
Western University
Scholarship@Western

Medical Biophysics Publications Medical Biophysics Department

1-2015

Hippocampal volume, early cognitive decline and
gait variability: Which association?
Olivier Beauchet

Cyrille P Launay

Cédric Annweiler
Western University, cannweil@uwo.ca

Gilles Allali

Follow this and additional works at: https://ir.lib.uwo.ca/biophysicspub

Part of the Medical Biophysics Commons

Citation of this paper:
Beauchet, Olivier; Launay, Cyrille P; Annweiler, Cédric; and Allali, Gilles, "Hippocampal volume, early cognitive decline and gait
variability: Which association?" (2015). Medical Biophysics Publications. 26.
https://ir.lib.uwo.ca/biophysicspub/26

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/biophysicspub?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/biophysics?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/biophysicspub?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/668?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/biophysicspub/26?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages


Hippocampal volume, early cognitive decline and gait variability:
Which association?

Olivier Beauchet a,⁎, Cyrille P. Launay a, Cédric Annweiler a,b, Gilles Allali c,d

a Department of Neuroscience, Division of Geriatric Medicine, Angers University Hospital, University Memory Clinic of Angers, UPRES EA 4638, University of Angers, UNAM, Angers, France
b Center for Functional Metabolic Mapping, Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, the University of Western Ontario, London,
Ontario, Canada
c Department of Neurology, Geneva University Hospital and University of Geneva, Switzerland
d Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 25 July 2014
Received in revised form 31 October 2014
Accepted 4 November 2014
Available online 6 November 2014

Section Editor: Christian Humpel

Keywords:
Gait
Hippocampus
Magnetic resonance imaging
Motor control
Older adults
Mild cognitive impairment

Background: In contrast to its prominent function in cognition, the involvement of the hippocampus in gait con-
trol is still a matter of debate. The present study aimed to examine the association of the hippocampal volume
with mean values and coefficients of variation (CoV) of spatio-temporal gait parameters among cognitively
healthy individuals (CHI) and patients with mild cognitive impairment (MCI).
Methods: A total of 90 individuals (47 CHI with a mean age of 69.7 ± 3.6 years and 48.9% women, and 43 MCI
individuals with a mean age of 70.2 ± 3.7 years and 62.8% women) were included in this cross-sectional
study. The hippocampal volume was quantified from a three-dimensional T1-weighted MRI using semi-
automated software. Mean values and CoV of stride time, swing time and stride width were measured at self-
selected pace with a 10 m electronic portable walkway (GAITRite®). Age, gender, body mass index, number of
drugs daily taken,Mini-Mental State Examination (MMSE) score, history of falls, walking speed andwhitematter
signal-intensity abnormality scoring with Manolio scale were used as covariates.
Results: Patients with MCI had a lower MMSE score (P b 0.001), a higher CoV of stride time (P = 0.013) and a
lower hippocampal volume (P = 0.007) compared with CHI. Multiple linear regression models showed that
CoV of stride time was specifically associated with higher hippocampal volume among CHI (P b 0.05) but not
among patients with MCI (P N 0.650).
Conclusions: Our findings revealed a positive association between a greater (i.e., better morphological structure)
hippocampal volume and a greater (i.e., worse performance) stride time variability among CHI, but not among
MCI individuals.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The hippocampus is a key human brain region involved in memori-
zation and locomotion (Seidler et al., 2010; Scherder et al., 2007;
Lithfous et al., 2013). Atrophy of the hippocampus has been related to
memory disorders and diagnosis of mild cognitive impairment (MCI),
which is a transitional state between normal cognitive functioning and
dementia (Fellgiebel & Yakushev, 2011; Leal & Yassa, 2013; Albert
et al., 2011). In Alzheimer's disease (AD), the hippocampus constitutes
one of the first brain areas affected by neurodegenerative lesions, caus-
ing its atrophy, explaining why hippocampal abnormality is considered
as a biomarker of Alzheimer (Albert et al., 2011; Dubois et al., 2014). In
contrast to its prominent function in cognition, the involvement of the

hippocampus in gait control, and thus in the maintenance of gait stabil-
ity, is still amatter of debate. For instance andwhen considering thehip-
pocampal volume, Zimmermann et al. reported a non-significant
association between hippocampal volume and stride-to-stride variabil-
ity, whereas other studies showed a significant negative association
(Zimmerman et al., 2009; Shimada et al., 2013; Rosso et al., 2014;
Annweiler et al., 2014).

