

intraepithelial lymphocytes and administration of AhR
ligands promotes expansion of regulatory T cells [116].
Disruption of this pathway due to changes in diet alters the
composition of gut microflora and local immune response
[42]. In NOD mice, gluten free diet changes microbial
communities in the gut and lowers the incidence of diabetes
[117]. NOD mice that receive acidified rather than neutral
drinking water show an altered compostion of gut microbiota
that is associated with more suceptiblity to the development
of insulitis and hyperglycemia [118]. Diet in the long run has
an influence on the balance of major bacterial phyla by
changing the ratio of Bacteroides to Firmicutes in the gut
[108].

Comparative analysis of germ free and conventional mice
has revealed a profound effect of the gut microbiome on amino
acid metabolites [119]. Deficiency in dietary tryptophan
changes intestinal microbial composition [120]. Metabolites
derived from tryptophan metabolism by indolamine dioxy-
genase (IDO) are involved in the generation of regulatory T
cells via the aryl hydrocarbon receptor pathway [54]. Trypto-
phan metabolites from microbiota such as Lactobacilli are
also involved in intestinal homeostasis and colonization
resistance [54]. These microbiota-derived tryptophan meta-
bolites promote IL-22 responses in innate lymphoid cells in
the gut [54]. Tryptophan deficiency leads to dysregulation in
the gut immune response, an altered profile of gut microbiota
and predisposition to opportunistic infections. The pathway
of Tryptophan metabolites-AhR-IL-22 plays a critical role in
resistance against colonization by Candida species at muco-
sal surfaces [54]. IL-22 from innate immune cells can regu-
late Th17 cell responses. Reduced levels of IL-22 in innate
immune cells in AhR deficient mice result in the expansion
of SFB in the gut and subsequent expansion of Th17 cells in
the intestine leading to colitis development [121].

THERAPEUTIC INTERVENTIONS,
AND MICROBIOME

PROBIOTICS

Probiotics are designed to restore gut microbial
composition to normal state and adjust the immune system.
Suppression of effector response and induction of regulatory
T cells has been reported with the consumption of probiotics
[122]. Colonization of mice by Clostridium strains promotes
regulatory T cell response in the gut [1]. Oral administration
of Clostridium species during the early life in mice is benefi-
cial in preventing colitis [1]. Consumption of Bifidobact-
erium infantis in mice leads to an increase in the number of
regulatory T cells and protection against Salmonella typhi-
murium infection [123]. Bifidobacteria produce acetate that
improves intestinal defense against enterohaemorrhagic Esc-
herichia coli [124]. Also, Lactobacillus rhamnosus and Bifi-
dobacterium infantis have a protective effect in the
prevention of colitis development [125]. Perturbation of the
balance between major bacterial phyla in the gut microbiota,
more specifically, a decreased level of a member of Firm-
icutes, Faecalibacterium prausnitzii, is associated with a
higher risk of Crohn’s disease [126]. Oral administration of
anti-inflammatory commensal F. prausnitzii reduces the
severity of experimental colitis by correcting the dysbiosis
[126]. Fecal microbiota transplantation has shown to be
promising in the treatment of Clostridium difficile infections
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[127]. Fecal transfer from SFB positive donors suppresses
type 1 diabetes in recipient NOD mice [118].

In conclusion, the rapidly growing knowledge of micro-
biome-host interactions has bought up new avenues in under-
standing immunopathological basis of disease and gives a
promising outlook in conceiving novel therapeutic protocols
in health and prevention of diseases.

LIST OF ABBREVIATIONS

AID = Activation Induced Cytidine Deaminase
Tregs = Regulatory T cells

PSA = Polysaccharide Antigen

TLR = Toll Like Receptor

NLR = NOD Like Receptor

ASF = Altered Schaedler Flora

SFB = Segmented Filamentous Bacteria
TNF-o = Tumor Necrosis Factor alpha

iNOS = Inducible Nitric Oxide Synthase

AhR = Aryl hydrocarbon Receptor

iNKT cells = Invariant Natural Killer T cells
NOD mice = Non Obese Diabetic mice

SCID mice = Severe Combined Immunodeficiency mice
IBD = Inflammatory Bowel Disease

HDAC = Histone Deacetylase

DSS = Dextran Sulfate Sodium

EAE = Experimental Autoimmune Encephalomyelitis
RA = Rheumatoid Arthritis

LTBR = Lymphotoxin 3 Receptor

IDO = Indolamine Dioxygenase
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