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Abstract Breast cancer that has metastasized to the brain
presents difficult clinical challenges. This diagnosis comes
with high mortality rates, largely due to complexities in early
detection and ineffective therapies associated with both dor-
mancy and impermeability of the blood–brain barrier (BBB).
Magnetic resonance imaging (MRI) is the current gold stan-
dard for diagnosis and assessment of brain tumors. It has been
used clinically to investigate metastatic development as well
as monitor response to therapy. Here, we describe preclinical
imaging strategies that we have used to study the development
of brain metastases due to breast cancer. Using this approach,
we have identified three subsets of metastatic disease: perme-
able metastases, nonpermeable metastases, and solitary, dor-
mant cancer cells, which likely have very different biology
and responses to therapy. The ability to simultaneously mon-
itor the spatial and temporal distribution of dormant cancer
cells, metastatic growth, and associated tumor permeability
can provide great insight into factors that contribute to malig-
nant proliferation. Our preclinical findings suggest that stan-
dard clinical detection strategies may underestimate the true
metastatic burden of breast cancer that has metastasized to the
brain. A better understanding of true metastatic burden in
brains will be important to assist in the development of more
effective chemotherapeutics—particularly those targeted to

cross the BBB—as well as detection of small nonpermeable
metastases.

Keywords Breast cancer .Metastasis . Dormancy .MRI .

Iron . Nanoparticles

Introduction

Breast cancer metastasis to the brain is a serious and increas-
ing medical problem. In this review, we will discuss the
clinical needs for better understanding of metastases of breast
cancer to the brain and discuss studies in which novel preclin-
ical magnetic resonance imaging (MRI) approaches are shed-
ding light on this clinically important problem.

Breast cancer and metastasis

Breast cancer is the most common cancer (excluding
nonmelanoma skin cancers) in both American and Canadian
women [1, 2], with 232,340 new cases expected in the USA
[3] and 23,800 in Canada [2] this year alone. Early detection
and improvements in both screening technology and systemic
treatment are believed to have contributed to a 42 % decrease
in mortality rate in Canada since its peak in 1986; the age-
standardized mortality rate has declined from 32 deaths per
100,000 in 1986 to 18.7 deaths expected per 100,000 in 2013
[1, 2]. In the USA, it is estimated that 39,620 women will die
from this disease in 2013 [3]. These mortality rates have been
declining since the 1990s and are currently the lowest in
Canada since 1950 similar trends are being seen worldwide.
Despite this trend, breast cancer is still the second leading
cause of cancer death in both American and Canadian women
[1, 2]. The relatively high mortality rate is primarily attributed
to the propensity of breast tumors to metastasize to regional
and distant sites, where current systemic treatments, such as
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chemo-, hormone, and targeted therapies ultimately fail. Com-
mon locations for breast cancer metastases to develop are the
lung, liver, bone and brain [4, 5].

Cancer metastasis is an inefficient process [4, 6]. High
numbers of circulating cancer cells are often present in blood
samples from cancer patients; however, few actual metastatic
tumors result [7, 8]. This suggests that cancer cell survival
during the metastatic cascade must be low, or conditions for
cell proliferation in the microenvironment are highly specific.
The metastatic cascade begins with primary cancer cells
gaining the ability to migrate and invade the surrounding
stroma and then intravasate into nearby vasculature. They
must survive in the circulation until their eventual arrest at a
distant organ; from here, cells extravasate from the blood
vessel into the surrounding tissue. Studies indicate that cells
survive both the intravasation and extravasation processes
with high efficiency; however, a cell’s ability to thrive once
at a distant site is much less efficient [4, 9].

Brain metastases of breast cancer

Brain metastasis is a terrifying diagnosis and occurs in 20–
30 % of metastatic breast cancer patients [10]. The incidence
of brain metastases is increasing, which is believed to be due to
the introduction of more sensitive diagnostic methods, im-
proved systemic therapies leading to improvements in extra-
cranial control and survival, and more frequent use of screen-
ing studies [11, 12]. Brain metastasis can occur in patients with
all subtypes of breast cancer; however, several factors have
been identified that put particular breast cancer patients at
higher risk. Risk of brain metastasis is high for patients who
(1) are young, (2) have lymph node-positive disease and/or
other systemic metastases, (3) are diagnosed with “triple-neg-
ative” breast cancer (ER-, PR-, HER2 unamplified), and/or
whose tumors (4) overexpress HER2 [13, 14]. In patients with
the HER2-positive metastatic breast cancer, the frequency of
brain metastasis has been reported to be as high as 50 % [15].
Brain metastases have emerged as a major challenge affecting
morbidity and mortality of patients with HER2-positive meta-
static breast cancer [16].

