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Abstract: In an extreme mass-ratio binary black hole system, a non-equatorial orbit will list (i.e. increase its angle
of inclination, ι) as it evolves in Kerr spacetime. The abutment, a set of evolving, near-polar, retrograde
orbits, for which the instantaneous Carter constant (Q) is at its maximum value (QX ) for given values of
latus rectum (̃l) and eccentricity (e), has been introduced as a laboratory in which the consistency of dQ/dt
with corresponding evolution equations for dl̃/dt and de/dt might be tested independently of a specific
radiation back-reaction model. To demonstrate the use of the abutment as such a laboratory, a derivation
of dQ/dt, based only on published formulae for dl̃/dt and de/dt, was performed for elliptical orbits on the
abutment. The resulting expression for dQ/dt matched the published result to the second order in e. We
believe the abutment is a potentially useful tool for improving the accuracy of evolution equations to higher
orders of e and l̃−1.
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1. Introduction

An extreme mass-ratio binary black hole system (EMRI) iscomposed of a primary object, which can be a Kerr blackhole of mass M ∼ 106 − 107 solar masses with a spin1
∗E-mail: komoro@uwo.ca
†E-mail: valluri@uwo.ca
‡E-mail: mhoude2@uwo.ca1 Our use of S̃ for black hole spin arose during our initial
studies of the work of Barack and Cutler [24].

S̃ = |J| /M2 (where J is the spin angular momentum), andan orbiting secondary object of mass m ∼ 1 − 10 so-lar masses. Theoretical models to describe the orbitalevolution of the secondary object in various situationshave been derived and presented in the literature: cir-cular orbits in the equatorial plane of the primary object[1–6], elliptical orbits in the equatorial plane [7–13], andan extensive body of research on circular or elliptical or-bits inclined with respect to the equatorial plane [14–31].Such models are used to generate hypothetical gravita-tional waveforms (GW), which provide templates for usein the detection of gravitation wave signals by pattern
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recognition (Punturo et al. [32]). The detection of GWradiation by the Earth-based Laser Interferometer Grav-itational Wave Observatory (LIGO) or the Laser Interfer-ometer Space Antenna (LISA) depends fundamentally onthe availability of correct templates [13, 33, 34].Performing direct observations of relativistic effects is animportant challenge. The Solar System affords one theopportunity to observe and model the motions of naturaland artificial bodies in Kerr spacetime in the weak-field,slow motion limit [35, 36]; and recent measurements ofartificial-satellite orbits have produced estimates of theLense-Thirring precession to an accuracy of 10% [35]. Fur-ther, the discovery of Sagittarius A*, a massive black hole(MBH) of ∼ 4.0 × 106 solar masses, at the centre of ourgalaxy (see [37–39] and references therein), offers a newopportunity to study Kerr spacetime by the observation ofvarious stars in inclined, highly elliptical orbits, and bythe analysis of their orbital dynamics [37–40]. Relativis-tic effects are difficult to discern since the orbital periodsof the stars are in the tens of years [40], and for orbitsthat come close to the MBH, tidal disruption is a concern([40] and see Appendix B in [37]); yet, observation hasgreat potential to aid in the study of Kerr spacetime. Inthe case of an EMRI, unfortunately, the part played bya theoretician is a fiduciary one; thus, the introduction oftools with which the evolution equations can be tested forconsistency is most beneficial: the abutment is one suchtool, but it is not intended to replace existing methods.The concept of the abutment, a boundary that defines aset of near-polar retrograde orbits, was developed and in-troduced by P. G. Komorowski in his Doctoral thesis [41]and in a previous work [42] (we shall review the abutmentin detail in Section 2.2.1); two uses of the abutment hademerged: first, it suggested a means of testing the con-sistency of the evolution of the Carter constant of circularorbits (dQ/dt) with respect to that of the latus rectum(dl̃/dt); and second, it permitted a numerical analysis ofthe rate of change of the orbital angle of inclination, ι, withrespect to l̃ ((∂ι/∂̃l)min
) for circular orbits constrained toevolve along the abutment. In this work we shall extendthese uses to orbits of non-zero eccentricity (0 ≤ e ≤ 1)by testing the consistency of expressions for dQ/dt withexpressions for dl̃/dt and de/dt, and we shall performan analytical treatment of ι and the list rate of the same.Further, a physically realistic orbital evolution follows theabutment (QX ) in only one case, the evolution of an orbitin a Schwarzschild black hole (SBH) system (S̃ = 0). Weshall now consider the general case of an evolving orbitthat intersects the abutment, QX , tangentially at a singlepoint (contact of the first order (see 99 in [43])) as it fol-lows a path defined by Qpath. Further, by performing ouranalysis for elliptical orbits, the abutment becomes a two

dimensional surface that defines the maximum value of Qfor given values of e and latus rectum, l̃ = l/M . Thereforeone must view the abutment as a set of contiguous pointsrather than a path to be followed by an evolving orbit;and it is at these points that the derivatives, ∂QX /∂̃l and
∂QX /∂e, fix the corresponding slopes of Qpath. But as re-ported in [42], the second-order effect2 must be includedwhen working with ι at the abutment.In Section 2 we shall analytically derive the formula for
ι for elliptical orbits on the abutment, and thus confirmthe result for (∂ι/∂̃l)min [42], which was derived numeri-cally for circular orbits. In addition, we shall analyticallyderive ∂ι/∂e for elliptical orbits that evolve on the abut-ment. In Section 3 we shall include the effect of the secondderivative of Qpath (i.e. the second-order effect) by intro-ducing reductive ansätze for circular and elliptical orbits,and thus create a more physically realistic model for anevolving orbit at the abutment.Because our abutment model is independent of any spe-cific radiation back-reaction model, we now have a labo-ratory that allows us to perform tests of established listingformulae. In Section 4, we shall demonstrate the useful-ness of the abutment in testing the consistency of dQ/dtequations with respect to dl̃/dt and de/dt evolution equa-tions, and in calculating dι/dt for elliptical orbits of smalleccentricity (i.e. near-circular). In Section 5 we shallconclude our work and recommend directions that warrantfurther study.We define ι to be the maximum polar angle reached bythe secondary object in its orbit (see Eq. (42) in [42]).This definition differs from that used by others (Gair andGlampedakis [27] and Glampedakis, Hughes, and Ken-nefick [23]); but when performing our analysis to the lead-ing order in S̃, there is no significant difference.
2. An analytical formula for the an-
gle of inclination of an elliptical orbit
on the abutment

2.1. Introduction

The listing of an inclined elliptical orbit of eccentricity(e) can be described by ∂ι/∂̃l and ∂ι/∂e, where ι is theangle of inclination of the orbit and l̃ is its latus rectumnormalised with respect to the mass (M) of the Kerr black
2 When we refer to the second-order effect at the abut-
ment, we refer to the second derivative of QX with respect
to l̃, not to S̃2. See [42] for background discussion.
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hole (KBH). A set of essential analytical formulae for theorbital constants of motion has been derived in [42]: theCarter constant at the abutment (QX ), the orbital energy(Ẽ), and the quantity, X = L̃z − S̃Ẽ , as well as an ana-
lytical formula for ι in terms of these constants of motion.Numerical analysis yielded an equation for (∂ι/∂̃l)min forcircular orbits:

