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METHODOLOGY Open Access

Unifying the analysis of high-throughput
sequencing datasets: characterizing RNA-seq,
16S rRNA gene sequencing and selective
growth experiments by compositional data
analysis
Andrew D Fernandes1, Jennifer NS Reid2, Jean M Macklaim2, Thomas A McMurrough2, David R Edgell2

and Gregory B Gloor2*

Abstract

Background: Experimental designs that take advantage of high-throughput sequencing to generate datasets
include RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), sequencing of 16S rRNA
gene fragments, metagenomic analysis and selective growth experiments. In each case the underlying data are
similar and are composed of counts of sequencing reads mapped to a large number of features in each sample.
Despite this underlying similarity, the data analysis methods used for these experimental designs are all different, and
do not translate across experiments. Alternative methods have been developed in the physical and geological
sciences that treat similar data as compositions. Compositional data analysis methods transform the data to relative
abundances with the result that the analyses are more robust and reproducible.

Results: Data from an in vitro selective growth experiment, an RNA-seq experiment and the Human Microbiome
Project 16S rRNA gene abundance dataset were examined by ALDEx2, a compositional data analysis tool that uses
Bayesian methods to infer technical and statistical error. The ALDEx2 approach is shown to be suitable for all three
types of data: it correctly identifies both the direction and differential abundance of features in the differential growth
experiment, it identifies a substantially similar set of differentially expressed genes in the RNA-seq dataset as the
leading tools and it identifies as differential the taxa that distinguish the tongue dorsum and buccal mucosa in the
Human Microbiome Project dataset. The design of ALDEx2 reduces the number of false positive identifications that
result from datasets composed of many features in few samples.

Conclusion: Statistical analysis of high-throughput sequencing datasets composed of per feature counts showed
that the ALDEx2 R package is a simple and robust tool, which can be applied to RNA-seq, 16S rRNA gene sequencing
and differential growth datasets, and by extension to other techniques that use a similar approach.

Keywords: compositional data, differential abundance, centered log-ratio transformation, Dirichlet distribution,
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Background
The objective of many high-throughput sequencing stud-
ies is to identify those genes or features that make a
significant difference between two or more conditions.
These methods are diverse and include RNA sequencing
(RNA-seq), chromatin immunoprecipitation sequencing
(ChIP-seq), and metagenomic and 16S rRNA gene ampli-
fication analysis of microbial populations. All of these
study designs share common aspects whereby DNA frag-
ments are incorporated into a library, a small proportion
of that library is sequenced on an instrument and the
reads from the sequencing run are binned into features
that represent an underlying biological entity. The entities
can be genes, other expressed or non-expressed genomic
features (RNA-seq and metagenomics), operational tax-
onomic units (OTUs) (16S rRNA gene sequencing) or
genomic segments (ChIP-seq). Different statistical models
are used to determine differential abundance in each type
of study despite the underlying similarity in study design.
The RNA-seq field has largely standardized on estimat-
ing the variation with the negative binomial [1] and a
relatively small number of normalization methods [2]. In
contrast, the standard 16S tag-sequencing workflow nor-
malizes abundances between samples by rarefaction or
other subsampling methods and usually works with pro-
portions [3,4], although some suggest that these normal-
izations make little difference to the outcome [5]. Some
groups additionally use quantitative PCR approaches to
normalize reads [6]. Finally, ChIP-seq analyses often use
Poisson-based models [7]. The methodological diversity
appears to be due, in part, to historical accident as each
field developed methods that derived from its own field
of study and then became crystallized. The result is that
methods used for one experimental design are often not
suitable for another. However, all these tools treat the
underlying data as counts per feature, adjusting these
counts across samples and performing statistical tests on
these adjusted counts [1,3,4,7]. Tools designed for one
study design generally fail when applied to another (e.g.,
see [8,9]): this unexpected fragility suggests that the tools
have been optimized to give biologically plausible results
by latent parameterization.

Compositional data and high-throughput sequencing
Despite current advice to treat high-throughput sequenc-
ing datasets as count data [1,10], fundamentally, such
datasets are compositional [8,9,11]. That is, the total num-
ber of reads obtained for a particular sample is not itself
informative. A dataset is compositional when the sum of
the values for each sample is predefined [12]. Datasets
of this type can be proportional, such as fractions of the
whole, percentages, parts per million, etc. It is simplest
to think of compositional values as being proportions of
a unit, varying between 0 and 1. Proportional datasets

are very different from datasets composed of ordinary
numbers that can take any value.
Treating high-throughput sequencing datasets as com-

positions is intuitive if one considers that the primary
determinant of the observed sequencing depth is the
sequencing platform used and the number of samples that
are multiplexed per run. For example, an Illumina HiSeq
can currently generate over 200 million reads per lane,
a MiSeq approximately 20 million reads per run and an
Ion Torrent instrument up to 6 million reads per run.
Setting aside confounding effects such as the accuracy of
the instrument, clearly the direct comparison of different
numbers of reads per category would be erroneous. Thus,
we must think of datasets derived from high-throughput
sequencing as compositions instead of count data. The
purpose of this work is to show that datasets from a
wide variety of experimental designs, including RNA-seq,
16S rRNA gene sequencing and selective growth (selex)
experiments share a similar underlying structure, and can
be analyzed appropriately using methods developed and
used for decades in fields as diverse as geology, ecology
and paleontology [12-15].
There have been many warnings regarding the use of

standard statistical methods that assume the indepen-
dence of the underlying observations when examining
compositional data, the first being given by Karl Pearson
in 1896 [16]. These warnings were ignored initially
because there were no alternative methods. However,
beginning in the late 1970s and continuing to this day,
a number of approaches have been developed that fully
use multivariate statistical approaches to examine compo-
sitional differences between samples. In 1986, Aitchison
[12] presented a full set of rationales and detailed descrip-
tions of what follows.
The major problem with compositional datasets is that

the data points do not map to Euclidean space, but instead
to a hyperplane referred to as the Aitchison simplex [12].
Aitchison demonstrated that data mapping to the simplex
must be transformed prior to analysis to prevent erro-
neous conclusions [12,17]. The appropriateness of a data
transformation for compositional data can be addressed
by answering two questions about the data [17]. First, is
the total sum of the counts of the data useful? And second,
is the absolute difference between observations impor-
tant? Answering yes to both means that the data belongs
to Euclidean space, and so traditional statistical meth-
ods are valid. Answering no to both means that the data
belongs to the Aitchison simplex, and it must be trans-
formed prior to analysis. Note that by not answering these
questions the investigator is assuming that the values in
the dataset are count data and that the absolute differ-
ence between values is important: i.e., the investigator is
assuming the values are Euclidean. This is the assumption
made by all RNA-seq analysis tools, the major tools used
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for 16S rRNA gene analysis (mothur, qiime and VEGAN)
and tools to analyze ChIP-seq.
Compositional datasets present several special chal-