Divergence could bedue to the studied population and/or the type of
spatio-temporal gait parameters examined. Negative results have been
found in the unique study that examined both cognitive healthy indi-
viduals (CHI) and patients with MCI, whereas all other studies focused
on CHI (Zimmerman et al., 2009; Shimada et al., 2013; Rosso et al.,
2014; Annweiler et al., 2014). In terms of control of gait, gait variability
has been identified as an appropriate biomarker for the measure of the
cortical control of gait in normal aging and in patients with dementia
(Beauchet et al., 2009a, 2014; Montero-Odasso et al., 2012). Further-
more, higher (i.e., worse) stride time variability (STV) was specifically
associated with lower cognitive performance in episodic memory
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and executive function among older community-dwellers without
dementia (Beauchet et al., 2014). This finding was confirmed by a
meta-analysis underscoring that higher STV was related to both
MCI and dementia (Beauchet et al., 2014). In addition, in terms of
gait instability, it has been underscored that the general assumption
that variability and stability are negatively correlated cannot be
a universal rule. Indeed, higher and lower variability have been reported
in younger and older CHI with safe gait, this apparent discrepancy
being related to the type of gait parameters examined (Beauchet et al.,
2009a, 2014; Montero-Odasso et al., 2012). In particular, lower
STV, intermediate swing time variability and higher stride width
variability have been associated with safe gait in CHI (Beauchet
et al., 2009a). These results were explained by the fact that these
spatio-temporal gait parameters reflect different components of gait
control (Beauchet et al., 2009a; Montero-Odasso et al., 2012; Beauchet
et al., 2013). STV is a marker of the control of rhythmic stepping mech-
anism, whereas stride width reflects the dynamic postural control, and
swing time combines the two previous components of gait control
(Beauchet et al., 2009a; Montero-Odasso et al., 2012; Beauchet et al.,
2013).

To better understand the relationship between hippocampal vol-
ume, early cognitive decline and gait variability, there is a need to exam-
ine the association of hippocampal volumewith specific gait parameters
reflecting the different components of gait control such as stride time,
swing time and stride width among CHI and patients withMCI. Because
it has been shown that patients with MCI present independently a
greater gait variability and a lower hippocampal volume compared to
CHI (Albert et al., 2011; Dubois et al., 2014; Zimmerman et al., 2009;
Shimada et al., 2013; Rosso et al., 2014; Annweiler et al., 2014), we hy-
pothesized that higher gait variability would be stronger associated
with lower hippocampal volume in MCI individuals compared to CHI.
We had the opportunity to test this hypothesis in the “Gait and
Alzheimer Interactions Tracking” (GAIT) study, which is a cross-
sectional study aiming to compare gait characteristics of CHI and pa-
tients with MCI and AD, and to examine the association between gait
characteristics and brain morphology. The aim of the present study
was to examine the association of the hippocampal volume with stride
time, swing time and stridewidth variability among CHI and individuals
with any form ofMCI (i.e., amnestic or non-amnestic, and single ormul-
tiple domains).