(
∂ι
∂̃l

)
min

∼= −(122.7S̃ − 36S̃3) l̃−11/2 − (63/2S̃ + 35/4S̃3) l̃−9/2 − 15/2S̃l̃−7/2 − 9/2S̃l̃−5/2. (1)
To verify Eq. (1) analytically, we shall derive the result to order 3 in S̃ (i.e. O(S̃3)). Observe that Eq. (1) is a seriesexpansion in terms of l̃− 12 . Further, the series coefficients are themselves series expansions of odd powers of S̃. Theseare important properties, which we shall confirm and investigate. Eq. (1) is not sufficient for understanding the effect ofradiation back-reaction on the listing of near-polar orbits; therefore, it is necessary to develop an analytical formula for
ι on the abutment so that a more thorough treatment can be made. We shall review the analytical formulae reportedin [42] for elliptical orbits, and develop appropriate expansions of those formulae in terms of S̃. The MacLaurin seriesexpansions of the functions 1/(1 + x), √1 + x , arccos(x), cos(x), and sin(x) are essential for this work.
2.2. Review of analytical formulae
2.2.1. The abutment, QXThe analytical formula for X 2

± (where X = L̃z − S̃Ẽ) for elliptical and inclined orbits about a KBH was found to be [42]:
X 2
± = Z5 + Z6Q ± 2S̃ √Z7Z8Z9

l̃
(
l̃
(3− l̃+ e2)2

− 4 S̃2 (1− e2)2) , (2)
where

Z5 = l̃3 {(l̃+ 3 e2 + 1) S̃2 − l̃(3− l̃+ e2)} , (3)
Z6 = −2 (1− e2)2 S̃4 + 2 l̃(2 e4 + (2− l̃) e2 + 4− l̃) S̃2 − l̃2 (3− l̃+ e2)2

, (4)
Z7 = S̃2 (1 + e)2 + l̃

(
l̃ − 2(1 + e)), (5)

Z8 = S̃2 (1− e)2 + l̃
(
l̃ − 2(1− e)), (6)

and
Z9 = (l̃5 + S̃2Q2 (1− e2)2 +Ql̃3 (3− l̃+ e2)). (7)

Intriguingly, the roots of Z7 = 0 correspond to the coordinate singularities associated with the event horizon of the KBH,multiplied by 1 + e; for Z8 = 0 the multiplier is 1− e. The abutment, which lies outside the event horizon, correspondsto a set of orbits for which Z9 = 0 [42], i.e.
l̃5 + S̃2Q2 (1− e2)2 +Ql̃3 (3− l̃+ e2) = 0. (8)

The solution of Eq. (8) is:
QX = l̃22S̃2(1− e2)2

(
l̃
(
l̃ − e2 − 3)±√l̃2 (l̃ − e2 − 3)2

− 4 l̃ (1− e2)2 S̃2
)
. (9)
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Where the minus solution must be taken since the plus solution has a singularity at S̃ = 0 (unphysical for an SBH) andat e = 1. Further, the value of Q of an evolving orbit cannot exceed QX ; Eq. (2) would yield a complex result for X 2
±.Hence L̃z and Ẽ would possess unphysical values.By performing an expansion in terms of S̃2 one obtains:

QX
∼= l̃2(

l̃ − e2 − 3) + l̃
(1− e2)2 S̃2(
l̃ − e2 − 3)3 + 2 (1− e2)4 S̃4(

l̃ − e2 − 3)5 . . . (10)
Therefore QX = O(S̃0) and the j th term of QX = O(S̃2j). The expansion of QX in terms of l̃ can be derived fromEq. (10) once it has been determined to which power of S̃ one wishes to work. This result, and its derivatives withrespect to l̃ and e, are presented in Appendix 3 for use in our analysis in Section 4.1.We return to Eq. (2). The terms under the square root can be excluded since Z9 = 0. Substitution of QX into theremaining part of the equation yields:

X 2
±
∼= S̃2( l̃(l̃2 − 4 l̃ − 4 e2 + 4)(

l̃ − e2 − 3)3 (11)
+ 2

(2− 10 e2 + e2 l̃ − 3 l̃+ l̃2) (1− e2)2 S̃2(
l̃ − e2 − 3)5

+
(6 l̃2 + (8 e2 − 16) l̃+ 9− 74 e2 + e4) (1− e2)4 S̃4

l̃
(
l̃ − e2 − 3)7

)
.

From Eq. (11) one finds that X 2
± = O(S̃2, l̃0). Further analysis yields the result:

X = ±S̃
√√√√√√ l̃

(
l̃2 − 4 l̃ − 4 e2 + 4)(
l̃ − e2 − 3)3 (12)

×
(1 + (1− e2)2 S̃2(

l̃ − e2 − 3)2
l̃
(
l̃2 − 4 l̃ − 4 e2 + 4)P1

+ 12
(1− e2)4 S̃4(

l̃ − e2 − 3)4
l̃2 (l̃2 − 4 l̃ − 4 e2 + 4)2P2

)
,

where
P1 = l̃2 − (3− e2) l̃+ 2− 10 e2,
P2 = 5 l̃4 − (34− 6 e2) l̃3 + (84− 104 e2) l̃2
−
(88− 328 e2 + 16 e4) l̃+ 32− 292 e2 + 200 e4 − 4 e6.

2.2.2. Orbital energy, ẼThe formula for orbital energy, Ẽ , for inclined elliptical orbits (see Eq. (44) in [42]) is presented here in a form that moreclearly shows that Ẽ = O(S̃0):
Ẽ =

√√√√1− (1− e2) l̃3 −Q
(
l̃ − S̃2) (1− e2)− l̃X 2 (1− e2)

l̃4 ; (13)
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further, substitution of QX

(
S̃
) and X 2

±

(
S̃
) into Eq. (13) yields an expression for Ẽ , which can be used directly in ouranalysis, or in the following form:

S̃2 (1− Ẽ2) = (1− e2) (l̃ − 4) S̃2
l̃
(
l̃ − e2 − 3) − 2 (1− e2)2 (e2 l̃+ l̃ − 6 e2 − 2) S̃4

l̃2 (l̃ − e2 − 3)3

−

(1− e2)4 (−3− 30 e2 + 4 e2 l̃+ l̃2 + e4) S̃6
l̃3 (l̃ − e2 − 3)5 . (14)

2.2.3. Orbital angle of inclination, ιThe exact formula for ι was derived in Boyer-Lindquist coordinates (BL coordinates) and found to be:

sin2 (ι) =Q + L̃2
z + S̃2 (1− Ẽ2)−√(Q + L̃2

z + S̃2 (1− Ẽ2))2
− 4QS̃2 (1− Ẽ2)

2S̃2 (1− Ẽ2) , (15)
which suggests an approximate expansion in the cases of small S̃ or for l̃ → ∞ (for which Ẽ → 1) [42]. In particular,near-equatorial orbits can also be approximated by such an expansion since Q ' 0. But we are studying near-polarorbits, for which Q > 12; so it is advantageous to exploit the fact that L̃z ∼= 0 and convert Eq. (15) to an alternative formwhich can be expanded as a series (not strictly in powers of S̃2) to obtain:

cos2 (ι)∼= L̃2
z

Q + L̃2
z − S̃2 (1− Ẽ2)− L̃4

z

(1− Ẽ2) S̃2(
Q + L̃2

z − S̃2 (1− Ẽ2))3

+ 2L̃6
z

(1− Ẽ2)2
S̃4(

Q + L̃2
z − S̃2 (1− Ẽ2))5 . (16)

It is essential to establish the lowest order of S̃ for each term of Eq. (16); the results in Eqs. (10) and (11), and Eq. (14)to O(S̃2) will help.It was found that X± = −√X 2
± in the vicinity of the abutment (see Section 3.5 in Komorowski et al. [42]); therefore,

L̃z = −√X 2
± + S̃Ẽ. (17)