lenges. The first challenge is that compositional data must
be analyzed in a scale-invariant way: that is, the answer
should be the same whether the investigator is dealing
with proportions, percentages, ppm or per feature val-
ues where the total value is constrained to be the sum
of the parts [12]. Compositional data are also dimen-
sionless since they are proportions where the numerator
and denominator have the same units. That data gen-
erated by high-throughput sequencing approaches must
be analyzed in a scale-invariant manner is implied by
the various corrections for read depth used by the RNA-
seq community [2], and by the rarefaction or jack-knifing
commonly used by common 16S rRNA gene analysis tools
[18]. The second challenge is that the count values for fea-
tures in a sample are not independent. In these datasets
the value of one feature necessarily restricts the value
of at least one other, and in general restricts the val-
ues of many others [9,12,16]. This property manifests as
strong correlations between features, and was the origi-
nal issue identified by Pearson [16]. The third challenge
is that taking sub-compositions of such data often results
in completely different interpretations of the correlation
structure [12]. Aitchison gives simple examples of this
effect where changing the abundance of one feature in
a composition results in correlation between the others
changing from strongly positive to strongly negative. This
effect is problematic, given current guidance by popu-
lar 16S tag-sequencing analysis tools to filter reads falling
below a certain threshold [19,20] or for removing riboso-
mal RNA sequences through chemical or computational
means when performing RNA-seq.

Treating compositional datasets as ratios
Aitchison realized that the above constraints could be
alleviated by investigating the ratios between proportions
[12]. He developed a number of approaches that remove
or reduce the above constraints, and with the proper inter-
pretation, allow full use of standard statistical techniques.
These transformations have been shown to increase reso-
lution and allow more robust data interpretations in fields
as diverse as paleontology [15], environmental sciences
[14], metabolomics of wine [13], meta-transcriptomics [8]
and 16S rRNA gene tag sequencing [9].
A conceptually simple transformation is the centered

log-ratio transformation, or clr. Here the read counts for
each feature are divided by the geometric mean of the
read counts of each feature in the sample, followed by tak-
ing the logarithm. The clr has the advantage that there
is a one-to-one transformation of all features, allowing
changes of all features to be observed. Moreover, if 2
is used as the base of the logarithm, then differences

between features represent fold-changes in relative abun-
dance between features, a measure that is natural for
molecular biologists, biochemists and other life scien-
tists. Additional transformations have been developed by
Egozcue and collaborators that have more robust prop-
erties, but which lack a one-to-one mapping of the sam-
ple features [21,22]. We will use the clr transformation
throughout the remainder of the paper since this transfor-
mation is the most widely used and simplest to interpret.
By way of example, consider the following set of values:

x = [10, 35, 50, 500]: where the proportional sum is con-
strained to be 1.We could imagine that we have the counts
from an RNA-seq experiment where the last feature is the
count of reads mapping to ribosomal RNA. Converting to
proportions,

px = 10, 35, 50, 500
595

= [0.0168, 0.0588, 0.0840, 0.8403],

and the difference between elements 1 and 2 is −0.042:
a very small difference. If we remove one observation
(say the last one), equivalent to what is often done
when removing the large number of sequences mapping
to rRNA gene sequences from RNA-seq datasets, this
changes the dataset to

px = 10, 35, 50
95

= [0.1052, 0.3684, 0.5263].

Now the difference between elements 1 and 2 is much
larger, being −0.263, and the investigator could be led to
a different conclusion. In contrast we can consider these
same elements as compositions and compute the rela-
tive difference between elements using the clr. In the case
of the complete vector, the corresponding values (using
base 2) are clr(x) = [−2.44,−0.64,−0.12, 3.20] and the
difference between elements 1 and 2 is −1.81. If the com-
position is reduced by removing the last element as before,
then the corresponding clr values are [−1.38, 0.43, 0.94],
and the difference is unchanged at −1.81. The meaning of
this result is that element 1 is 2−1.81 as abundant as ele-
ment 2. Thus, the same relative difference between these
two elements is maintained regardless of which other
element, or combination of elements, is removed.
One additional problem must be acknowledged: that

values of zero are problematic because of the logarithmic
transformation [12]. Aitchison recommends removing all
samples containing a zero value for one of the features
when examining geologic samples [12]. This approach is
not practical for biologists interested in comparing gene
expression between samples or when comparing the dif-
fering abundances of bacteria from environmental sam-
ples. In these contexts it is quite possible to have features
with zero values. These can arise for two reasons. First, it
is possible that the feature is truly never represented in the
sample. It could be that the organism is incapable of living
in that environment or the gene is not expressed. Second,
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the feature may be present, but below the detection limit
imposed by the number of reads that are possible to
achieve with the instrument. In the examples that follow,
zero values are dealt with in two ways. First, by remov-
ing a feature from consideration if the feature has zero
counts in all samples. These features are inferred to be so
rare that we can assume that sequencing more replicates
would always result in zero reads being identified. Second,
when one or more values of a composition is greater than
zero, then all the values in the composition are retained
even if they are zero. We then treat these remaining zeros
in a Bayesian context [8,9] and assume that the reason no
reads were detected in some features was because of sam-
pling variance. The methodology by which this is done is
outlined in the Methods Section, and the full method is
implemented in the ALDEx2 R package [23].

