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ABSTRACT  

This research work aims to evaluate the influence of the addition of rubber aggregates on     elasticity modulus 

experimentally by using ultrasonic waves and theoretically by analytical models. Based on ultrasonic waves in 

concrete specimen at different percentages of rubber granules, one can evaluate the static modulus (Estatic) from the 

dynamic elastic modulus (Edynamic), according to British code [7]. From the obtained experimental results, one can 

conclude that the use of rubber granules has the potential for vibration damping capacity. In other words, the rubber 

granules, reduces the kinetics of ultrasonic pulses in the material. This reduction is due to the decreasing density of 

rubber granules (RG), with respect to gravel. The concrete base of its aggregates can be used such as paving of 

vibrating tools. Analytical modeling (Hill and BHS models) is used.  The analytically obtained results converge with 

those from experimental procedure and give a good agreement to other researcher’s works.  
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1. INTRODUCTION 

The elastic modulus is a very important property for all materials. In the field of civil engineering evaluation of the 

elastic modulus of concrete is to determine the scope of its use (rigid pavements, retaining walls, structural elements 

...). In our work we use a concrete aggregate base rubber, which has characteristics very promising in terms of 

reducing the kinetic ability of ultrasonic pulses through its decreased elastic modulus. The determination of the 

elastic modulus can be achieved by experimental methods and by analytical methods. The analytical methods are 

based on the use of different models, such as selected in this work as the "terminals" of Hill [1] and the bounds of 

Hashin-Shtrikman (BHS) [2]. These models will be used for a comparative study with the results found by the 

experimental method which is based on the evaluation of the modulus of elasticity from the ultrasonic test. The 

experimental procedure is a non-destructive technique to measure the travel time of the ultrasonic wave through the 

material. 
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2. MATERIALS & METHODS 

2.1 Experimental Aspect 

2.1.1 Principles of ultrasonic testing 

The principle of ultrasonic testing is that an electrical signal is converted into a strain wave by a piezoelectric 

transducer. That wave propagates through a concrete specimen and is captured by the receiving transducer. The 

propagation time and the speed of the ultrasonic waves are deducted (see Fig. 1). 

 

 
Fig.1. Ultrasonic test 

2.2. Calculation Method 

Due to the heterogeneity of the material, the interpretation of ultrasonic signals is not easy. Typically, tests are often 

based on the measurement of velocities of longitudinal ultrasonic waves (see Fig. 2). The speed of the wave through 

an elastic solid is given by the following expression [3]: 

 

[1]  V =       

 

The Young's modulus (dynamic) E can be expressed as a function of V, and υ  using the following formula: 

 

[2]  E =     

 

V: wave velocity measured in km/s.  

E: modulus of elasticity in GPa.  

υ: Poisson's ratio. 

 

 
Fig.2. Ultrasonic measurements 
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2.3 Composition of different concretes 

The rubber granules used have a size identical to that of gravel 3/8 so we replaced different percentages of Gravel 

3/8 by rubber granules (25, 50 and 100%). We have four (04) concrete compositions: 

 

* Reference Concrete RC: which has the following composition: 

Table 1: Composition of the Reference Concrete 

CONSTITUENTS MASS (kg) 

Sand 644 

Gravel 3/8 206.7 

Gravel 8/15 1004.6 

Cement 400 

Water 221 

*Concrete including 25% of rubber granules C25RG: with the following composition: 

Table 2: Composition of C25RG 

CONSTITUENTS MASS (kg) 

Sand 644 

Gravel 3/8 155.02 

Gravel 8/15 1004.6 

Rubber Granules 51.67 

Cement 400 

Water 188 

Adjuvant 4 

 
 

*Concrete including 50% of rubber granules C50RG: with the following composition: 

Table 3: Composition of C50RG 

CONSTITUENTS MASS (kg) 

Sand 644 

Gravel 3/8 103.35 

Gravel 8/15 1004.6 

Rubber Granules 103.35 

Cement 400 

Water 188 

Adjuvant 4 

 
*Concrete including 100% of rubber granules C100RG: with the following composition: 