2. Material and methods

2.1. Participants

Between November 2009 and July 2010, 90 individuals (47 CHI and
43MCI individuals) were recruited in the GAIT study, which is an ongo-
ing study. The study procedure has been previously described in detail
(Beauchet et al., 2013). Briefly, all participants were referred for the
evaluation of memory complaints at the memory clinic of Angers Uni-
versity Hospital, France. The eligibility criteria were: age 65 years and
over, ambulatory, an adequate understanding of French, and no acute
medical illness in the past month. For the present analysis, exclusion
criteria were: dementia, extrapyramidal rigidity of the upper limbs,
neurological and psychiatric diseases other than cognitive impairment,
severe medical conditions affecting walking, inability to walk 15 min
unassisted, or the presence of depressive symptoms defined by a 4-
item Geriatric Depression Scale score above 1 (Shah et al., 1997).
All participants received a full standardized medical examination,
a neuropsychological and gait assessment, and MRI of the brain. The
number of drugs taken daily, and the use of psychoactive drugs
(i.e., benzodiazepines, antidepressants, or neuroleptics), antidiabetic
drugs, antihypertensive drugs and lipid-lowering drugs were recorded.
Antidiabetic, antihypertensive and lipid-lowering drugswere combined
into a single category of cardiovascular drugs.

2.2. Neuropsychological assessment

A neuropsychological assessment was performed on each partici-
pant during a face-to-face examination by a neuropsychologist. The fol-
lowing standardized tests were used to probe several aspects of
cognitive function: MMSE (Folstein et al., 1975), Frontal Assessment
Battery (FAB) (Dubois et al., 2000), Alzheimer's Disease Assessment
Scale–Cognitive subscale (ADAS-cog) (Rosen et al., 1984), Trail Making
Test (TMT) parts A and B (Brown et al., 1958), French version of the Free
and Cued Selective Reminding Test (Grober et al., 1988; Van der Linden
et al., 2004), and Instrumental Activities of Daily Living scale (IADL)
(Pérès et al., 2006). The diagnosis of MCI was made during multidisci-
plinary meetings involving geriatricians, neurologists, and neuropsy-
chologists of Angers University Memory Clinic, and was based on the
aforementioned neuropsychological tests, physical examination find-
ings, blood tests, and MRI of the brain. MCI was diagnosed according
to the criteria detailed by Dubois et al. (2010). Participants with any
form of MCI, amnesic or non-amnesic and affecting single or multiple
domains, were included in this study. Participantswho had normal neu-
ropsychological and functional performanceswere considered as cogni-
tively healthy.

2.3. Gait assessment

Spatio-temporal gait parameters including stride time, swing time and
stride width were recorded at self-selected usual pace using a com-
puterized walkway with embedded pressure sensors (GAITRite® Gold
walkway, 972 cm long, active electronic surface area 792 × 610 cm,
total 29,952 pressure sensors, scanning frequency 60 Hz, CIR System,
Havertown, PA) according to the European guidelines for spatio-
temporal gait analysis in older adults (Beauchet et al., 2011; Kressig &
Beauchet, 2006). Briefly, the participants were asked to walk at their
usual self-selected walking speed in a quiet, well-lit corridor wearing
their own footwear. To avoid acceleration and deceleration effects, partic-
ipants started walking 1 m before reaching the electronic walkway and
completed their walk 1 m beyond it. For each parameter, mean value
and coefficient of variation (CoV = (standard deviation/mean) × 100)
were recorded.

2.4. Hippocampal volume

Imaging of the brain was performed with a 1.5-Tesla MRI scanner
(Magnetom Avanto, Siemens Medical Solutions, Erlangen, Germany)
using a standard MRI protocol (Dubois et al., 2009) including 3D T1-
weighted magnetization prepared rapid acquisition gradient echo
(MP-RAGE) axial images (acquisition matrix = 256 × 256 × 144,
FOV = 240 mm × 240 mm × 187 mm, TE/TR/TI = 4.07 ms/2170 ms/
1100ms), and fluid-attenuated inversion recovery (FLAIR) axial images
(acquisitionmatrix=256×192, FOV=240mm×180mm, slice thick-
ness = 5 mm, slice gap = 0.5 mm, 30 slices, TE/TR/TI = 122 ms/
9000 ms/2500 ms).