Methods
A pictorial summary of the method is outlined in Figure 1.
Input data tables for ALDEx2 have i rows containing
counts of values for each feature, and j columns represent-
ing samples. Features that contain zero reads in all samples
are removed as they are considered uninformative, and by
definition are unable to contribute to the pool of differ-
entially abundant features. Similar strategies are standard
in RNA-seq analysis where rows summing to less than
some value are excluded as they cannot be tested reliably
for overdispersion [24]. Similarly, the standard practice in
16S rRNA gene sequencing is to exclude features that are

less than an abundance cut-off [19,20], and in practice this
usually means excluding singleton reads. The problem is
most acute when examining RNA-seq data since struc-
tural, ribosomal, transfer and other RNA sequences are
physically or computationally depleted prior to analysis.
It is crucial to note that when the values in a com-
positional dataset are manipulated in this way the data
transformations proposed by Aitchison and used here are
required to prevent spurious conclusions because of sub-
compositional incoherence in compositional data [12].
The total number of reads for all features in a sample
Nj = ∑

i ni,j is not a predictable outcome of the experi-
mental design because it is dependent on the instrument
capacity and the number of samples that are multiplexed
in the run. The actual number of counts for a given fea-
ture are therefore not of interest and are generally scaled
[2]. Note that along with the total counts per sample, the
total number of counts does provide information about
the precision of per feature count estimation [8,9].
Normalization across samples can be achieved using

maximum likelihood to give a single estimate of the pro-
portion of reads per feature, pi,j = ni,j/

∑
i ni,j. However,

this simple normalization has several flaws, mainly that
both high and low count features may not be estimated
correctly [2,25]. The number of reads per feature can be
modeled as being sampled from a multinomial Poisson
process, and the approach that performs best is to model
the read counts as being derived from a Dirichlet process
[8,9,26,27].

counts + prior

Monte Carlo
 Dirichlet 
instances

clr transform

FDR adjustment

Step

69.5        185.5       70.5          511.5       659.5       462.5

2.21e 5   2.94e 5   2.55e 5   1.35e 4   1.32e 4   1.23e 4 
2.13e 5   2.98e 5   2.44e 5   1.25e 4   1.41e 4   1.22e 4 
2.61e 5   3.06e 5   2.33e 5   1.16e 4   1.34e 4   1.20e 4

6.50         7.58         6.58          9.30         9.48         9.13
6.45         7.60         6.50          9.19         6.73         7.59 
6.73         7.59         6.47          9.12         9.46         9.07

0.01375
0.01457      Mean:   0.014
0.01349 

0.0778
0.0795        Mean:   0.078
0.0761

1)
2)
3)

1)
2)
3)

1)
2)
3)

1)
2)
3)

C1           C2           C3            E1           E2            E3

Figure 1 Outline of the approach for one feature in three control and three experimental samples. The count values for feature i, sample j
are converted to probabilities by Monte Carlo sampling from the Dirichlet distribution with the addition of a uniform prior. Each count value is now
represented by a vector of probabilities 1 : n, where n is the number of Monte Carlo instances sampled: three instances are shown in the example,
but 128 are used by default. Each probability in the vector is consistent with the number of counts in feature i given the total number of reads
observed for sample j. Each Monte Carlo Dirichlet instance is center log-ratio transformed giving a vector of transformed values. These values are the
base 2 logarithm of the abundance of the feature in each Dirichlet instance in each sample divided by the geometric mean abundance of the
Dirichlet instance of the sample. Significance tests for control samples (C1 : C3) vs experimental samples (E1 : E3) are performed on each element in
the vector of clr values. Each resulting P value is corrected using the Benjamini–Hochberg procedure. The expected values are reported for both the
distribution of P values and for the distribution of Benjamini–Hochberg corrected values. clr, centered log-ratio; FDR, false discovery rate.
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Figure 1 shows a worked example for a single feature i
for three control (C) and three experimental (E) samples.
First, sequences that map to each feature are enumer-
ated and the table of read counts for each feature in each
sample is converted to a distribution of posterior proba-
bilities through Monte Carlo sampling from the Dirichlet
distribution for each sample:

p [n1, n2, . . .] |
∑

N = Dir
(
[n1, n2, . . .]+ 1

2

)
.

An uninformative prior of 1/2 is used to model the fre-
quency of features with zero counts [28,29]. This prior
maximizes the information in the data while minimizing
the effect of the prior on the posterior in the case where
the relative frequencies of each feature are of equal impor-
tance [29]. Usually, 128 Dirichlet Monte Carlo (DMC)
instances are sufficient since we are concerned only with
summarizing central tendencies, not tail-related events.
Each point value is now represented by a vector of poste-
rior probabilities, pi,j [1, 2, . . .]. The distributions are nar-
row if the feature and the sample contain a large number
of counts and wide if either the feature or the sample has a
small number of counts. Each Monte Carlo realization of
pi,j is transformed by the clr transformation:

ci,j = log2(pi,j)−mean log2(pj).

After this transformation the value for each feature is
now relative to the geometric mean abundance of all val-
ues in the sample. We will refer to clr-transformed values
as relative abundance values, and to untransformed val-
ues as proportional values throughout. Each realization
of the ci,j value between conditions is subjected to both a
Welch’s t-test and aWilcoxon rank test giving two vectors
of P values, and each P value instance is then corrected
for multiple hypothesis testing using the false discovery
rate (fdr) approach of Benjamini and Hochberg [30]. The
expected value of the P and fdr statistics are then reported
for both statistical tests.
ALDEx2 also returns the within- and between-

condition measures and the effect size that was used by
the original version of ALDEx [8]. However, these statis-
tics are calculated in a much more efficient way allowing
near arbitrarily sized experimental designs. Themajor dif-
ferences between ALDEx2 and the original version are
outlined in Table 1.
The default parameters of ALDEx 2.0.6, DESeq v1.14.0

[31], DESeq2 v1.2.8 [31], SAMseq v2.0 [32] and baySeq
v1.16.0 [33] versions were used in R version v3.0.2 [34].

Results and discussion
Wewill use example datasets that are sufficiently different
to show that the concepts are generalizable to many types
of high-throughput sequencing studies including selective

Table 1 Comparison of ALDEx and ALDEx2

Property ALDEx ALDEx2

Significance tests Effect size and ad hoc Welch’s t or Wilcoxon

Multiple test No Benjamini–Hochberg
correction

Minimum dataset Two samples per Three samples per
group group

Maximum dataset 3× 3× 5,000 > 300× 300× 20,000

2× 2× 20,000

Dataset: samples in A× samples in B× number of features.

growth experiments, RNA-seq, ChIP seq, 16S rRNA gene
tag sequencing and others.