Each of the expressions in Eqs. (12) and (13), when expanded as a power series in l̃−1, will have a leading factor of S̃and unity, respectively. In evaluating Eq. (17), the leading terms subtract out; therefore, we find that L̃2
z = O(S̃2, l̃−2).The inverse dependence of L̃2

z on l̃ is consistent with the physical meaning of L̃z for orbits on the abutment. Further,Eq. (10) indicates that QX = O(S̃0, l̃); therefore, the first term in Eq. (16) is O(S̃2), and the second term, O(S̃6),with each term containing higher order terms of S̃ in increments of 4.Taking the square root of both sides of Eq. (16) yields,

cos (ι) =
1st
term︷ ︸︸ ︷
O
(
S̃
) +

2nd
term︷ ︸︸ ︷
O
(
S̃5) +

3rd
term︷ ︸︸ ︷
O
(
S̃9) (18)
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with higher order terms of odd power of S̃. The second term in Eq. (16) will contribute to Eq. (18) a factor O(S̃5);therefore, to derive an analytical formula for (∂ι/∂̃l)min valid to O(S̃3) (see Eq. (1)) it is sufficient to use the first termof Eq. (16). If we choose to work in stronger gravitational fields, for which terms of greater order in S̃ are required, thenthe second and possibly higher order terms in Eq. (16) would be used. But we wish to work with terms that contain S̃and S̃3, to the exclusion of those with S̃5, so we shall restrict our analysis to the first term of the series in Eq. (16);after taking the square root, it can be simplified to yield:
cos (ι) ∼= L̃z√

Q

1− 12 L̃2
z
Q + 12 S̃

2 (1− Ẽ2)
Q

 . (19)
Given x = cos (ι), one may calculate ι to O(S̃3) by using the MacLaurin series for arccos(x) to O (x3).
2.3. Analytical formula for ι

(
e, l̃
)

on the abutment

We shall now evaluate Eq. (19) analytically by working with the constituent terms as series expansions in S̃, thecoefficients of which are expressed in terms of e and l̃; the result to third order in S̃ is our target. An apéri of the methodby which the expression in Eq. (19) is treated appears in Appendix 5.
2.3.1. First-order in S̃To perform our calculation of ι to O(S̃) (see Appendix 1) it is sufficient to use:

(1)
ι = π2 −

(1)
L̃z√
QX

, (20)
where (1)

L̃z√
QX

= −S̃ (e2 + 3)( 1
l̃3/2 + (1 + e2)

l̃5/2 + (3 + 2 e2 + e4)
l̃7/2 + (9 + 5 e2 + 5 e4 + e6)

l̃9/2
) (21)

and the number in parenthesis indicates the order in S̃ of the term below it.
2.3.2. Third-order in S̃Our third-order equations are more complicated. Consider the third-order equation for ι:

(3)
ι = π2 − x − 16x3, (22)

where
x = (3)

L̃z√
QX

1− 12
 (3)

L̃z√
QX


2
+ 12

(2)
S̃2 (1− Ẽ2)

QX

 , (23)
in which

(3)
L̃z√
QX

= (1)
L̃z√
QX
− S̃3 (1− e2)2 ( 1

l̃7/2 + 12 11 + 5 e2
l̃9/2

) (24)
and
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(2)
S̃2 (1− Ẽ2)

QX
= (1− e2)( 1̃

l2 −
4̃
l3
)
S̃2 (25)

(see Appendix 2). We evaluate Eq. (22) to obtain the final result, of O(S̃3):
(3)
ι = [S̃3 (−8− 13 e2 − 2 e4 + 5/3 e6) + (e2 + 3) (9 + 5 e2 + 5 e4 + e6) S̃] l̃−9/2

+ [1/2 (1− e2) (5− e2) S̃3 + (e2 + 3) (3 + 2 e2 + e4) S̃] l̃−7/2
+ S̃

(3 + e2) (1 + e2) l̃−5/2 + S̃
(3 + e2) l̃−3/2+π2 . (26)

2.4. Derivatives of ι
(
e, l̃
)

on the abutment

By taking the partial derivative of ι with respect to l̃ (using Eq. (26)) one obtains:
(
∂ι
∂̃l

)
min

= −32 [3 (e2 + 3) (9 + 5 e2 + 5 e4 + e6) S̃− (24 + 39 e2 + 6 e4 − 5 e6) S̃3] l̃−11/2
− 72

[(
e2 + 3) (3 + 2 e2 + e4) S̃ + 12 (1− e2) (5− e2) S̃3] l̃−9/2

− 52 (3 + e2) (1 + e2)S̃l̃−7/2 − 32 (3 + e2)S̃l̃−5/2. (27)
The partial derivative of ι with respect to e can also be derived:

(
∂ι
∂e

)
min

= 2e(4 (6 + 10 e2 + 6 e4 + e6) S̃ − (13− 5 e4 + 4 e2) S̃3) l̃−9/2
+ 2e((9 + 10 e2 + 3 e4) S̃ − (3− e2) S̃3) l̃−7/2
+ 4e (2 + e2) S̃l̃−5/2 + 2eS̃l̃−3/2 . (28)

The formula in Eq. (27), when evaluated at e = 0, matches the numerical result in Eq. (1) for all of the terms with theexception of −122.7 S̃l̃−11/2, which differs slightly from the analytical result of −243/2 S̃l̃−11/2.
2.5. Directional derivatives in the l̃ − e plane
Consider the constant of motion, Q, and the corresponding quantity, ι, in the l̃ − e plane; by using the concept of thedirectional derivative for two variables, one may represent dQ/dt by the equation:

dQ
dt = ∂Q

∂̃l
dl̃
dt + ∂Q

∂e
de
dt , (29)

and in a similar manner we may define,
dι
dt = ∂ι

∂̃l
dl̃
dt + ∂ι

∂e
de
dt , (30)

where the terms dl̃/dt and de/dt denote the evolution of l̃ and e to arbitrary order. We have the benefit of knowing theanalytical expressions ∂Q/∂̃l (see Eq. (A10)) and ∂Q/∂e (see Eq. (A11)) at the abutment, which we can derive to therequired order.
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A weak-field solution for dι/dt, in terms of l̃ and e, has been derived and reported in the literature (see Eq. (15a) in[17]):
dι
dt = mS̃

M2 l̃− 112 (1− e2) 32 sin (ι) (24415 + 2525 e2 + 192 e4 − cos (2ψ0) (8e2 + 265 e4)) , (31)
where the term cos (2ψ0), in which ψ0 represents the orientation of the elliptical orbit in the orbital plane, typicallyaverages to zero with the possible exception where the orbit has a large value of e < 1 [17]. More recently, a solutionfor dι/dt to higher order in l̃−1 (we present the weak-field portion here) was derived by Flanagan and Hinderer [30]:

dι
dt = mS̃

M2 l̃− 112 (1− e2) 32 sin (ι) (26615 + 1845 e2 + 15120 e4 + cos (2ι) (2215 − 625 e2 − 3920e4)) , (32)
in which they confirmed a weak-field correspondence to Eq. (31). In addition to the sin (ι) contribution found in bothEq. (31) and (32), there is a cos (2ι) term in the latter expression.The trigonometric quantities, sin (ι) and cos (ι), do not occur in our expressions for ι and its derivatives at the abutment.But such trigonometric terms are found, usually in a product with S̃, in the general evolution equations (i.e. dl̃/dt, de/dt,
dQ/dt, and dι/dt) published in the literature [24, 29, 31]. One may use Eqs. (20) and (21) to derive approximations ofsin (ι) and cos (ι) suitable for working in the leading order of S̃. Further, we may use the approximation of cos (2ι) tocorroborate the conclusion that Eq. (32) is the same as (31) in the weak-field regime. These trigonometric approximationsare only valid on the abutment; thus, if it is necessary to perform a differentiation of a trigonometric term (as in Eq. (A14)),then the differentiation must be performed before making the approximation. Such limitations notwithstanding, thetrigonometric approximations are of value to us investigators since they afford us a systematic method for their treatment.
3. Correction of ∂ι/∂̃l and ∂ι/∂e for
second-order effects
3.1. Introduction
For circular orbits, Komorowski et al. [42] found that thenumerical estimate of (∂ι/∂̃l)min in the weak-field regimedeviates from the ∂ι/∂̃l results reported in the literature(see Flanagan and Hinderer [30], and Hughes [21]). Con-sider the quotient of the formulae presented in Eq. (3.9)of Hughes [21] where ι ∼= π/2:

ι̇weak
Ṙweak

= ∂ι
∂̃l

= −6148 S̃l̃− 52 . (33)
Because −61/48 > −4.5 in the weak-field regime, X 2+ ⇒
X 2
− is the pertinent mode; and the best information one canobtain from (

∂ι/∂̃l
)
min

is the specification of the lowerlimit of ∂ι/∂̃l for all l̃ > l̃LSO, abutment (see [42] for moredetails about the abutment and its relationship to thelast stable orbit (LSO)). Therefore the second-order (i.e.
∂2Qpath/∂̃l2) behaviour at the point of tangential intersec-tion of QX and Qpath must be considered. In Section 2 thenumerical results have been verified by analytical deriva-tion of the formula for (∂ι/∂̃l)min to O(S̃3). It remains forus to extend this analysis to include second-order effectson elliptical orbits; to this end, we shall discuss how to

incorporate second-order effects into QX , and the resul-tant change to the formula for X 2
± (see Eq. (2)). Eq. (20)is sufficient in treating X 2

±, and then ultimately ι, to theleading order in S̃.
3.2. Second-order effects in Qpath

3.2.1. Circular orbitsLet us begin our treatment in the Q−l̃ plane with the valueof e held constant at zero. The form of QX is representedby the series in Eq. (10); and because Qpath intersects
QX tangentially at a single point (̃lo) (contact of the firstorder), we surmise:

Qpath
∣∣∣∣∣̃
l=l̃o

= QX

∣∣∣∣∣̃
l=l̃o

(34)
and

∂Qpath
∂̃l

∣∣∣∣∣̃
l=l̃o

= ∂QX

∂̃l

∣∣∣∣∣̃
l=l̃o

. (35)
But the abutment can only offer an upper bound on thesecond derivative of Qpath, i.e.

∂2Qpath
∂̃l2

∣∣∣∣∣̃
l=l̃o

5
∂2QX

∂̃l2
∣∣∣∣∣̃
l=l̃o

. (36)
806



Peter G. Komorowski, Sree R. Valluri, Martin Houde

To perform an analytical treatment of the second derivativeof Qpath, we define an ansatz:
Qpath = QX −

λ22 f (l̃o) , (37)
where

f
(
l̃o
) = (l̃o)p (S̃)q( n∑

k=0 ak
(
l̃o
)−k) (38)

a0 > 0,
and

λ = l̃ − l̃o, (39)
where p and q shall be determined by requiring that theweak-field solution be of the form, S̃l̃− 52 (see Eqs. (27)and (33)). The adjustment represented by Eq. (37) is

based on the Taylor expansion of a function; the func-tion f
(
l̃o
) represents a second derivative of a primitive,

℘(e, l̃), with respect to l̃, which is evaluated at l̃o. Onemust not confuse the concepts of the abutment and Taylorseries; Eq. (37) is not intended to be a Taylor series rep-resentation of Qpath. We have taken the analytical formulafor QX and incorporated a term, which is designed to ad-just the second derivative of Qpath so that it makes contactwith QX tangentially at a prescribed point, l̃o. If l̃ = l̃o,then the adjustment to Qpath and ∂Qpath/∂̃l is zero; and thevalue of ∂2Qpath/∂̃l2 is reduced by f (l̃o). Eq. (37) can beapplied to the analytical development of ∂ι/∂̃l. We shallcall this reduction of the second derivative the reductiveansatz circular.Let us consider how the reductive ansatz circular affectsEq. (2), with attention given to Eqs. (7) and (8); althoughwe begin with an analysis of circular orbits, e has beenretained in these equations for later use.
Evaluate

Z9 (Qpath) = Z9(QX − Φ)= [̃l5 + S̃2 (1− e2)2 Q2
X −

(
l̃ − 3− e2) l̃3QX

]
+ Φ(2S̃2 (1− e2)2 QX + ΦS̃2 (1− e2)2 + (l̃ − 3− e2) l̃3) , (40)

where Φ = λ22 f (l̃o) ,for which the quantity in square brackets in Eq. (40) is equal to zero (viz. Eq. (8)) for all values of l̃ > l̃LSO, abutment ;therefore, the use of this reductive ansatz has assured us of an effective means to simplify the expressions. The termsthat remain share a common factor, λ2, which will appear as ±λ when taken outside of the square root in Eq. (2). Weshall limit our analysis to O(S̃) (the S̃2 terms will affect terms of higher order in l̃−1 in the series in Eqs. (27) and(28)); therefore, the product of Z7 (Eq. (5)), Z8 (Eq. (6)), and Z9 (Eq. (40)) simplifies to:
Z√• = Z7Z8Z9= Φl̃5 (l̃ − 2 (1 + e)) (l̃ − 2 (1− e)) (l̃ − 3− e2) , (41)

where we evaluate Z√• at the point of intersection on the abutment by setting l̃o = l̃ (i.e. λ = 0). We take the squareroot of Z√•, and a term, ±λ√2/2, emerges. The choice of sign is determined by the mode at the abutment.Mathematically speaking there are two modes at the abutment: the fast mode
X 2
− ⇒ X 2+, (42)

and the slow mode
X 2+ ⇒ X 2

−. (43)
In Section 5 of [42] it was established that orbits that evolve on a path towards the abutment (during which l̃ > l̃oand λ > 0) are governed by X 2+ (see Eq. (2)) and after making contact with the abutment at l̃ = l̃o the orbits are then
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Figure 1. A generic representation of Qpath (short-dashed line) is depicted in the l̃ − e plane as it makes contact of the first order at a point (̃lo, eo)
on the QX surface. The direction in which the orbit evolves is shown by the arrow. We offer a generic representation to emphasise
that any Qpath, which is predicted by a radiation back-reaction model, may be tested in this manner.

governed by X 2
− (for which l̃ < l̃o and λ < 0) (see Figure 1). Thus by choosing the positive sign for ±λ the equationremains consistent with the dominance of the slow mode. If one were to perform an analysis for the fast mode then −λwould be used instead.An examination of Eqs. (3), (4), and (10) reveals that

Z5 + Z6QX = O(S̃2, l̃4) , (44)
from which one may infer 2S̃√Z√• = O(S̃2) (45)
⇒ √2λS̃ × S̃q/2 = O(S̃2) ; (46)
therefore, q = 2 in the reductive ansatz (see Eq. (38)). The value of p can be derived by considering the order of L̃zin l̃. We find (viz. Eq. (17)) that L̃z = O(l̃−1), which must not be changed by the reductive ansätze. And the leadingterm, S̃, in the expression for X (see Eq. (12)) must remain. Given the order of l̃ in Eq. (44), one must work with thenext lower order, i.e., 2S̃√Z√• = O(l̃3) (47)
⇒

±
√22 λ̃lp/2 l̃4 = O(l̃3) . (48)

Given λ = O(l̃), we conclude that p = −4. In our reductive ansätze, we have found the values of p and q that ensurethe second-order effect does not change the form of ∂ι/∂̃l in the weak-field regime.
3.2.2. Elliptical orbitsThe general formulation of the reductive ansatz elliptical can be derived by starting with a Taylor series for two variables(see Appendix 1). Because we concern ourselves with second-order effects, we shall use the following operator:

12!
(
λ ∂
∂̃l

+ ε ∂∂e

)2
, (49)
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where λ = (̃l − l̃o) and ε = (e − eo), and where the ordered pair (eo, l̃o) specifies the location of the contact of firstorder between Qpath and QX (see Figure 1).One may define the reductive ansatz elliptical, i.e.
Qpath = QX −