Dormancy

Once a cancer cell spreads to a distant site, it may experience
one of three fates: (1) it may die, (2) it may begin to proliferate,
or (3) it may remain viable but dormant (“nonproliferative”) [4,
9, 17]. If cancer cells survive in the metastatic organ, they may
coexist in three forms. Solitary cells may remain in a state of
quiescence whereby they remain viable but nonproliferative
for an extended period of time; this process of dormancy is
likely responsible for clinical recurrence. If solitary cells begin
to proliferate, they may form “dormant” micrometastases—
proliferative tumors where net tumor size is unchanged due to

balanced proliferation and apoptosis—or they may become
actively growing and recruit vasculature by either angiogenic
or vessel co-option strategies. These three states of existence
represent vastly different cancer biology with significant im-
plications for detection, therapy, and patient outcomes. The
factors that control the balance between dormancy and prolif-
eration are poorly understood but are subject of much ongoing
research [18–21].

Dormancy, both at the single cell level as well as at the
micrometastasis stage, is believed to provide a reservoir of cells
that lie in wait until some elusive trigger causes them to prolif-
erate and progress into clinically relevant tumors. This phenom-
enon presents a significant treatment challenge because its biol-
ogy deviates from traditional understanding of malignant cancer
growth. Current chemotherapies target highly proliferating cells
and therefore dormant cells persist unaffected [22, 23].

Treatment of brain metastases

Current therapies for brain metastases include steroids, surgi-
cal excision of solitary or small numbers of metastases
(oligometastatic disease), stereotactic radiosurgery for small
(<3 cm) lesions not amenable to surgery, and whole brain
radiotherapy (WBRT). These therapies are considered to be
palliative, rather than curative. Optimization of these therapies
and combination treatment strategies have improved progno-
sis; however, the median time from diagnosis of brain metas-
tasis to death is still grim at 4–6 months, and only 20–40 % of
patients are alive at 1 year [24].

Unique features of brain metastases complicate treatment.
Most chemo- and molecular systemic therapies are ineffective
against brain metastases, due to their inability to cross the
intact blood–brain barrier (BBB). The BBB is a combination
of endothelial cells, pericytes, and astrocytes; under normal
circumstances, they act together to protect the brain by con-
trolling the passage of substrates from the blood into the brain
parenchyma. In the local area of a tumor, this is sometimes
referred to as the blood–tumor barrier (BTB). A prime exam-
ple is the monoclonal antibody trastuzumab (Herceptin®).
Trastuzumab inhibits the growth of a variety of cancer cells
overexpressing HER2 in cell culture, animal models, and
clinical trials [25–28]. Its success in clinical trials with breast
cancer led to US FDA approval for its use in the treatment of
metastatic breast cancer when combined with chemotherapy.
Many studies have reported high rates of central nervous
system (CNS) recurrences in HER2-positive breast cancer
patients treated with trastuzumab [29–31]. Typically, brain
metastases manifest while systemic metastases are still
responding to trastuzumab-containing regimens. In fact,
trastuzumab prolongs overall survival in HER2+ patients with
brainmetastases. This type ofmixed response is due to the fact
that trastuzumab cannot cross the BTB; hence, its role is
limited to controlling extra-CNS metastases [32].
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Management of breast cancer metastasis is further compli-
cated by high recurrence rates, sometimes even decades after
apparent successful treatment of the primary tumor. Even if
patients initially respond to WBRT, about half will experience
recurrence in the brain within 1 year [33] either at the site of
previous lesions, or elsewhere.

Early detection and treatment of breast cancer—prior to the
dissemination of cancer cells to distant sites and start of meta-
static growth—is associated with favorable outcomes and high
probability of cure or long-term survival. On the contrary,
viable treatment options become limited, and prognosis is poor,
if cancer is identified after it has metastasized. Therefore, the
ability to detect cancer and metastasis at the earliest steps is
paramount to patient survival. MRI provides an ideal means to
detect and monitor brain metastases due its high resolution and
good soft tissue contrast without the use of ionizing radiation.