Examining selective growth experiments
Selective growth experiments (selexes) are often used to
identify sequence variants for genes that confer a growth
phenotype upon the cell line containing them. In this type
of experiment the investigator is interested in identifying
the fold enrichment of variants that exhibit some activity.
The first dataset is a single-round enrichment exper-

iment testing the activity of a library of LAGLIDADG
homing endonuclease sequence variants [35]. This dataset
is available within the ALDEx2 package. In this experi-
ment two codons in the gene were randomized completely
and two codons were free to encode only two acid amino
acids. The total library was thus 1,600 possible quadruple
amino acid variants. An active enzyme results in cleav-
age of the gene for a bacteriostatic DNA gyrase toxin.
DNA sequencing was used to collect data on the growth
characteristics of cells containing individual variants in
the library under both selective and non-selective (i.e., no
toxin) conditions. Seven replicate experiments for activ-
ity were conducted. With this experimental design it is
expected that the relative abundances of each variant after
growth in the non-selective condition would reflect the
input abundances and vary only by sampling differences.
Crucially, because the toxin is bacteriostatic, the relative
abundances of each variant under the selective conditions
should also reflect the input abundances since all vari-
ants should survive but no variant should be able to grow.
Thus, their relative abundance would be unchanged. In
contrast, variants that allow escape from the selection
would become relatively more abundant, but no variant
becomes less abundant.
This dataset is useful because the directionality of

change is fixed, and because the activity of some of the
variants has been verified in vitro giving an objective mea-
sure of truth that is often lacking in sequence survey
experiments such as 16S rRNA gene sequencing or RNA-
seq. We use this dataset to illustrate the advantages of
compositional data analysis using the clr transformation,
the effect of modeling low count abundances with Monte
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Carlo replicates of the Dirichlet distribution and the effect
of sample size on power.

Analyzing selective growth data as counts
Among the most developed tools to examine high-
throughput sequencing experiments are those designed
to examine RNA-seq experiments [1], and these tools are
often advocated for use in other experimental designs that
generate tables of counts. These tools assume the data are
counts of features for each sample and scale the counts
to account for sequencing depth. The variance of each
feature is calculated from a negative binomial model. We
started with the hypothesis that existing tools used to
examine RNA-seq experiments would be appropriate to
identify those variants that exhibit differential growth.We
tested this hypothesis using DESeq, DESeq2 [1], SAMseq
[32] and baySeq [33] to identify differentially abundant
variants. Table 2 shows that an examination of the data at
a fdr of 5% indicated that the majority, or in some cases
all, of the amino acid variants exhibited a significantly
different frequency pre- and post-selection with each of
these tools. All four tools identified a small number of fea-
tures as becoming more abundant, and a large number of
features as becoming less abundant. This makes sense in
the context of counts, but not in the context of relative
abundance because the vast majority of variants do not
change their relative abundance under the selective condi-
tions. Therefore, the differential growth exhibited by the
variants under the selective and non-selective growth con-
ditions clearly does not fit the underlying assumptions of
any of these tools.

Analyzing selective growth data as compositions
The analysis that follows uses the clr transformation,
described in the Methods, which converts the data from
absolute differences to relative differences. Data trans-
formed by the clr are centered on the geometric mean,
with negative values being less abundant than the mean
in that sample and positive values being more abundant
than the mean. The difference between two values is
the fold-change between them if the transformation is
done using base 2 logarithms. One important property of
the clr transformation is that the transformed values are
inherently normalized for the sequencing effort [8].

Table 2 In vitro selection experiment analysis of
commonly used differential expression tools

Tool Number up Number down

BaySeq 8 1,592

SAMseq 7 708

DESeq 21 1,396

DESeq2 32 1,400

ALDEx2 69 0

Several groups have recently shown that the sampling
error inherent in high-throughput sequencing protocols
can be modeled appropriately by Monte Carlo sampling
from a Dirichlet distribution [8,9,26,27]. Each instance
sampled from a Dirichlet distribution is equivalent to
assuming that read proportions for each feature are
derived from a Poisson distribution with the additional
constraint that the sum of the proportions of all compo-
sitions must sum to 1 after sampling [28]. This approach
gives a more accurate assessment of the expected value of
the proportion for a given composition, and a correspond-
ingly more accurate estimate of the expected value of the
associated statistical values [8,9]. Monte Carlo instances
can be drawn from the Dirichlet distribution and each
Dirichlet instance is an estimate of the per feature propor-
tion that would be observed if the same library had been
sequenced again [8]. In effect, each Dirichlet instance is an
equally valid outcome of the sequencing run based upon
the total number of reads observed and their per feature
distribution. One consistent problem with conducting
experiments where there are hundreds or thousands of
features is that the number of hypothesis tests conducted
are greater than the degrees of freedom allowed by the
number of replicates. This problem, in addition to the
large uncertainty in accurately measuring the frequency
of low-abundance features, means that it is very easy to
underestimate the true underlying variation in the data,
and to overestimate statistical significance [8,9].
Figure 2 shows plots of the between-condition variation

versus the within-condition variation (MW plots) [8] for
clr-transformed data alone, or with the expected valued
derived from differing numbers of DMC instances. Note
that the MW plots show that there are many more ‘signif-
icant’ features (red) when the clr transformation is used in
the absence of DMC instances (clr only) or when there is
only a single DMC instance than when the expected val-
ues of the test statistics are determined from 16 or 128
instances. This occurs with both statistical tests.
The low-abundance features, shown in black, have a

very wide spread in their within-condition differences
in the clr only example and when only a single DMC
instance is used. The effect of determining the expected
values through DMC sampling is evident in the two right
columns, where it can be seen that the within-condition
differences for low-abundance features converge when
the number of instances increases. This indicates that
small numbers of samples are insufficient to reflect ade-
quately the true sampling variation [8,9], especially for
the rare features that exhibit high relative variation. It
is apparent that determining the expected value of the
test statistics from multiple Monte Carlo realizations
has a profound effect on the estimation of variance in
those features with low abundance values as these fea-
tures (shown in black) are largely displaced further to
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Figure 2 Effect of DMC sampling on the selex dataset. The first column shows the results when the data is clr transformed without DMC
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the right, being on average almost twice as variable in
this procedure than when only the clr transformation is
performed.
Table 3 enumerates the number of low-abundance

features identified as significant as a fraction of the
total number of significant features and the number
of Monte Carlo samples from the Dirichlet distribu-
tion (DMC). Note that low-abundance features com-
pose a large fraction of all significant features when
the clr only is used and when only a single DMC is
used. Both the total number of significant features and
the contribution of low-abundance features drops rapidly
when DMC replicates are used to estimate the sam-
pling variation. This is similar to the observation of
Friedman and Alm [9], who demonstrated that examin-
ing expected values of test statistics derived from DMC