12
[(

λ ∂
∂̃l

+ ε ∂∂e

)2
℘(e, l̃)]

e=eo ,̃l=l̃o= QX −
λ22
[
∂2
∂̃l2 ℘(e, l̃)]

e=eo ,̃l=l̃o − λε
[
∂2
∂̃l∂e

℘(e, l̃)]
e=eo ,̃l=l̃o −

ε22
[
∂2
∂e2 ℘(e, l̃)]

e=eo ,̃l=l̃o , (50)
where we conjecture the existence of a primitive function, ℘(e, l̃). Eq. (36) will also be applied to the case of ellipticalorbits where e is close to zero.The expression for Qpath is best regarded as a parameterized curve, and to make such a treatment in Eq. (50), one mayfactor out the λ, to obtain

Qpath = QX −
λ22
{[

∂2
∂̃l2 ℘(e, l̃)]

e=eo ,̃l=l̃o + 2( ελ)
[
∂2
∂̃l∂e

℘(e, l̃)]
e=eo ,̃l=l̃o + ( ελ)2 [ ∂2

∂e2 ℘(e, l̃)]
e=eo ,̃l=l̃o

}
= QX −

λ22 g(eo, l̃o) , (51)
for which we have the benefit of knowing the limiting form of ε/λ (= de/dl̃) to arbitrary order in l̃−1. Thus it is possibleto parameterize Qpath in terms of λ. We can use the expression,

g
(
eo, l̃o

) = S̃2 n∑
i=0

ai(eo)
l̃i+4
o

; (52)
and this will form the basis of the reductive ansatz elliptical.
3.3. Application of the reductive ansätze to the analytical derivation of ∂ι/∂̃l and ∂ι/∂e
The reductive ansätze (Eqs. (37-39) and (Eq. (51)) constitute a reduction of the second derivative of QX to morerealistically model the behaviour of Qpath at the abutment and perform a methodical treatment of this reduction in theanalytical calculation of ∂ι/∂̃l and ∂ι/∂e.The procedure outlined in Appendix 2 yields the following formula for ∂ι/∂̃l:

∂ι
∂̃l

= ∂
[
ι
(
e, l̃, λ, S̃

)]
λ=0

∂̃l
+ ∂

[
ι
(
e, l̃, λ, S̃

)]
∂λ

∂λ
∂̃l


λ=0

, (53)
where

∂λ
∂̃l

= 1 and λ∣∣∣∣∣̃
l=l̃o

= 0;
but the result for ∂ι/∂e is simpler,

∂ι
∂e = ∂

[
ι
(
e, l̃, λ, S̃

)]
λ=0

∂e= ( ∂ι∂e
)

min . (54)
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Eq. (54) and the first term in Eq. (53) yield the formulae that describe the evolution of ι for a Qpath along the abutment(i.e. (∂ι/∂e)min and (∂ι/∂̃l)min). The second term of Eq. (53) incorporates second-order effects, and thus describes thephysically more realistic situation in which Qpath intersects the abutment tangentially at a single point. Because onetakes the first derivative with respect to λ, the second and higher powers of λ will vanish when setting λ = 0. But aswe shall presently see, the second-order effects of the reductive ansätze remain.We choose to work with the symbols e and l̃ rather than eo and l̃o, given that e and l̃ can be used to represent anarbitrary point on the abutment (see Appendix 2). The reductive ansatz circular (see Eqs. (37-39)) is applied at theabutment with p = −4, q = 2, and n = 2 (while retaining the two terms of leading order in S̃ at the conclusion of thecalculation) with
∂ι
∂̃l

= −S̃{152 + 32A0(0)− 14A1(0)} l̃−7/2 − S̃
{92 − A0(0)} l̃−5/2, (55)

where
A0(e) = +√22 √

a0(e), and A1 (e) = a1(e)
A0(e) .

To apply this method to elliptical orbits, we will be required to use g(e, l̃). To calculate that function, the commonprimitive ℘(e, l̃) is needed.
3.4. Analytical derivation of the common primitive, ℘(e, l̃)
Now that the values of the parameters, p = −4 and q = 2, have been found, it is possible to derive the formula for
℘(e, l̃). Consider the reductive ansatz circular:

f
(
l̃
) = S̃2 n∑

i=0
ai
l̃i+4 . (56)

We conjecture a more general form of f (l̃) that includes e:
f
(
e, l̃
) = S̃2 n∑

i=0
ai
(1 + bie2)
l̃i+4 . (57)

Performing the first integration over l̃ yields:
F
(
e, l̃
) = ∫ f

(
e, l̃
)
dl̃

= −S̃2 [ n∑
i=0
( 1
i+ 3 ai

(1 + bie2)
l̃i+3

)
− κ (e)] . (58)

The second integration over l̃ yields an expression for the common primitive:
℘(e, l̃) = ∫ F

(
e, l̃
)
dl̃

= S̃2 [ n∑
i=0
( 1(i+ 2) (i+ 3) ai

(1 + bie2)
l̃i+2

)+ κ (e) l̃+ ζ (e)] . (59)
The constants of integration, κ (e) l̃ and ζ (e), can each be set to zero since we require lim

l̃→∞
℘(e, l̃) = 0. Now that theformula for ℘(e, l̃) is known, it is possible to obtain g(e, l̃), which is required by the reductive ansatz elliptical.

810



Peter G. Komorowski, Sree R. Valluri, Martin Houde

4. The treatment of dQ/dt and dι/dt on the abutment

4.1. The dQ/dt evolution equations

Komorowski et al. [42] investigated the consistency of dQ/dt with the evolution equation dl̃/dt, for circular orbits atthe abutment (ι ' π/2) by performing a preliminary numerical analysis for values of l̃ = {7.0, 100.0} and KBH spin
S̃ = {0.05, 0.95} (see Section 5.2.1 of [42]). The published values of dl̃/dt [21], which we used in our investigation, werecalculated for ι ' π/3, and the difference of this value of ι from that at the abutment contributed to some inaccuracy inthe analysis [42]. In this work, the derivation of analytical formulae for ι and its derivatives, as well as the use of thedirectional derivative to determine dQ/dt, now allow one to perform a more complete treatment for elliptical orbits.Let us consider the directional derivative in Eq. (29) as a means of deriving dQ/dt at the abutment. We have demonstratedthat the second-order effects are not seen when calculating the first derivatives of Qpath (i.e. ∂Qpath/∂̃l and ∂Qpath/∂e,see Eq. (35) or (51)); therefore, we may use ∂QX /∂̃l (Eq. (A10)) and ∂QX /∂e (Eq. (A11)) when working with Eq. (29).The form of dQ/dt (Eq. (A.3) in [28] (after Eq. (56) in [27])), which was used in [42] to test dQ/dt will be revisited inthis work:

(
dQ
dt

)
2PN = −(1− 12 S̃2 (3 + e2)2

l̃3
) 645 m2

M
(1− e2)3/2√Q

l̃7/2
×
[
g9 − g11

l̃1 + π g12
l̃3/2 −

(
g13 − S̃2(g14 − 458 ))

l̃2
+ S̃2 gb10 (3 + e2)

l̃3 + 458 S̃4 (3 + e2)2
l̃5

]
. (60)

But it is preferable that the formula for dQ/dt (and for dι/dt) that we test be accompanied, in the same work, by theirassociated expressions for dl̃/dt and de/dt; and fortunately a paper by Ganz et al. [29] provides such information, whichwe shall use in our analysis. In particular, we will use Eq. (4.3) in [29]: the evolution equation for l̃,
dl̃
dt = −645 ( m

M2
)
l̃−3(1− e2) 32

×
[
g9 − f1̃

l
+ π g12

l̃3/2 + f3 − f4S̃2
l̃2 − π f7

l̃5/2
+ f2(3 + e2) S̃2

l̃3 −
f6(3 + e2) S̃2

l̃4 + f5(3 + e2)2S̃4
l̃5

]
, (61)

which is (excluding the common factor, l̃−3) to O(l̃−5/2) in [29]; and the evolution equation for e,
de
dt = −30415 ( m

M2
)
l̃−4(1− e2) 32

×
[
h1 − h2̃

l
+π h4

l̃3/2 −
h5 + h6S̃2

l̃2 − π h9
l̃5/2

+h3(3 + e2) S̃2
l̃3 −

h8(3 + e2) S̃2
l̃4 +h7(3 + e2)2S̃4

l̃5
]
, (62)

which is (excluding the common factor, l̃−4) also to O(l̃−5/2) in [29].
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Table 1. The coefficients of −5/64 M2/m l̃3(1− e2)−3/2dQ/dt. The first column contains our calculated results at the abutment. The second
column contains the results of Ganz et al. [29], and the third column contains the results of Barausse, Hughes, and Rezzolla [28]. The
trigonometric functions in both of these sets were evaluated on the abutment. Note: although the terms are reported to O(e4) they are
only accurate to O(e2).