The volumetric 3D T1-weighted images were segmented using the
FreeSurfer software package (version 5.1.0; 33) to calculate the hippo-
campal volume. FreeSurfer is a set of tools that automatically segments
and labels brain structures based on established processing steps; the
technical specifications of these procedures have been described previ-
ously (Fischl et al., 2002). Briefly, this processing included removal of
non-brain tissue using a hybrid watershed/surface deformation proce-
dure (Jovicich et al., 2006), automated Talairach transformation, seg-
mentation of the sub-cortical white matter and deep gray matter
structures (Segonne et al., 2004; Fischl et al., 2004), tessellation of the
gray matter/white matter boundary, automated topology correction
(Jovicich et al., 2006; Fischl et al., 2001), registration to a spherical
atlas (Fischl et al., 1999a), parcellation of the cerebral cortex into units
based on gyral and sulcal structures (Segonne et al., 2004; Fischl et al.,
1999b), surface inflation and creation of surface-based data (Desikan
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et al., 2006). The procedures for the measurement of cortical volume
have been validated against histological analysis (Dale et al., 1999)
and manual measurements (Rosas et al., 2002; Kuperberg et al., 2003).
Freesurfer morphometric procedures have demonstrated good test–re-
test reliability across scanner manufacturers and across field strengths
(Han et al., 2006). Two endpoints were used in the analysis: the abso-
lute hippocampal volume expressed in mm3, and the ratio of absolute
hippocampal volume (mm3)/total brain volume (mm3).

2.5. Covariables

Gait variabilitymay be influenced by several clinical variables, which
are potential confounders when examining its relationship with the
hippocampal volume (Annweiler et al., 2014; Beauchet et al., 2009a,
2014; Montero-Odasso et al., 2012; Beauchet et al., 2011, 2013; Kressig
& Beauchet, 2006). The main potential confounders (i.e., age, gender,
body mass index, number of drugs daily taken, history of falls in the
past year) were recorded using a standardized comprehensive geriatric
assessment (Beauchet et al., 2013). Walking speed may also influence
gait variability, lower walking speed being associated with higher gait
variability (Beauchet et al., 2009b) explaining why it was used as a
covariable in the analysis. In our study, walking speed was measured
at self-selected usual pace with the GAITRite® system. Lastly, it has
been reported that whitematter hyperintensities (WMHs) is associated
with higher gait variability (Rosano et al., 2007). Therefore, the total ex-
tent of white matter signal-intensity abnormality was measured using
the semiquantitative visual rating scale devised by Manolio and col-
leagues (Manolio et al., 1994), with a score ranging from 0 (i.e., best)
to 9 (i.e., worst). The inter-rater agreement of this scale is fair (Cohen
κ = 0.59) (Kapeller et al., 2003). A Manolio score N3 was considered
as significant WMHs and was used as covariable in the analysis.

2.6. Ethics

Participants in the studywere included after having given their writ-
ten informed consent for research. The study was conducted in accor-
dance with the ethical standards set forth in the Helsinki Declaration
(1983). The entire study protocol was approved by Angers local Ethical
Committee, France.

2.7. Statistics

The participants' characteristics were summarized using means and
standard deviations or frequencies and percentages, as appropriate.
Normality of data distribution was checked using a skewness–kurtosis
test. As the number of observationswas N40 for each group, no transfor-
mations were applied to the variables of interest. For the current
analysis, participants were classified into 2 groups, as follows: CHI
and patients with MCI. First, between-group comparisons were
performed using unpaired t-test, Mann–Whitney or Chi-square test,
as appropriate. Second, univariate and multiple linear regression
analyses were performed to examine the association between spatio-
temporal parameters (dependent variables) and the hippocampal
volume (independent variables) adjusted on the participants' charac-
teristics. P-values less than 0.05 were considered as statistically signifi-
cant. All statistics were performed using SPSS (version 15.0; SPSS, Inc.,
Chicago, IL).