Table 3 Effect of DirichletMonte Carlo instances on
significance of low-abundance features

DMC Wilcoxona Welch’sa

0 339/478 349/546

1 41/164 27/111

16 1/84 0/68

128 0/85 0/69

DMC, Dirichlet Monte Carlo replicate number.
aNumber of low-abundance significant features/total.

sampling significantly reduced the number of false posi-
tive correlated features in 16S rRNA gene tag sequencing
experiments.
One shortcoming of the clr transformation is that it may

not transform the data such that it is normally distributed.
In this case it may be more appropriate to use a non-
parametric significance test to determine the difference
between conditions. The top and bottom rows in Figure 2
show the results of Wilcoxon tests or of Welch’s t-tests
on the clr-transformed values. We found that there was
very good agreement between features identified by both
statistical tests when using all seven replicates since all
69 features identified by the Welch’s t-test were in the 85
features identified by the Wilcoxon test in the 128 DMC
analysis using all seven replicates at a fdr< 0.05. However,
when only three of the seven replicates were included,
no features were identified as significant by the Wilcoxon
test while 16 features were still identified as signifi-
cant by Welch’s t-test. We therefore recommend Welch’s
t-test as its power is not as sensitive to sample size as the
Wilcoxon test, although both test statistics are reported by
ALDEx2, and the user should examine the results of both
tests.

Examining the results of count vs composition analysis
The last line in Table 2 shows that all of the signif-
icant features identified by the ALDEx2 approach are
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identified as becoming relatively more abundant, and, in
contrast to the other tools, no features are identified as
becoming relatively less abundant. That DESeq, DESeq2,
SAMseq and baySeq identify features that become less
abundant makes sense if the data are counts, but do
not make sense if the data are compositional. Recall
that the design of the experiment was to identify those
sequence variants that exhibited differential effects in
a bacteriostatic growth assay. Thus if a variant was
non-functional the abundance of the variant would be
unchanged in the selected condition; i.e., cells contain-
ing a non-functioning variant would not grow and so
these cells would remain at the input concentration until
sampled. Conversely, if a variant was functional, cells
containing it would grow and become much more abun-
dant than average under the selective conditions. Note
that cells containing both functional and non-functional
variants would grow at the same rate and so the expec-
tation is that variants would be found at approximately
the same abundance under non-selective conditions. By
way of illustration consider two variants from the dataset.
The first variant K:D:I:E is non-functional, the counts for
non-selected cells are [149, 89, 165, 68, 135, 128, 199] and
for selected cells are [0, 0, 1, 0, 1, 0, 0]. Here the counts
are very different, leading to the conclusion that this
feature is less abundant in the selected than the unse-
lected dataset, and this is reported as such by all tools
(fdr for DESeq and baySeq are 3.8 × 10−7 and 1.8 ×
10−4, respectively). However, relative to all other vari-
ants the counts for this variant are almost equal to
the geometric mean abundance in both the selected
and non-selected conditions: ALDEx2 reports an fdr of
approximately 0.8 indicating no difference relative to the
mean abundance under each condition. The second vari-
ant, S:E:G:D, is weakly functional and the counts for non-
selected cells are [755, 554, 669, 797, 862, 650, 2170] and
for selected cells are [4710, 995, 906, 1716, 784, 804, 641].
This variant is identified as non-signficant by DESeq
(fdr = 0.73), but is considered significant by ALDEx2
(fdr < 1 × 10−3). The difference is presumably because
the counts are similar in the selected and non-selected
conditions (DESeq log2(fold-change) = 22.9), but the rel-
ative abundances are very different (ALDEx2 diff.btw.q
50 = 26.2).
We conclude that these tools, and by extension the

many similar tools that use count-based methods to
estimate variation [2,36], are inappropriate as general-
purpose tools to examine differential growth experi-
ments of this type. In contrast the clr transformation
in combination with Dirichlet sampling indicated that
only a minority of the variant combinations were
under strong positive selection, a result that was in
agreement with the biochemical characterization of the
variants [35].

Analyzing RNA-seq data as compositions
The second dataset was generated by Bottomly et al. [37]
and contains 10 biological replicates of RNA isolated from
the brain striatum from one mouse strain (C57BL6J) and
11 biological replicates of another strain (DBA/2J). The
dataset contains an average of 22 million reads mapped
for each sample. It was accessed from the ReCount dataset
[38] in January 2014. The final output from ALDEx2 is
available as Additional file 1.
RNA-seq attempts to address the question: ‘What are

the differences between gene expression in the samples
in two or more conditions?’ It is reasonable to exam-
ine gene expression values as fold-change (relative dif-
ferences) because the law of mass action that governs
biochemical reactions depends on the ratios of reactants.
For this reason, existing RNA-seq analysis tools report
changes in gene expression as fold differences, despite
computing P values as differences in scaled counts. What
is not often appreciated is that gene expression is itself
a limited resource in the cell, meaning that the tran-
script abundance should also be modeled as proportional
[39]. Furthermore, it is standard practice in the field to
sequence only a subset of the total RNA in a sample:
typically only the mRNA or some types of non-coding
RNA are sequenced and rRNA and tRNA are excluded.
This approach dramatically alters the sub-compositional
structure of the data, potentially leading to non-robust
inferences as discussed in the introduction.
We examined the Bottomly et al. RNA-seq dataset

[37] using the parametric tools DESeq and baySeq and
compared these results to those obtained by ALDEx2,
which treats the dataset as being compositional rather
than count based. Both DESeq and baySeq were recently
shown to be among the most conservative when exam-
ining this dataset [36], and so can be considered to have
assumptions that have been iteratively altered to fit to
the underlying data better than the majority of tools
used for this purpose. The interested reader should see
Soneson and Delorenzi [36] for a detailed examination
of a large number of available tools using this dataset.
These tools, along with a majority of RNA-seq analysis
tools, use the negative binomial distribution to estimate
the variance of gene expression abundance as a function of
the expression. This method was used originally because
high sequencing costs constrained the number of repli-
cate samples. Indeed, many published analyses contain
three or fewer replicates. The negative binomial approach
allowed the estimation of the variance within a condition
as a function of the mean expression [31]. This variance,
estimated from the idealized negative binomial, is then
used to assign P values and to calculate corresponding fdr
statistics. Thus, this approach allowed the estimation of
statistical significance when the number of samples was
small.
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Differential expression in RNA-seq datasets is often
visualized globally by Bland-Altman plots [40], which
show the mean difference (M) vs average expression (A)
(MA plots). An example MA plot derived from the DESeq
package [31] for the large RNA-seq dataset presented by
Bottomly et al. [37] is shown in Figure 3. In this figure
the points corresponding to the genes identified as differ-
entially expressed are colored red. Note the relationship
between fold-change and mean expression: genes with a
small fold-change require high expression, and genes with
a low expression value require a high fold-change to be
identified as differentially expressed. Note also that for a
given fold-change and expression value, the majority of
genes with a greater fold-change and expression value are
identified as differentially expressed. This MA plot is typ-
ical of well-behaved datasets and such an idealized MA
plot suggests that the analysis by this tool is valid. In this
dataset 604 genes were identified as differentially abun-
dant between conditions by DESeq using an fdr cut-off
of 0.05.
The MA plot in Figure 3 was plotted using values out-