Results at the Abutment (Eq. 4.1 in [29]) (Eq. (A3) in [28])(see Eq. (29)) (see Eq. (63)) (see Eq. (60))
l̃0 1 + 78e2 1 + 78e2 1 + 78e2
l̃−1 −( 743336 − 2342e2 − 12196 e4) −

( 743336 − 2342e2) −
( 743336 − 2342e2 − 716e4)

l̃−3/2 π
(4 + 978 e2) π

(4 + 978 e2) π
(4 + 978 e2)

l̃−2 − [ 12929318144 + 840351728 e2 − 629672e4 −
[ 12929318144 + 840351728 e2 −

[ 12929318144 + 840351728 e2 − 575336e4
+S̃2 ( 32996 + 92996 e2)] +S̃2 ( 32996 + 92996 e2)] +S̃2 ( 34296 − 57096 e2)]

l̃−5/2 −π ( 4159672 + 212291344 e2 − 417831344 e4) −π
( 4159672 + 212291344 e2) π

( 4032672 + 271321344 e2 + 81481344e4)
l̃−3 − [ 3819112 + 77099312096 e2 + 3339372304 e4 − [0 −

−S̃2 ( 2508 + 7261192 e2 − 821384e4)] −S̃2 ( 1838 + 6078 e2 + 1618 e4)] −

The evolution equation of Q,
(
dQ
dt

)
2.5PN = −645 ( m

M2
)
l̃−3(1− e2) 32

(1− S̃2 (3 + e2)2
l̃3

)
× [g9

− d1
l̃1 + π g12

l̃3/2 −
d3 − d4S̃2

l̃2 − π d7
l̃5/2

+ S̃2 (3 + e2)d2
l̃3 −

S̃2 (3 + e2)d6
l̃4 + S̃4 (3 + e2)2 d5

l̃5
]
, (63)

which corresponds to Eq. (4.1) in [29], was of O(l̃−5/2) (excluding the common factor, l̃−3). These formulae (Eqs. (61),(62), and (63)) have been converted from the variables used in [29] to our variables (see Appendices 4 and 5). Becausesome of the original coefficients contained cos (ι), which we have replaced with the approximation based on Eq. (21),there are new terms, which correspond to l̃−3, l̃−4, and l̃−5, in each of Eqs. (61), (62), and (63). The original expressionsdid not include terms with these powers of l̃, so we cannot use the new terms to extend the accuracy of our analysisbeyond that of the original expressions in Ganz et al. [29]. Further, these evolution equations are O (e2), hence thefinal results must also be used up to the second power of e.We assume that the evolution of the orbit, dl̃/dt and de/dt, is described by Eqs. (61) and (62) (from Ganz et al. [29]); theresult of evaluating Eq. (29) is compiled in Table 1 (first column). The second column contains the result (dQ/dt)2.5PN ,derived by Ganz et al. (see Eq. (63)), evaluated on the abutment. Similarly, the third column contains the formula for(dQ/dt)2PN based on Eq. (A.3) in [28], also evaluated on the abutment.Although the terms in Table 1 are O (e4) (N.B. Those given to O (e2) were found to have no terms of higher order in
e2), any final result one might calculate must be of O (e2). To that order, our calculated results at the abutment agreewith those of Ganz et al. [29] up to l̃−5/2. There is also agreement with Barausse, Hughes, and Rezzolla [28] up to l̃−2with the exception of the coefficient for the S̃2 term in the third column (marked with ï¿œ), which differs from the othertwo results; the expanded equation in Barausse, Hughes, and Rezzolla differed from that of Ganz for that order of l̃.There are two reasons for reporting these results to O (e4): first, we wish to demonstrate that the confirmation ofGanz’s calculations is not to be dismissed as a fortuitous triviality. The method of calculation of dQ/dt at the abutmentdiffers fundamentally from that used by Ganz et al. to derive their results, as would be required of a good consistencycondition; second, the differing coefficient values for the e4 terms demonstrate that one must not perform calculations onthe abutment for highly eccentric orbits. While the abutment equations (∂QX /∂̃l, ∂QX /∂e, and ι (l̃, e, S̃)) are exact interms of e2, one remains limited by the order of e used in the radiation back-reaction model being tested.
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Because the expressions for ∂QX /∂̃l and ∂QX /∂e can be derived to arbitrary order in l̃−1, and the coefficients for eachpower are exact finite series in e2, it is worthwhile to consider using the abutment to improve the order of e2 of theevolution equations in the weaker field regime by allowing other theoreticians to perform a test of their own, improvedback-reaction models. Since the abutment extends down to the LSO, one might also explore the development and testingof evolution equations in the strong-field regime, given that on the abutment the trigonometric contributions of sin (ι)and cos (ι) can be expressed as functions of e, l̃, and S̃. But one must also be mindful of the assumptions made at theoutset of this exercise, in particular, the assumption that the secondary object can be approximated as a test-particle ofinfinitesimal mass, and the use of adiabatically evolving orbits.
4.2. The second-order calculation of dι/dt for the leading order of S̃ (weak-field regime)

Now that ℘(e, l̃) is known we can calculate g(e, l̃); but let us first derive de/dl̃ using Eqs. (61) and (62). We find thefollowing:
de
dl̃

= 1912e
(1− 145304e2

l̃
+ 32153192 − 33373102144e2

l̃2
)
, (64)

expressed to O(l̃−2). From Eq. (51), one derives:
g
(
e, l̃
) = S̃2 [a0 (e)

l̃4 + a1 (e)
l̃5

]
, (65)

where
a0 (e) = a0 (0) (1− 119432b0e2)

and
a1 (e) = a1 (0) (1 + ( 321572576b0 − 143864b1

)
e2) ,

which can be used to calculate ∂ι/∂̃l under the reductive ansatz elliptical,
∂ι
∂̃l

= −S̃{52 (3 + e2) (1 + e2) + 12 (3 + e2)A0 (e)− 14A1 (e)} l̃−7/2
− S̃

{32 (3 + e2)− A0 (e)} l̃−5/2, (66)
where

A0 (e) = A0 (0) (1− 12 119432b0e2)
and

A1 (e) = a1 (e)
A0 (e) .Now that we have developed a formula for ∂ι/∂̃l (Eq. (66)) that incorporates the reductive ansatz elliptical, and we havefound that ∂ι/∂e (Eq. (28)) is unaffected by the reductive ansatz elliptical, the expression for dι/dt can be obtained fromEq. (30) to the leading order in S̃ with coefficients of O (e2):

dι
dt = S̃ m

M2 l̃−4(1− e2) 32 ( U1
l̃3/2 −

U3
l̃5/2
)
, (67)

where
U1 = 3215 (9− 2A0 (e)) + 415 (−109 + 42A0(e)) e2
U3 = 2105 (1647− 2494A0 (e) + 168A1 (e)) + 1105 (682− 2978A0 (e) + 147A1 (e)) e2.
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Eq. (A15) can be expanded and expressed to leading order in S̃ to yield:
dι
dt = 24415 S̃ m

M2 l̃−4(1− e2) 32 ( u1
l̃3/2 −

u3
l̃5/2
)
. (68)

By equating the terms in Eqs. (67) and (68) (i.e. U1 = 244u1/15 and U3 = 244u3/15) one first solves for A0 (0) and
A1 (0) for a circular orbit by setting e = 0:

A0 (0) = 15548and
A1 (0) = 2792894032 .