3. Results

Clinical and hippocampal characteristics are presented in Table 1.
Patients with MCI had a lower MMSE score (P b 0.001), a higher
CoV of stride time (P = 0.013) and a lower hippocampal volume
(P = 0.007). There was no significant difference for the other
participant's characteristics. Fig. 1 shows T1-weighted MRI images of
hippocampus of three characteristic participants: two cognitively

healthy individuals (one with a low hippocampal volume (2913 mm3)
and a low CoV of stride time (1.3%) (a) and another onewith a high hip-
pocampal volume (4448mm3) and a high CoV of stride time (5.8%) (b))
and a patient with MCI with a low hippocampal volume (2751 mm3)
and a high CoV of stride time (4.9%) (c). Multiple linear regression
models showed that CoV of stride time was specifically associated
with a higher hippocampal volume among CHI (P= 0.007 for the abso-
lute value and P = 0.047 for the ratio), but not among MCI individuals
(Table 2). This association was not significant for absolute volume and
ratio without adjustment (respectively, P = 0.119 and P = 0.165 in
CHI, and P= 0.235 and P= 0.825 inMCI). No other associationwas re-
ported between spatio-temporal gait parameters and hippocampal vol-
ume in both groups.

4. Discussion

This study revealed an unexpected positive association between a
greater (i.e., better morphological structure) hippocampal volume and
a greater (i.e., worse) STV among CHI, but not among patients with
MCI in the studied sample of non-demented older community-dwellers.

Greater gait variability and lower hippocampal volume have been
separately reported in patients with MCI (Fellgiebel & Yakushev,
2011; Leal & Yassa, 2013; Albert et al., 2011; Beauchet et al., 2009a,
2014; Montero-Odasso et al., 2012; Beauchet et al., 2013). Furthermore,
a significant negative association between greater gait variability and
lower hippocampal volume has been also shown in CHI (Albert et al.,
2011; Dubois et al., 2014; Zimmerman et al., 2009; Shimada et al.,
2013; Rosso et al., 2014; Annweiler et al., 2014). Thus, we hypothesized
at first that higher gait variability would be stronger associated with
lower hippocampal volume in patients with MCI individuals compared
to CHI. However, we did not find this excepted significant association
between lower (i.e., worse) hippocampal volume and greater
(i.e., worse) STV. The main explanation of this result could be related
to the low level of STV observed in our sample of patients with MCI.
Even if their mean value of CoV of stride time was higher than CHI, it
was still in the normal range (Beauchet et al., 2009a, 2014;
Montero-Odasso et al., 2012). Indeed, STV previously reported in pa-
tients with MCI was already above 3%, whereas in our study the mean
CoV was 2.6% (Beauchet et al., 2009a; Montero-Odasso et al., 2012;
Beauchet et al., 2013). In contrast to these previous studies, we focused
on a population of patients with MCI with very early cognitive decline
that prevents us to observe the suggested association.