put by DESeq, which assumes that the underlying data was
count data and not compositional data [1]. We examined
the similarity between the DESeq and ALDEx2 underly-
ing values in two ways. First, by comparing the DESeq
corrected mean count values and the ALDEx2 median
abundance values, and by comparing the DESeq and
ALDEx2 fold-change values. There was an almost per-
fect linear relationship for both these examples, with a
Spearman correlation of >0.99 in both cases. Second,
we replotted the values from DESeq onto clr space, and
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Figure 3MA plot for DESeq. The base 2 logarithm of average
expression across all samples for a feature is plotted vs the base 2
logarithm of fold-change. Points that are significantly different with a
fdr less than 0.05 are in red, all others are in gray.

show these plots in the two left panels of Figure 4. In this
figure features identified as significant by DESeq, baySeq
and ALDEx2 individually and in common are highlighted
in different colors: features identified as significant by
DESeq are given by the filled light yellow circles along
with the filled black and cyan circles; features identified
as significant by baySeq are given by the filled light yellow
circles and the filled black and magenta circles; and fea-
tures identified by ALDEx2 (and at least one of the other
two tools) are given by the filled light yellow circles and the
orange filled circles. It is obvious from the left panel that
the majority of genes identified by DESeq and baySeq as
differentially expressed are consistent with the remapped
sample space.
The MW plot panel in Figure 4 shows how the vari-

ation in the dataset is distributed within and between
conditions. In this plot the position where there is equal
variation within and between conditions is shown by the
dashed lines. The coloring is the same as for the left
panel. The MW plot shows that a large fraction of the
significant genes identified by both DESeq and baySeq
(in black), by DESeq only (in cyan) or baySeq only (in
magenta) exhibit as much or more within-condition vari-
ation than between-condition differences. This is not a
statistically desirable result. The genes identified as dif-
ferential by DESeq or baySeq individually tend to be even
more variable within a condition than those identified by
both tools. In contrast, the significant features identified
by ALDEx2 (in black and orange) always have a larger
between-condition difference than within-condition dif-
ference. Those genes that are uniquely identified by
ALDEx2 (in orange) are almost exclusively genes with very
high expression and relatively small differences between
conditions.
The number of significant features identified by DESeq,

baySeq and ALDEx2 is presented in a Venn diagram in the
third panel of Figure 4. It is apparent that all three meth-
ods identified approximately the same number of genes
as being differentially abundant (ALDEx2 407, baySeq
517, DESeq 604) when controlling for an fdr of 0.05, and
between 52% and 77% of the genes identified by one
method were identified by all three. In summary, it can
be seen that the expected value of the t-test for DMC-
sampled and clr-transformed data ensures that the genes
identified as differentially expressed exhibit a greater gene
expression difference between mouse strains than the
gene expression variation within either mouse strain. This
example shows that the compositional analysis approach
works well for RNA-seq datasets.

Analyzing 16S rRNA gene tag sequencing data as
compositions
The third dataset is a 16S rRNA gene sequencing dataset
obtained from the Human Microbiome web repository on
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10 January 2014 [41]. This dataset is a highly curated and
annotated set of 16S sequence counts collected from a
large number of people and a large number of body sites.
We chose to examine the microbiota composition dif-
ferences between the tongue dorsum and buccal mucosa
because these sites had been shown to have somewhat dif-
ferent microbial compositions both by a comprehensive
analysis of the same 16S rRNA gene data and by an inde-
pendent shotgun metagenomics analysis [42]. Since both
approaches identified substantially similar taxa as differ-
entially abundant, we were interested to determine if the
relatively simple procedure implemented here could reca-
pitulate the analyses done previously. The final output
from ALDEx2 is available as Additional file 2.
The Human Microbiome Project dataset contained

23,393 OTUs containing one count or more for any of
the 316 samples from the tongue dorsum and 312 sam-
ples from the buccal mucosa. This dataset was analyzed
with 16 DMC instances rather than 128 because of time
and memory constraints, and because the analysis above
suggested that 16 DMC samples would provide suffi-
cient selectivity on low-count OTUs. The analysis was
completed over all 23,393 OTUs in the dataset in approx-
imately 76 minutes on a computer with 16 Gb RAM and
an i7 processor. We observed 755 differentially abundant
OTUs that had a Benjamini–Hochberg fdr < 0.05, and
collected the 53 OTUs that passed that fdr cut-off with
absolute effect size > 0.6. These 53 OTUs are displayed
on the heat map in Figure 5.
The results show that OTUs assigned to the genera

Actinomyces, Prevotella and Veillonella have an increased
relative abundance in samples from the tongue dorsum,
while OTUs assigned to Haemophilus and Gemella have
an increased relative abundance in samples from the

buccal mucosa. Several distinct OTUs assigned to Strep-
tococcus had different relative abundances in both body
sites, although, in general OTUs assigned to this genus
were over-represented in the buccal mucosa. Together,
these results are congruent with those of Segata et al.,
who observed that these genera differentiate these body
sites [42]. We conclude that the statistical procedure
is also applicable to identify taxa that are differentially
abundant between two samples in 16S rRNA gene tag
sequencing experiments.