By substituting these values into Eq. (67), we obtain,
dι
dt = 24415 S̃ m

M2 l̃−4(1− e2) 32 ×
[(1 + ( 1844552704b0 − 213488) e2)

l̃3/2
−
( 104611708 + ( 7986954656 − 3993832717708544b1 + 56217638391487517696b0) e2)

l̃5/2
]
. (69)

When evaluated at e = 0, the expression in Eq. (69) matches the results reported in the literature (Eqs. (31), (32), and(68)) for near-polar orbits. For near-circular orbits, values of b0 and b1 can be found for which the coefficients of the
l̃−3/2 and l̃−5/2 terms in Eq. (69) match their theoretical counterparts in Eq. (68).
4.3. The independence of the abutment of ra-
diation back-reaction models
Let us clarify the meaning of our statement that the abut-ment model is independent of any specific radiation back-reaction model. The expression for the abutment, QX(Eq. (9)), is determined by the characteristics of the Kerrspacetime of the primary object in which the secondaryobject (i.e. test-particle) orbits. The analytical expres-sions for dl̃/dt and de/dt describe the effects of radiationback-reaction on the values of l̃ and e of the orbit, andthey serve as inputs to our abutment model in two ways:first, through the quotient ε/λ ∼= ∂e/∂̃l (Eq. (51)); and sec-ond, through the directional derivatives in Eqs. (29) and(30).The mechanics of the abutment remain consistent, the de-tails of the radiation back-reaction model notwithstanding.The results of either directional derivative are outputs ofthe abutment model that describe the effect of the radia-tion back-reaction on the listing of the test-particle orbit.
5. Conclusions
For inclined test-particle orbits around a black hole, twosolutions for X 2 (where X = L̃z − S̃Ẽ) can be derived:
X 2
− and X 2+. Given a Schwarzschild black hole (SBH),

X 2+ = X 2
− on any polar orbit, where X 2

− corresponds toprograde orbits and X 2+ corresponds to retrograde orbits.For a Kerr black hole (KBH) the orbits on which X 2+ = X 2
−are not polar, but near-polar and retrograde. Such orbitscomprise the abutment at which the value of the Carterconstant (Q) is a maximum for given values of latus rectum(̃l) and eccentricity (e).

In this work we derived an analytical formula for the valueof orbital inclination, ι, of an elliptical orbit on the abut-ment. By performing the partial differentiation of ι withrespect to l̃, we were able to confirm the numerical resultfor ∂ι/∂̃l reported in Komorowski et al. [42] for circularorbits, and we were able to extend the formula to include
∂ι/∂̃l for elliptical orbits. A result for ∂ι/∂e was also ob-tained for elliptical orbits. Further, it allowed one to re-define, in terms of e, l̃, and S̃, any trigonometric functionthat might be found in an evolution equation to be testedat the abutment.
Evolving orbits in Kerr spacetime are not constrained tofollow the abutment. Instead, the value of Q will fol-low Qpath, which intersects the abutment tangentially atan arbitrary point of contact of the first order. This be-haviour is assured because the value of Qpath cannot ex-ceed that of Q on the abutment; to do so would make
X 2
± complex and thus unphysical. For circular orbits, wemodelled the second-order behaviour reported in [42] by
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introducing a bounded function f
(
e, l̃
) (also in terms of

S̃) to reduce the value of ∂2Qpath/∂̃l2 while leaving Qpathand ∂Qpath/∂̃l equal to their corresponding values (QXand ∂QX /∂̃l) on the abutment. This approach was thenapplied to elliptical orbits, and a new bounded function
g
(
e, l̃
), which depends upon de/dl̃, was used to reducethe value of ∂2QX /∂̃l2 to ∂2Qpath/∂̃l2. It was discoveredthat the value of ∂2Qpath/∂e2 remained unchanged by thereductive ansatz elliptical.The consistency of published evolution equations, dQ/dt,

dl̃/dt, and de/dt, was tested by using dl̃/dt and de/dtto generate an expression for dQ/dt at the abutment. Ingeneral, the calculation of dQ/dt is more difficult to per-form than that of dl̃/dt and de/dt [19]; hence, the abut-ment provides a useful mechanism for testing the validityof radiation back-reaction models. Indeed, the evolutionequations reported by Ganz et al. [29] were confirmed totheir 2.5PN order. The abutment provides a consistencycondition that is limited to near-polar retrograde orbits;and yet, some back-reaction models have been found toexhibit pathological behaviour for polar orbits (Gair andGlampedakis [27]). Another consistency condition is al-ready known for orbits of any ι (see equations (13) and(14) in [27]), but it applies to circular orbits (i.e. in the limit
e → 0); the abutment is valid for orbits of arbitrary ec-

centricity, depending on the accuracy of the back-reactionmodel used.
This method promises to be a useful tool for confirming theaccuracy of evolution equations to greater order in e and
l̃−1. Further work might entail the development of a moreprecise mathematical treatment of the ansätze in relationto the underlying physical concepts of the radiation back-reaction process and its effect on the listing behaviour oforbits near the abutment. It would also be intriguing toinvestigate the consistency condition reported by Gair andGlampedakis [27], on the abutment.
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Appendix A: Ancillary equations
1. Taylor series for two variables
Refer to Chapter 6 in [44] for a more detailed treatment. Let us consider a locally continuous function with twoindependent variables, f (x, y). We may use an operator(

h ∂∂x + k ∂
∂y

) (A1)
to construct a Taylor series of n terms

f (xo + h, yo + k) = f (xo, yo)
+ [(h ∂∂x + k ∂

∂y

)
f (x, y)]

x=xo,y=yo + 12!
[(

h ∂∂x + k ∂
∂y

)2
f (x, y)]

x=xo,y=yo
. . .+ 1

n!
[(
h ∂∂x + k ∂

∂y

)n
f (x, y)]

x=xo,y=yo (A2)
if the (n+ 1)th partial derivatives are continuous. In this paper, we are concerned only with the second derivative.
2. Treatment of the Taylor series under partial differentiation
Given the term:

A = hf (xo)g (x) , (A3)
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where h = (x − xo). We can calculate the partial derivative of A with respect to x ,
∂A
∂x = ∂

∂x
(hf (xo)g (x))

= f (xo) ∂∂x (hg (x))
= f (xo) (h ∂∂x g (x) + g (x) ∂∂x h

)
, (A4)

and thus demonstrate
∂A
∂x

∣∣∣∣
x=xo = f (xo)g (xo) . (A5)

Consider a more complicated case where we have a function F (x, h, y, k), where h = (x − xo) and k = (y − yo). Calculate
∂F
∂x

∣∣∣∣
x=xo and ∂F

∂y

∣∣∣∣
y=yo . (A6)

If we hold y constant and set k = 0, then
dF
dx = ∂F

∂x + ∂F
∂h

∂h
∂x . (A7)

If we hold x constant and set h = 0, then
dF
dy = ∂F

∂y + ∂F
∂k

∂k
∂y . (A8)