 

 

 

 



MAT-737-4 

Table 4: Composition of C100RG 

CONSTITUENTS MASS (kg) 

Sand 644 

Gravel 3/8 0 

Gravel 8/15 1004.6 

Rubber Granules 206.7 

Cement 400 

Water 188 

Adjuvant 4 

3. ANALYTICAL MODELLING 

3.1. Hill Model  

Hill [1] considers a material with 2 phases: the inclusion and the matrix. To supervise the actual properties of these 

materials, it offers two models: parallel and series as shown in Fig. 3, which correspond to the "terminal" top and 

bottom respectively. Terminals Hill are best known for their simplicity and are also at the origin of models classified 

as parallel-series models with many applications for concrete. 

   
 Fig.3. Schematic representation of Hill model [1]  

 

We consider Ec and Em  modulus of the two phases ‘’c’’ (rubber) and ‘‘m’’ (matrix) respectively: 

 

[3]  Superior borne SB: =β + (1-β)          

 

[4]  Inferior borne IB:  = +       

These models can be adapted to predict the values wrapped in the elastic modulus of composite materials. 

If we consider Vc, Ec and Vm, Em, as the volume fractions and elastic modulus of the two phases Rubber granules 

and Cement Matrix, we therefore proposed the following expressions by Hill [1]: 

 

[5]  SB:   =  +                             

 

[6]  IB:     =   +                                                     
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3. 2. Hashin-Shtrikman Model (BHS) 

Hashin and Shtrikman [2] proposed limits established for a mixture of “n” isotropic elastic components, without any 

particular assumption about their form or their volume concentration. On concrete incorporating RG, if Kr, Km, Gr, 

Gm, Vr, Vm are the bulk modules compressibility, shear moduli and volume fractions of each phase and rubber 

matrix, Kinf and  and Ksup (the lower and upper bounds of the modulus) and Gsup and Ginf (terminals of the shear 

modulus) of the composite can be put in the form of the following equation [4]: 

 

[12]  Kinf = Kr +                                         

 

[13]  Ksup = Km +                                                             

 

[14]  Ginf = Gr +        

 

[15]  Gsup = Gm +                                                

 

[16]   We note that:      Kr,m =      et      Gr,m =       

 

Where  r,m  and Er, m are the Poisson's ratios and modulus of elasticity of each phase, i.e. rubber and matrix 

respectively. 

 
So we can express the modulus of elasticity as a function of the shear modulus G and the bulk modulus K according 

to the relation below: 

 

[17]   E =                                                                                               

And the relationship between the upper bound, lower elastic modulus and the experimental result is as follows: 

 

[18]  BHSinf =   ≤ Eexp ≤  = BHSsup         

4. RESULTS AND INTERPRETATIONS 

4.1 Experimental Results:  

After measurement of ultrasonic velocities, we use the formula (2) to evaluate the results of the dynamic modulus of 

elasticity of each concrete composition and which are illustrated in Table 5 and Fig. 4 given below:  
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Table 5: Variation of elasticity modulus versus rubber granules percentage 

Concrete composition RC C25RG C50RG C100RG 

Elasticity Modulus (GPa) 37.26 32.77 29.42 15.22 

              

 
Fig.4. Influence of rubber aggregates on elasticity modulus 

 
It can be seen from the graphic that the addition of rubber granules induced a significant drop in modulus of about 

59% for concrete C100 RG, 21% for concrete C50RG and around 12% for concrete C25RG compared to the 

reference concrete. Many studies, such as those Güneyisi [5] Ganjian [6] and Cuong [4] confirmed that the 

incorporation of RG induced a significant drop in modulus of elasticity. Note that this drop is mainly due to the low 

stiffness of the RG, the poor quality of the transition zone between the rubber and the cement matrix and the 

porosity of the concrete. In order to proceed to the analytical modeling of the dynamic modulus of elasticity and the 

static modulus of elasticity and basing on the British Code [7] and the work of Lydon and Balendran [8], a linear 

correlation between the Young's modulus static and dynamic was performed. This correlation is limited to a 

compressive concrete resistance less than 40 MPa concrete. The following formula defines the relationship between 

Estatic and Edynamic: 

 

[19]  Estatic = 0.83 Edynamic                         

 

The results are summarized and given in the following Table 6. 