Conclusions
High-throughput sequencing is increasingly used to iden-
tify differences between datasets composed of DNA or
RNA sequences. Here we show that data transforma-
tions appropriate for compositional data [12] can be used
with standard statistical inference tools, such as Welch’s
t-test or the non-parametric Wilcoxon test, to identify
features that are differentially abundant between condi-
tions in datasets derived from selexes, RNA-seq or 16S
rRNA gene segment sequencing. Historically, each of
these experimental designs has used a distinct statistical
model to determine significance when examining differ-
ence between conditions, despite these experiments gen-
erating similar types of data comprising large numbers of
reads that are binned into one or more categories.
The diversity of methods suggests a situation where

the assumptions and parameters have been tuned to give
biologically meaningful results with the unintended con-
sequence of making these methods unexpectedly fragile.
For example, RNA-seq analysis tools are very sensitive to
outliers in the datasets [8,32]. Recognizing this, Li and
Tibshirani developed SAMseq, which essentially performs
a consistency check in a manner similar to ALDEx2.
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Figure 5 OTUs with different relative abundances between tongue dorsum and buccal mucosa. Each OTU is colored by membership in the
taxonomic level indicated. OTU abundance values are median relative abundance values derived from ALDEx2. OTU, operational taxonomic unit.

However, in their approach sampling is performed using
a Poisson model that does not enforce a constant sum
constraint, and they use the Wilcoxon rank test, which
requires a large number of samples for statistical power.
Furthermore, SAMseq treats the data as counts rather
than compositions. Nevertheless, this method was shown
to be superior to existing RNA-seq analysis tools based
on Poisson or negative binomial models [32]. While this
approach is superior in some ways to existing RNA-seq
analysis tools on specific datasets, this tool set does not
translate well to other experimental designs as shown in
Table 2. In addition, RNA-seq analysis tools differ in how
the values in the data are scaled between samples, and
there is debate in the literature as to which scaling method
is generally superior [2]. Finally, modeling has failed to
reveal the ‘best’ tool because the tool that performs the
best varies widely when the parameters of the model are
altered [36].
For 16S rRNA gene sequencing, although the tools used

to determine differential abundance between conditions
are still evolving rapidly, no tool treats the data as com-
positions and ensures sub-compositional coherence. For
example, one widely usedmethod [5] is similar to SAMseq
in that it models the reads as coming from an under-
lying Poisson model to estimate technical variance and
identifies as differential those features that show signif-
icance that is not sensitive to the estimated variance.

However, this method treats the values as proportions
and not as compositions. Another commonly used trans-
formation in 16S rRNA gene sequencing is the Hellinger
transformation [43] implemented in the VEGAN R pack-
age [44]. This transformation is also count based and is
not sub-compositionally coherent.
Demonstration of the superiority of analysis methods

is limited by two main factors: the first is that the abun-
dance of a feature in a sample is a continuous variable,
and the second is that there is often no objective standard
to determine what is differentially abundant. Without
a priori information on what constitutes a biologically
meaningful difference, there is no clearly demarcated line-
in-the-sand that can be drawn between differential and
non-differential abundance in any experimental design.
Moreover, the relatively high cost of sequencing has led to
study designs that often emphasize per sample sequenc-
ing depth over biological replication [45], despite advice
to the contrary [46,47]. This has led to the development
of tools that attempt to estimate the biological variation
from limited numbers of replicates.
Standard statistical practice indicates that the anal-

yses should be limited to determining those features
with abundance differences between conditions that are
reliably larger than the variation within either condition.
We and others have developed non-parametric tools to
identify those features fulfilling those criteria [8,32].
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The approach used in this paper models the reads per
feature as proportions, acknowledging that the total sum
of reads for a sample is not itself important. The precision
of estimation of the proportional values is determined by
taking Monte Carlo instances sampled from the Dirichlet
distribution, which takes into account the number of reads
per feature and the total sequencing depth. This approach
generates narrow distributions when the read count is
high per feature and per sample. The proportional data
are transformed using the clr transformation, allowing
standard statistical tools to be applied to each instance.
Summary statistics are then reported as the expected
value of the distributions.
We show that this approach is generalizable to

three completely different experimental designs: a selex,
an RNA-seq type experiment and a 16S rRNA gene
amplicon-sequencing experiment. For the selex exper-
iment, the ALDEx2 approach identified known active
enzyme variants and weeded out inactive variants [35].
ALDEx2 identified a set of operational taxonomic units
differential between two closely positioned body sites con-
sistent with the results of two independent methods in
the literature [42]. For RNA-seq, the ALDEx2 approach
identified essentially all genes found by both DESeq and
baySeq where the inter-condition difference was larger
than the intra-condition variance. We believe that
ALDEx2 exhibited greater specificity and equivalent sen-
sitivity as these widely used tools.

Additional files

Additional file 1: Excel file containing ALDEx2 output for the
Bottomly RNA-seq dataset. Column 1 contains gene features from the
mouse genome. Column 2 contains the relative abundance of each feature
averaged across all samples. Columns 2 and 3 contain the average relative
abundance of DBA/2J and C57BL6J gene expression. Columns 4 and 5
contain the median between- and within-condition differences. Column 6
contains the median effect size. Columns 7 and 8 contain the expected
values of P and the associated Benjamini–Hochberg corrected fdr values
for Welch’s t-tests and the final two columns contain the expected values
for Wilcoxon tests.

Additional file 2: Excel file containing ALDEx2 output for the buccal
vs tongue dorsum comparison. Column 1 contains HMP OTU identifier
labels. Column 2 contains the relative abundance of each feature averaged
across all samples. Columns 2 and 3 contain the average relative abundance
of buccal and tongue OTU sequences. Columns 4 and 5 contain the
median between- and within-condition differences. Column 6 contains the
median effect size. Columns 7 and 8 contain the expected values of P and
the associated Benjamini–Hochberg corrected fdr values for Welch’s t-tests
and the final two columns contain the expected values for Wilcoxon tests.
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Statistical analysis of wines using a robust compositional biplot.
Talanta 2012, 90:46–50.

14. Filzmoser P, Hron K, Reimann C: Univariate statistical analysis of
environmental (compositional) data: problems and possibilities.
Sci Total Environ 2009, 407(23):6100–8.

15. Kucera M, Malmgren BA: Logratio transformation of compositional
data: a resolution of the constant sum constraint. Mar
Micropaleontology 1998, 34(1):117–20.

16. Pearson K:Mathematical contributions to the theory of evolution –
on a form of spurious correlation whichmay arise when indices are
used in the measurement of organs. Proc R Soc Lond 1896, 60:489–98.

17. van den Boogaart KG, Tolosana-Delgado R: ‘compositions’: a unified R
package to analyze compositional data. Comput Geosci 2008,
34(4):320–38.