These results will be of use in applying the second-order effects to Qpath as it makes contact with the abutment, QX .
3. Treatment of QX as a Series in l̃
The expansion of QX in terms of S̃ (Eq.(10)) can be expressed as a series in l̃:

QX = l̃+ ∞∑
i=0
(3 + e2)i+1

l̃i
+ i (i − 1)2

(3 + e2)i−2 (1− e2)2
l̃i

S̃2
 . (A9)

From Eq. (A9) one can obtain ∂QX /∂̃l and ∂QX /∂e directly:
∂QX

∂̃l
= 1− ∞∑

i=0
 i (3 + e2)i+1

l̃i+1 + i2 (i − 1)2
(3 + e2)i−2 (1− e2)2

l̃i+1 S̃2
 , (A10)

and
∂QX

∂e = 2e ∞∑
i=0
[(i+ 1) (3 + e2)i

l̃i
− i (i − 1) (3 + e2)i−2 (1− e2)

l̃i
S̃2

+ i (i − 1) (i − 2)2
(3 + e2)i−3 (1− e2)2

l̃i
S̃2
 . (A11)
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The √QX will also be required for the treatment of dQ/dt, (see Appendix 4)
√
QX = √l̃+ 12

(3 + e2)√
l̃

+ 38
(3 + e2)2

l̃3/2 + 12
((1− e2)2 S̃2 + 58 (3 + e2)3)

l̃5/2
+ 5128

(3 + e2) (32 (1− e2)2 S̃2 + 7 (3 + e2)3)
l̃7/2

+ 7256
(3 + e2)2 (80 (1− e2)2 S̃2 + 9 (3 + e2)3)

l̃9/2 + . . . (A12)
4. The 2PN flux for Q
Eq. (60), an expression for dQ/dt, was derived from Eq. (A.3) in [28] (after Eq. (56) in [27]) by substituting the approxi-mations of sin (ι) and cos (ι) on the abutment. where

g9 = 1 + 78e2, gb10 = 618 + 914 e2 + 46164 e4, g11 = 1247336 + 425336e2,

g12 = 4 + 978 e2, g13 = 447119072 + 3028936048 e2, g14 = 3316 + 9516e2.
An alternative expression for dQ/dt to 2.5PN order was presented by Ganz et al. (Eq. (4.1) in [29]) in which we haveconverted their variable, Y ' cos (ι), to −S̃ (3 + e2) l̃−3/2 to yield Eq. (63), where

d1 = 743336 − 2342e2, d2 = 858 + 2118 e2 d3 = 12919318144 + 840351728 e2,

d4 = 32996 + 92996 e2, d5 = 538 + 1638 e2, d6 = 2553224 − 553192e2, d7 = 4159672 + 212291344 e2.

5. Evolution equations for l̃, e, and ι

The evolution equations for l̃, e , and ι are reported by Ganz et al. (see Eq. (4.3) in [29]) to O(l̃−5/2). We reproducethem in Eqs. (61), (62), and (A15) after having converted their original variable, υ = √
M
l , to l̃−1/2, and by using

dυ = −1/2̃l−3/2dl̃, where
f1 = 743336 + 5521e2, f2 = 13312 + 37924 e2, f3 = 3410318144 − 52695512096 e2,

f4 = 32996 + 92996 e2, f5 = 81596 + 47732 e2, f6 = 145156 + 104396 e2,
f7 = 4159672 + 488091344 e2;

and where
h1 = 1 + 121304e2, h2 = 68492128 + 45092128e2, h3 = 87976 + 51576 e2,

h4 = 985152 + 5969608 e2, h5 = 28639738304 + 206441551072 e2, h6 = 3179608 + 89251216e2,
h7 = 5869608 + 107471216 e2, h8 = 1903304 − 223738512 e2, h9 = 879474256 + 407243368096 e2.
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We use the following equations to convert the form of the equation for list rate in [29]:
1− Y 2 ' sin2 (ι) ; (A13)

dY
dt = d cos (ι)

dι × dι
dt = − sin (ι)× dι

dt . (A14)
We obtain:

dι
dt = 24415 ( m

M2
)
l̃−4(1− e2) 32 (1− 12 S̃2 (3 + e2)2 l̃−3)

×
[
u1S̃
l̃3/2 −

u3S̃
l̃5/2 + u2(3 + e2)S̃3

l̃7/2
]

= 24415 ( m
M2
)
l̃−4(1− e2) 32

×
[
u1S̃
l̃3/2 −

u3S̃
l̃5/2 + u2(3 + e2)S̃3

l̃7/2
−12 u1 (3 + e2)2 S̃3

l̃9/2 + 12 u3 (3 + e2)2 S̃3
l̃11/2 − 12 u2(3 + e2)3S̃5

l̃13/2
] (A15)

where
u1 = 1 + 18961 e2, u2 = 13244 + 277244e2, u3 = 104611708 + 837233416 e2.

Appendix B: Series expansions of critical values in terms of S̃ and l̃
Our conversion of the quantities X (Eq. (12)), Ẽ (Eq. (13)), and QX (Eq. (10)) to expansion series in S̃ helped to simplifyour analysis by avoiding the use of the much more complicated series expansions in terms of l̃. Eq. (19) can be convertedto a series: (2n+1)

L̃z√
QX

= n∑
i=0 c2i+1S̃2i+1. (B1)

By choosing the order of S̃ (the value of 2n+1) in which to work, it becomes easier to derive suitable series approximationsof these quantities, and their mathematical combinations, in terms of l̃. Since the equations derived during the fullanalytical treatment are Brobdingnagian, and thus preclude detailed presentation in this paper, we shall offer theessential highlights of our analysis.
1. First-order calculations
We require the series expansion of the quotient, which appears in Eq. (20),

(1)
L̃z√
QX

, (B2)
to be expressed in terms of l̃. To obtain this result we perform a careful manipulation of L̃z (in terms of X and Ẽ , viz.Eq. (17)) and QX (as a series expansion in S̃) using MacLaurin series. The coefficient of S̃1 (i.e. c1) is converted to anexpansion in l̃; we find c1 to be:

c1 = ψ1 − ψ2√
l̃2

l̃−e2−3
, (B3)
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where
ψ1 =

√√√√√√ l̃
(
l̃2 − 4( l̃+ e2 − 1))(

l̃ − e2 − 3)3

ψ2 =
√√√√√ l̃2 − 4 (l̃+ e2 − 1)

l̃
(
l̃ − e2 − 3) .

From Eq. (B3), one obtains the result:
c1 = − (e2 + 3)( 1

l̃3/2 + (1 + e2)
l̃5/2 + (3 + 2 e2 + e4)

l̃7/2 + (9 + 5 e2 + 5 e4 + e6)
l̃9/2

)
, (B4)

which appears in Eq. (21).
2. Third-order calculations
The third-order calculations require two additional factors:

(3)
L̃z√
QX

and
(2)

S̃2 (1− Ẽ2)
QX

, (B5)
which are used to evaluate x = cos(ι) using Eq. (23). The first factor can be derived by converting the coefficient of S̃3,

c3 = −12
(1− e2)2 ((l̃2 − 2 l̃+ 2 l̃e2 − 16 e2)ψ1 + (−4 + l̃

)(
l̃ − 2− 2 e2)ψ2)√

l̃2
l̃−e2−3 l̃

(
l̃ − e2 − 3)(l̃2 − 4 l̃+ 4 e2 − 4) , (B6)

in Eq. (B1), to a series expansion in l̃ (see Eq. (24)) and adding the result to the first order term:
c3 = −S̃3 (1− e2)2 ( 1

l̃7/2 + 12 11 + 5 e2
l̃9/2

) (B7)
(see Eq. (24)). The second factor in Eq. (B5) is also obtained by working in expansions of S̃, which proceeds by asimpler derivation (see Eq. (25)). The orbital inclination, ι, is then obtained by using Eq. (22).
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