The positive association between a greater (i.e., better morphologi-
cal structure) hippocampal volume and a greater (i.e., worse) STV in
CHI highlights the role of the hippocampus in gait control duringnormal
aging. Indeed, it was supported by a recent study that showed the ef-
fects of normal aging on the neural substrate of gait control using men-
tal imagery during functional MRI of the brain: hippocampal regions in
older adults presented an increased activation in comparison to youn-
ger ones in a task requiring a precise control of gait (i.e., walking on sur-
face consisting of cobbles stones) (Allali et al., 2014). This additional
hippocampal activation reflects the compensatory mechanism used to
maintain a physiological control of gait. During normal aging, both
higher and lower STV reflect efficient control of gait and safe gait
(Beauchet et al., 2009a; Gabell & Nayak, 1984). Lower STV reflects auto-
matic walking process requiring low attention demands, whereas high
STV is in relationship with high demanding walking task like walking
on cobble stones (Woollacott & Shumway-Cook, 2002). Our results are
in line with the model suggesting that precise gait control requires hip-
pocampal integrity in non-demented older adults. However, recent
findings showed amorphological association between lower hippocam-
pal integrity and higher stride length variability, this gait parameter
being like STV a biomarker of the rhythmic stepping mechanism
(Rosso et al., 2014). In addition, other studies focusing on brain metab-
olism also found an association between lower levels of hippocampal
metabolism and higher stride length variability using proton magnetic
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resonance spectroscopy or positron emission tomography (Zimmerman
et al., 2009; Shimada et al., 2013). The fact that the current approach di-
vided the study sample of non-demented older adults on a group of
healthy aging and a group of participants with early signs of pathologi-
cal aging (i.e., MCI) could explain these apparent divergences. So, this
association between higher STV and higher hippocampal volume ob-
served in the CHI group leads to the model of a specific role of the hip-
pocampus in the control of gait, and more specifically in the control of
the rhythmic stepping mechanism, during normal aging with an alter-
native role during pathological aging.

Taken together the finding of a nonsignificant association between
hippocampal volume and gait variability in patients with MCI, but sig-
nificant in CHI, is in concordance with a recent study, which reported
a tendency to a J-shaped change of the volume of ventricular bodies
(an indirect marker of brain atrophy) according to the STV (categorized
in tertiles), the lowest volume reported in the intermediate STV tertile
(Annweiler et al., 2014). The presence of a compensatory mechanism
in CHI, could explain the significant positive association between great-
er (i.e., worse) STV and increased hippocampal volume among CHI that
would be absent in MCI individuals due to the pathological process of
MCI. The capacity of focal cerebral plasticity has already been shown
in response to environmental demands, especially in spatial navigation:
learning the mental atlas of the streets in London, was associated with
structural changes in the brain of licensed taxi drivers compared to con-
trols, namely a greater volume of hippocampus (Maguire et al., 2000).

The univariate regression showing no association between CoV of
stride time and hippocampal volume is hardly interpretable and
has only little meaning as many factors contribute to gait variability.
Thus, ignoring these covariables in a univariate model prevents valid
conclusions (Annweiler et al., 2014; Beauchet et al., 2009a, 2014;
Montero-Odasso et al., 2012; Beauchet et al., 2011, 2013; Kressig &
Beauchet, 2006). In contrast, the absence of significant association be-
tween mean values of studied spatio-temporal gait parameters while
taking into account the effects of covariables is in concordancewith pre-
vious studies that underscored that stride-to-stride variability, but not

mean value, represents a biomarker of the highest (i.e., subcortical
and cortical levels) levels of gait control (Beauchet et al., 2009a;
Montero-Odasso et al., 2012; Beauchet et al., 2013). Furthermore, we
did not show any association with stride-to-stride variability of swing
time and stride width. In contrast to stride time, these two gait param-
eters are related to other components of gait control. Stride width is a
marker of dynamic postural control and swing time reflects the dynam-
ic postural control combined to the rhythmic stepping control
(Beauchet et al., 2009a). Compared to STV, these two gait parameters
are increased in individuals with safe gait (Beauchet et al., 2009a;
Brach et al., 2005). From a biomechanical viewpoint, variability is neces-
sary to maintain balance (Brach et al., 2005; Newell & Corcos, 1993),
which reflects the ability to adapt limbmovement while walking, lead-
ing to greater stability (Beauchet et al., 2009a; Montero-Odasso et al.,
2012; Beauchet et al., 2013; Brach et al., 2005; Newell & Corcos, 1993).
The higher variability of both these gait parameters compared to stride
time or stride length is required to amaintain safe gait. Absence of asso-
ciation between swing time and stride width and hippocampal volume
could be related to the fact that they both depend on others brain re-
gions. Indeed, it has been shown that the age-related neural correlates
for balance control are based on a specific network involving the parie-
tal, frontal and the insular cortical areas in addition to the basal ganglia
(Goble et al., 2011).