Magnetic resonance imaging in the study of metastasis
in the brain

Clinical MRI for brain metastases

For the clinical evaluation of brain metastases, MRI is cur-
rently the gold standard. Gadolinium-DTPA (Gad) contrast-
enhanced MRI is widely regarded as the most accurate diag-
nostic imaging modality for brain tumors [34]. Gad has a
molecular weight of 590 Da and is routinely used in MRI to
identify BBB breakdown [35]. In patients, MRI is performed
before and after intravenous (IV) Gad. In brain tumors, Gad
leaks from the vascular system into the interstitial space only
when the BBB is disrupted, that is, when the tumor increases
the permeability of preexisting blood vessels or induces the
growth of leaky blood vessels [36]. This is indicated by an

Fig. 1 Characterization by MRI of two human breast cancer cell lines
producing brain metastases in mice. a Mean metastases volumes in the
whole brain for MDA-MB-231-BR-HER2 and MDA-MB-231-BR cells.
The mean volumewas significantly greater for 231-BR-HER2mice (gray
bars) compared with 231-BRmice (white bars) at every time point (*P <
0.05). The growth rates were 67.5 %, with R2=0.98 for 231-BR-HER2
metastases (solid line) and 54.4 % with R2=0.99 for 231-BR metastases

(dashed line). b , c Relative distribution of metastases in the brain for
231-BR-HER2 and 231-BR mice. The percent distribution of tumors in
each brain region is shown for all time points for 231-BR-HER2mice (b)
and 231-BR mice (c). The asterisks denote a statistically significant
difference (P<0.05) between the two cell lines. Adapted with permission
from Perera et al. [45]

J Mol Med (2014) 92:5–12 7



increase in signal intensity (enhancement) of the tumor in the
post-Gad image.

Since longitudinal imaging can be performed with MRI, it
provides an excellent tool for investigating tumor growth and
responses to treatment over time. Many standard MRI pulse
sequences have been applied to study brain tumors clinically;
these include anatomical MRI, dynamic contrast-enhanced
MRI—this provides information about tumor vasculature
[37], and diffusion-weighted MRI [38]—where water diffu-
sion patterns are related to tissue structure at the molecular
level. The combination of these MRI techniques and can
reveal characteristics of normal tissue and highlight important
information about disease states.

Imaging the development of brain metastases due to breast
cancer in preclinical models

To study breast cancer metastasis to the brain, mouse models
have been developed using human breast cancer cell lines
[39–42]. Only a handful of models specific to breast cancer
brain metastasis have been described. A physiologically rele-
vant and reliable model system for studying metastasis should
include as many of the steps in the metastatic cascade as
possible. The best-characterized models for brain metastases
utilize the direct injection of cells into the left cardiac ventricle
[40, 41]. Cells injected by this route will be delivered to many
organs via the arterial blood flow, and about 3.5–9.5 % of
these cells will be delivered to the brain, due to cardiac output
[43, 44], where they will have the opportunity to colonize if
there is a match between the cells’ growth requirements and
the microenvironment of the brain. In preclinical studies, brain
metastases have been characterized mainly by histology, im-
munohistochemistry, and fluorescence microscopy in these
models. These techniques allow for measurements of the
numbers of metastases and the cross-sectional area of metas-
tases and for an analysis of cellular markers. Although these
methods are able to provide detailed molecular and morpho-
logic information, they are limited to ex vivo studies, and only
an end-point analysis is permitted. Due to its high spatial
resolution, sensitivity, noninvasive nature, and diverse set of
image contrast possibilities, MRI provides an ideal opportu-
nity to study the dynamic process of cancer and brain metas-
tasis in vivo.

Awealth of information can be derived about the develop-
ment of metastases from in vivo three-dimensional (3D) MRI.
MRI permits multiple scanning sessions to be performed to
monitor the temporal features of metastasis, whereas histology
only permits a single snapshot in time. MR images can also be
acquired in three dimensions, allowing the whole brain to be
analyzed in all spatial orientations and without gaps between
slices; this is unlike histologic analyses where it is a practical
impossibility to analyze the whole brain, section by section.
Metastases volumes can be measured from 3D MRI, which

represent their size in vivo, although similar measurements
taken from histologic tissue sections must account for shrink-
age and deformation due to the chemical processing. The
analysis of volumes over time can provide information about
growth rates for individual metastases. Overall, MRI can
provide a much more complete picture of brain metastasis
than can traditional histology.