 

 

Table 6: Values of Estatic for different compositions of concrete 

 

 

 

 

4. 2. Results of Analytical Modeling 

In this part we present only the modeling results for two models, i.e. the models according to HILL and the Hashin-

Shtrikman terminals. 

 

Concrete 

composition 

RC C25RG C50RG C100RG 

Edynamic (GPa) 37.26 32.77 29.42 15.22 

Estatic (GPa) 30.92 27.19 24.41 12.63 
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4.2.1. Hill Model 

  

Using eqs. (5) and (6) we can calculate the lower and upper bounds and compare them with the experimental results. 

The modulus of elasticity of the vulcanized rubber is chosen to be 1.75 GPa. 

The results are shown in Table 7 and Fig.5 below: 

 

Table 7:.Modulus of elasticity: comparison of experimental results and the model of Hill 

 

Type of 

concrete 

 

(%) 

 

(%) 

Modulus of elasticity  (GPa) 

IB SB Experimental Results 

 

RC 

 

0 

 

100 

 

30.92 

 

30.92 

 

30.92 

 

C25RG 

 

9 

 

91 

 

12.36 

 

28.29 

 

27.17 

 

C50RG 

 

19.5 

 

80.5 

 

7.27 

 

25.23 

 

24.41 

 

C100RG 

 

39 

 

61 

 

4.13 

 

19.53 

 

12.63 

 

The above figure shows that the experimental curve is between the two upper and lower bounds of the Hill model 

agrees best with the results given in relation to the upper bounds. The Hill model therefore allows describing the 

variation of the elastic modulus as a function of experimental substitution rate in RG. This statement is more 

accurate for a percentage of the aggregate less than 50% according to the graph in other words assays RG volume 

less than 20%.  

 
4.2.2. The Terminals Hashin-Shtrikman (BHS) 

 

Using eqs. (12), (13), (14), (15), (16), (17) and (18) for three concrete compositions the Reference concrete, concrete 

with a 50% RG and concrete with 100% RG, we find the results summarized in Table 8 below: 

                    
Table 8:.Bounds of Hashin-Shtrikman model results 

 

Fig.5. Modulus of elasticity, comparison of the experimental results and analytical model 

 

Concrete Vr Vm Kr Km Gr Gm Kinf Ksup Ginf Gsup BHSinf BHSsup Eexp 

RC 0 100 14.583 18.405 0.591 12.672 396.726 18.405 1208.683 12.672 30.920 30.920 30.920 

C50RG 19.5 80.5 14.583 18.405 0.591 12.672 67.189 28.064 6.504 19.032 18.903 46.568 24.410 

C100RG 39 61 14.583 18.405 0.591 12.672 36.378 45.002 2.838 29.603 8.299 72.837 12.630 
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It can be seen that the lower Hashin-Shtrikman agreement is better with the experimental results with a small 

difference in contrast to the upper bound. We can say therefore that the BHS yield very significant results since they 

integrate at the same time the bulk modulus, shear modulus and Poisson's ratio of two constituent phases of the 

composite. 

5. CONCLUSIONS 

In this work we discussed and compared the results of two analytical methods (model BHS HILL and terminals) to 

calculate the elastic modulus of concrete containing rubber granules from the experimental results in order to have a 

reliable prediction of this important feature. The HILL model which considers the material in two phases is one of 

the important tools to predict the modulus of elasticity of concretes and those incorporating rubber granules. This 

modeling approach is characterized by its simplicity and its appearance affordable based on physical characteristics 

and the volume fractions of each phase, but it is far from perfect. The lower Hashin-Shtrikman bound gives results 

much better and more realistic because this method incorporates bulk modulus, shear and Poisson's ratio of RG 

phases and cement matrix and therefore we can say that it can be used as a tool for prediction of the elastic modulus. 
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