Although the strength of this study was designed to specifically
identify healthy older adults from those with early signs of pathological
aging in the relationship between hippocampal volume and gait control,
this study is not without limitation. Due to the small number of patients
withMCI, a dichotomization of patients withMCI between the amnestic
and non-amnestic subtypes was not possible because of a lack of power
exposing to invalid results. While this study is the first to demonstrate
an association between hippocampal volume and STV in physiological
aging, the cross-sectional design does not afford causal inferences. Fur-
thermore, using a longitudinal design, we would be able to determine
whether changes in hippocampal volume precipitate higher STV in
CHI and MCI patients, or whether worse gait performance precipitate

Table 1
Clinical, gait and hippocampal characteristics of participants according to their cognitive status (n = 90).

Total population (n = 90) CHI (n = 47) Patients with MCI (n = 43) P-value⁎

Clinical characteristics
Age, mean ± SD (years) 69.9 ± 3.7 69.7 ± 3.6 70.2 ± 3.7 0.545
Female, n (%) 50 (55.6) 23 (48.9) 27 (62.8) 0.186
BMI (kg/m2), mean ± SD 25.7 ± 3.7 25.0 ± 3.4 26.4 ± 3.8 0.056
Number of drugs taken daily, mean ± SD 2.3 ± 2.6 2.4 ± 2.5 2.3 ± 2.7 0.844

Use psychoactive drugsa, n (%) 8 (8.9) 5 (10.6) 3 (7.0) 0.542
Use cardiovascular drugsb, n (%) 26 (28.9) 14 (29.8) 12 (27.9) 0.844

MMSE score (/30), mean ± SD 28.1 ± 1.6 28.7 ± 1.2 27.4 ± 1.7 b0.001
Falls in the past year, n (%) 17 (18.9) 11 (23.4) 6 (14.0) 0.253

Gait characteristics
Stride time
Mean, mean ± SD (ms) 1164.1 ± 128.9 1162.9 ± 142.3 1116.5 ± 113.9 0.680
CoV, mean ± SD (%) 2.6 ± 1.2 2.3 ± 1.0 2.9 ± 1.2 0.013

Swing time
Mean, mean ± SD (ms) 419.2 ± 43.8 419.9 ± 46.2 418.6 ± 41.6 0.888
CoV, mean ± SD (%) 3.9 ± 1.6 3.8 ± 1.7 3.9 ± 1.4 0.728

Stride width
Mean, mean ± SD (cm) 7.5 ± 4.2 6.9 ± 4.6 8.3 ± 3.5 0.136
CoV, mean ± SD (%) 29.2 ± 26.4 26.2 ± 20.6 32.5 ± 31.5 0.426

Walking speed, mean ± SD (cm/s) 112.1 ± 18.3 113.7 ± 20.3 110.2 ± 15.8 0.443
Manolio scorec (/9) ≥3, n (%) 30 (33.3) 17 (36.2) 13 (30.2) 0.551
Hippocampal volume

Absolute value, mean ± SD (mm3) 3707.4 ± 465.7 3819.1 ± 410.5 3585.2 ± 495.7 0.007
Relative valued, mean ± SD 0.35 ± 0.37 0.36 ± 0.36 0.34 ± 0.34 0.060

CHI = cognitively healthy individuals;MCI = mild cognitive impairment; BMI = bodymass index;MMSE = FolsteinMini-Mental State Examination; CoV: coefficient of variation; P-value
significant (b0.05) indicated in bold.
⁎ Comparison based on unpaired t-test, Mann–Whitney or Chi-square test, as appropriate.
a Use of benzodiazepines or antidepressants or neuroleptics.
b Use of antidiabetic drugs, and/or antihypertensive drugs and/or lipid-lowering drugs.
c Semiquantitative rating scale measuring the total extent of white matter signal-intensity abnormality with a score ranging from 0 (absence) to 9 (worst).
d Calculated from the formula: absolute hippocampal volume (mm3)/total brain volume (mm3).
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changes in hippocampal morphology. Finally, the participants included
in the GAIT study were referred to our center for the evaluation of a
memory complaint. Thus, participants defined as CHI in our study pre-
sented the specificity of having a memory complaint, suggesting that
the findings of the present study could be generalized to a pre-MCI
population.