3D MRI has been used to monitor the spatial and temporal
development of brain metastases in the whole mouse brain.
Perera et al. used MRI to compare the growth of 231BR and
231BR-HER2 brain metastases [45]. The number of

Fig. 2 Detection of iron-labeled breast cancer cells in the mouse brain by
MRI. 100,000 iron-labeled MDA-MB-231BR/EGFP cells were injected
into the left ventricle of the heart for delivery to the brain, using proce-
dures as described [50]. Image acquired on day 0 (top ) shows
hypointensities (dark spots) that correspond to single cells and small
clusters of cells. On day 28 (bottom), a surface rending of the cells and
tumors in the brain at the endpoint of the experiment is presented. The
brain metastases are indicated in green . The iron-retaining,
nonproliferative cancer cells that persist in the brain are indicated in red
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metastases and their volumes were quantified over the entire
brain of each mouse at multiple time points. 231BR-HER2
cells produced the same numbers of metastases as 231BR but
they were significantly larger. The growth rate for 231-BR-
HER2 metastases was 67.5 % compared with 54.4 % for the
231-BR metastases. More than 50 % of metastases were
located in the cortex and 25 to 30 % of metastases were
identified in the central brain for each time point and for mice
injected with either cell line (Fig. 1).

Imaging dormant cancer cells

Nonproliferative cancer cells have been imaged in vivo using a
novel procedure referred to as cellular MRI . Cellular MRI is

achieved by pre-labeling cancer cells with iron oxide nanopar-
ticles prior to their administration. The presence of intracellular
iron causes a distortion in the local magnetic field resulting in
abnormal signal hypointensity in iron-sensitive images. There-
fore, iron-labeled cells appear as regions of signal loss or black
holes in the MR images. Heyn et al. have demonstrated that
even single iron-labeled cells can be detected in vivo [46].

Cellular MRI is most often employed to image cells after
their transplantation. For example, many different types of
stem and progenitor cells have been successfully tracked
in vivo with MRI using iron oxide and studies show there is
minimal impact on cell function or phenotype at a wide range
of iron loading levels [47–49]. Very few groups have used
cellular MRI to study cancer cells because the iron label is

Fig. 3 Volumemeasurements of Gad-enhancing and nonenhancing brain
metastases on post-Gad T1-weighted spin echo images in mice. a At both
mid and late time points, the average volume of enhancing metastases
(those appearing hyperintense/white on the post-Gad images) was signif-
icantly larger than nonenhancing metastases (P <0.05). However, there
was a wide range of volumes for both enhancing and nonenhancing
metastases (b). There also appeared to be a minimum volume threshold

of enhancingmetastases, although being larger than this did not guarantee
enhancement. c 3D volume rendering of a mouse brain in the coronal
plane, from the same mouse at each time point. Gad-enhancing metasta-
ses are rendered in red and nonenhancing metastases are shown in green .
Neither volume nor position in the brain appears to have an influence on
whether metastasis was enhanced or not. Adapted with permission from
Percy et al. [53]
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diluted over time in proliferative cells, leading to loss of label
and therefore loss of cell detection. However, cancer cells that
are nonproliferative, or slowly cycling, will retain the iron
label and the fate of these cells can be tracked with MRI.

Heyn et al. were the first to identify nonproliferative cancer
cells in the brain using iron oxide nanoparticles [50]. MRI was
used to follow the fate of 231BR cells labeled with micron-
sized iron particles (MPIO) for 1 month; images were obtain-
ed on days 0, 4, and 7 and then weekly. MPIO-labeled solitary
cells, and small clusters of cells, were identified as regions of
signal void in the mouse brains. At the experimental endpoint
(day 28 post cell injection), there were three distinct cell fates
(Fig. 2). There was a population of cells that was called
“transient” (94 %); these were discrete signal voids in images
on day 0 that disappeared over time (usually between days 0
and 7). There was a population of cells that were called
“proliferative” (1.5 %); in images acquired on day 0, these
cells appeared as discrete regions of signal loss, but they were
replaced by a tumor in images on day 28. Finally, there was a
population of cells that was referred to as “nonproliferative”
(4.5 %); these were discrete signal voids in images on day 0
that appeared unchanged on day 28.

Imaging the integrity of the blood–tumor barrier

The integrity of the local BBB, also referred to as the BTB,
can be compromised in the presence of a tumor and become
increasingly permeable. Several studies have now shown that
there is considerable heterogeneity in the permeability of
individual brain metastases; however, little is known about
how or when brain metastases become more permeable [51,
52]. Percy and colleagues used Gad-enhanced MRI to track
the development of brain metastases due to breast cancer in a
mouse model [53]. At early time points, small metastases were
uniformly nonpermeable. Many of the metastases became
permeable with time, suggesting that as they develop, changes
to the tumor vasculature compromise the integrity of the BBB.
At the last imaging time point, there were approximately four
times as many Gad-permeable metastases as nonpermeable.
Gad-permeable metastases were significantly larger than
nonpermeable tumors; however, size alone was not sufficient
to predict permeability (Fig. 3).