18. Efron B: Nonparametric estimates of standard error: the jackknife,
the bootstrap and other methods. Biometrika 1981, 68(3):589.

19. Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD,
MacPhee R, Reid G:Microbiome profiling by Illumina sequencing of
combinatorial sequence-tagged PCR products. PLoS One 2010,
5(10):15406.

20. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA,
Turnbaugh PJ, Fierer N, Knight R: Global patterns of 16s rRNA diversity
at a depth of millions of sequences per sample. Proc Natl Acad Sci USA
2011, 108((Suppl 1)):4516–22.

21. Egozcue J, Pawlowsky-Glahn V: Groups of parts and their balances in
compositional data analysis.Math Geol 2005, 37(7):795–828.

22. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelõ-Vidal C:
Isometric logratio transformations for compositional data analysis.
Math Geol 2003, 35(3):279–300.

23. ALDEx2 R package. [https://github.com/ggloor/ALDEx2]
24. Auer PL, Doerge RW: A two-stage Poisson model for testing RNA-seq

data. Stat Appl Genet Mol Biol 2011, 10(1):1–26.
25. Newey WK, McFadden D: Large sample estimation and hypothesis

testing. In Handbook of Econometrics. Volume 4. Edited by Engle R,
McFadden D. Amsterdam: Elsevier Science;1994:2111–245.

26. Holmes I, Harris K, Quince C: Dirichlet multinomial mixtures:
generative models for microbial metagenomics. PLoS One 2012,
7(2):30126.

27. La Rosa PS, Brooks JP, Deych E, Boone EL, Edwards DJ, Wang Q, Sodergren
E, Weinstock G, Shannon WD: Hypothesis testing and power
calculations for taxonomic-based humanmicrobiome data. PLoS One
2012, 7(12):52078.

28. Frigyik BA, Kapila A, Gupta MR: Introduction to the Dirichlet
distribution and related processes. Technical Report
UWEETR-2010-0006, Department of Electrical Engineering, University of
Washington December 2010. [https://www.ee.washington.edu/techsite/
papers/refer/UWEETR-2010-0006.html]

29. Berger JO, Bernardo JM:Ordered group reference priors with
application to the multinomial problem. Biometrika 1992, 79(1):25.

30. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc Series
B (Methodol) 1995, 57(1):289–300.

31. Anders S, Huber W: Differential expression analysis for sequence
count data. Genome Biol 2010, 11(10):106.

32. Li J, Tibshirani R: Finding consistent patterns: a nonparametric
approach for identifying differential expression in RNA-seq data.
Stat Methods Med Res 2013, 22(5):519–36.

33. Hardcastle TJ, Kelly KA: Empirical Bayesian analysis of paired
high-throughput sequencing data with a beta-binomial
distribution. BMC Bioinformatics 2013, 14(1):135.

34. R Development Core Team: R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.
ISBN 3-900051-07-0. [http://www.R-project.org]

35. McMurrough TA, Dickson RJ, Thibert SMF, Gloor GB, Edgell DR: Control of
catalytic efficiency by a co-evolving network of catalytic and
non-catalytic residues. arXiv April 2014. [http://arxiv.org/abs/1404.3917]

36. Soneson C, Delorenzi M: A comparison of methods for differential
expression analysis of RNA-seq data. BMC Bioinformatics 2013, 14:91.

37. Bottomly D, Walter NAR, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles
RP, Mooney M, McWeeney SK, Hitzemann R: Evaluating gene
expression in C57BL/6J and DBA/2J mouse striatum using RNA-seq
andmicroarrays. PLoS One 2011, 6(3):17820.

38. Frazee AC, Langmead B, Leek JT: Recount: a multi-experiment
resource of analysis-ready RNA-seq gene count datasets. BMC
Bioinformatics 2011, 12:449.

39. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T:
Interdependence of cell growth and gene expression: origins and
consequences. Science 2010, 330(6007):1099–102.

40. Altman DG, Bland JM:Measurement inmedicine: the analysis of
method comparison studies. J R Stat Soc Series D (Statistician) 1983,
32(3):307–17.

41. HMQCP – QIIME Community Profiling. [http://downloads.hmpdacc.
org/data/HMQCP/otu_table_psn_v13.txt.gz] Accessed 1 Ju 2010.

42. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D,
Huttenhower C, Izard J: Composition of the adult digestive tract
bacterial microbiome based on seven mouth surfaces, tonsils,
throat and stool samples. Genome Biol 2012, 13(6):42.

43. Legendre P, Gallagher ED: Ecologically meaningful transformations
for ordination of species data. Oecologia 2001, 129(2):271–80.

44. Dixon P: VEGAN, a package of R functions for community ecology.
J Vegetation Sci 2003, 14(6):927–30.

45. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A: Differential
expression in RNA-seq: a matter of depth. Genome Res 2011,
21(12):2213–23.

46. Liu Y, Zhou J, White KP: RNA-seq differential expression studies: more
sequence or more replication? Bioinformatics 2013, 30(3):301–4.

47. Auer PL, Doerge RW: Statistical design and analysis of RNA
sequencing data. Genetics 2010, 185(2):405–16.

doi:10.1186/2049-2618-2-15
Cite this article as: Fernandes et al.: Unifying the analysis of high-throughput
sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and
selective growth experiments by compositional data analysis. Microbiome
2014 2:15.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

https://github.com/ggloor/ALDEx2
https://www.ee.washington.edu/techsite/papers/refer/UWEETR-2010-0006.html
https://www.ee.washington.edu/techsite/papers/refer/UWEETR-2010-0006.html
http://www.R-project.org
http://arxiv.org/abs/1404.3917
http://downloads.hmpdacc.org/data/HMQCP/otu_table_psn_v13.txt.gz
http://downloads.hmpdacc.org/data/HMQCP/otu_table_psn_v13.txt.gz

	Western University
	Scholarship@Western
	1-1-2014

	Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis.
	Andrew D Fernandes
	Jennifer Ns Reid
	Jean M Macklaim
	Thomas A McMurrough
	David R Edgell
	See next page for additional authors
	Citation of this paper:
	Authors


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Compositional data and high-throughput sequencing
	Treating compositional datasets as ratios

	Methods
	Results and discussion
	Examining selective growth experiments
	Analyzing selective growth data as counts
	Analyzing selective growth data as compositions
	Examining the results of count vs composition analysis

	Analyzing RNA-seq data as compositions
	Analyzing 16S rRNA gene tag sequencing data as compositions

	Conclusions
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