In conclusion, this study found a specific association between in-
creased hippocampal volume and a greater STV in CHI, but not in pa-
tients with MCI. These results suggest that the hippocampus may
control the physiology of gait, specifically the rhythmic stepping mech-
anism, during normal aging, but not during pathological aging. Addi-
tional investigations are required to determine which brain regions

a) Cognitively healthy individual (Hippocampal volume=2913 ml and coefficient of variation of stride time=1.3%)

b) Cognitively healthy individual (Hippocampal volume=4448 ml and coefficient of variation of stride time=5.8%)

c) Patient with mild cognitive impairment (Hippocampal volume=2751 ml and coefficient of variation of stride time=4.9%)

Fig. 1. Coronal T1-weighted MRI images of hippocampus of three characteristic participants (two cognitively healthy individuals a) and b), and one patient with mild cognitive
impairment c)).

Table 2
Multiple linear regressionmodels showing the association between values of spatio-temporal gait parameters (dependent variables) and the hippocampal volume (independent variable)
adjusted for clinical characteristics among participants separated on their cognitive status (n = 90).

Stride time Swing time Stride width

ß 95% CI P-value ß 95% CI P-value ß 95% CI P-value

a) Mean values
CHI

Absolute volume 0.000 [0.000;0.000] 0.451 0.000 [0.000;0.000] 0.607 0.002 [−0.002;0.005] 0.378
Relative volume⁎ 15.8 [−39.6;71.3] 0.567 4.8 [−21.3;30.9] 0.711 −1118.8 [−5096.4;2858.8] 0.572

MCI
Absolute volume 0.000 [0.000;0.000] 0.252 0.000 [0.000;0.000] 0.574 0.000 [−0.002;0.003] 0.873
Relative volume⁎ 23.5 [−38.1;85.0] 0.443 2.0 [−26.7;30.7] 0.808 −368.1 [−3048.2;2312.0] 0.782

b) Coefficients of variation
CHI

Absolute volume 0.001 [0.000;0.002] 0.007 0.000 [−0.001;0.001] 0.882 −0.007 [−0.024;0.010] 0.407
Relative volume⁎ 758.5 [11.5;1505.5] 0.047 387.8 [−1016.8;1792.3] 0.579 −13572.1 [−32119.1;4974.9] 0.147

MCI
Absolute volume 0.000 [−0.001;0.001] 0.667 −0.001 [−0.002;0.000] 0.142 0.017 [−0.011;0.044] 0.223
Relative volume⁎ −133.2 [−1148.9;882.5] 0.791 −604.5 [−1638.1;429.1] 0.243 22130.3 [−5156.5;49417.2] 0.108

CHI = cognitively healthy individuals; MCI = mild cognitive impairment; β: coefficient of regression beta corresponding to an increase or a decrease in value of spatio-temporal gait pa-
rameter; all models are adjusted on age, gender, body mass index, number of drugs daily taken, Folstein Mini-Mental State Examination score, history of falls in the past year, walking
speed and the total extent of white matter signal-intensity abnormality was measured by Manolio scale; coefficient of regression (ß) and P-value significant (i.e., P b 0.05) indicated in
bold.
⁎ Calculated from the formula: absolute hippocampal volume/total brain volume.
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are involved in the pathophysiological mechanisms of the stepping
mechanisms contributing to the higher gait variability found in the dif-
ferent forms of pathological aging.
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