The impermeability of the BBB hinders the delivery of
imaging contrast agents and systemic therapies to the brain;
this raises two important issues to consider for clinical trans-
lation. First, at early time points, small metastases in the
mouse model were uniformly nonpermeable [53]; this sug-
gests that some brain metastases in patients may currently be
undetectable on typical T1w MR images and patient tumor
burden is not being accurately assessed. Secondly, the intact
BBB prevents most chemo- or molecular-targeted therapies
from reaching these tumors. MRI offers a means to noninva-
sively assess the permeability status of brain metastases,

which could be important for understanding the process of
true metastatic burden at early time points and for evaluating
the development and monitoring the effectiveness of BBB-
permeable chemotherapeutic drugs.

Limitations of MRI to study brain metastasis

MRI has some limitations for preclinical investigations of
brain metastases. For anatomical imaging, there is a limit to
the spatial resolution that can be achieved, even with dedicat-
ed animal imaging systems. As a result, micrometastases,
which can be readily detected by traditional histological
methods, can be missed in MR images. The cost for
performing longitudinal MRI studies can also be limiting.
MRI systems are expensive and are typically operated by cost
recovery, meaning that scanning is charged hourly. In vivo
MRI of mice requires scanning sessions on the order of hours.
Other imaging modalities, such as optical imaging, are much
less expensive and allow for high throughput imaging but
have very limited depth penetration.

Cellular MRI also has drawbacks and concerns. For one
thing, there are other sources of signal loss in images that are
sensitive to iron (for example, the bones, air, and blood
products associated with hemorrhage), making it difficult to
unambiguously identify regions containing labeled cells. In

Fig. 4 Schematics of brain metastatic burden due to breast cancer. In a ,
the green-colored brain tumors represent those brain metastases that are
detected by Gad-enhanced MRI; these metastases have a compromised
blood–tumor barrier. In b , these metastases are again shown in green
along with (1) yellow-colored brain tumors that are detectable by MRI
using the bSSFP sequence (these metastases do not have a disrupted BTB
and therefore are not detected byGadolinium-enhancedMRI) and (2) cpo
regions of signal void that represent nonproliferative or dormant cancer
cells which may be present in the brain but which also would go
undetected by conventional MRI techniques. b is based on our preclinical
findings reviewed here. Thus, current clinical assessment of metastatic
burden in brain in breast cancer patients using Gad-enhanced MRI may
provide an underestimate of true metastatic burden. Clinical management
decisions may be quite different depending on the ability to detect true
metastatic burden in brain. Additionally, the three categories of metastatic
burden depicted in b represent distinct therapeutic targets, for which new
therapeutic approaches are needed

10 J Mol Med (2014) 92:5–12



addition, iron-labeled cell quantification is difficult. A number
of groups have shown that the contrast generated by iron-
labeled cells increases with the amount of iron/voxel but this is
only linear at low iron loadings and the change in contrast
reaches a saturation plateau at higher iron loadings. When
quantifying the presence of iron-labeled cells over time, most
studies measure the “signal void volume” or the “number of
black pixels” and present the change relative to the first
imaging time point.

Conclusions and clinical implications

The metastatic burden in the brain as detected clinically by
current methods may significantly underestimate the true met-
astatic burden (Fig. 4a). Gad-enhancing metastases can be
detected by current, gold standard contrast-enhancing MRI
procedures. However, within the brain, there may also exist a
subset of macroscopic metastases that do not take up the
contrast agent and therefore would go undetected (Fig. 4b).
Furthermore, there may be a population of dormant, solitary
cancer cells present in the brain (Fig. 4b). These two catego-
ries of cancer cells represent distinct therapeutic targets and
may be spared by therapies that target permeable metastases
and actively dividing cancer cells, leading to later disease
recurrences. This poses a challenge for effective cancer detec-
tion and therapy [54].

The best treatment for oligometastases is the subject of
ongoing debate [55–58]. In some cases, focal treatment of
oligometastatic disease (surgery, stereotactic radiosurgery) of
single/few metastases prolongs overall or progression-free
survival, while in other cases, disease progression occurs often
at sites removed from the treated lesions. These recurrences
are presumably due to undetected metastatic burden, either as
nonenhancing macroscopic lesions or dormant solitary cancer
cells. In order to advance therapeutic treatment options, we
need improved methods to detect true metastatic burden in
patients and a better understanding of the biology of different
subsets of metastatic disease—such as dormancy and variance
in tumor permeability. Translating this knowledge from pre-
clinical experiments to the clinical setting is vital to under-
standing metastatic growth, recurrence, and patient survival.
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