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ABSTRACT 

River stage and discharge records are essential for hydrological and hydraulic analyses. 

While stage is measured directly, discharge value is calculated from measurements of 

flow velocity, depth and channel cross-section dimensions. The measurements are 

affected by random and systematic measurement errors and other inaccuracies, such as 

approximation of velocity distribution and channel geometry with a finite number of 

measurements. Such errors lead to the uncertainty in both, the stage and the discharge 

values, which propagates into the rating curve established from the measurements. The 

relationship between stage and discharge is not strictly single valued, but takes a looped 

form due to unsteady flow in rivers.  

In the first part of this research, we use a fuzzy set theory based methodology for 

consideration of different sources of uncertainty in the stage and discharge measurements 

and their aggregation into a combined uncertainty. The uncertainty in individual 

measurements of stage and discharge is represented using triangular fuzzy numbers and 

their spread is determined according to the ISO – 748 guidelines. The extension principle 

based fuzzy arithmetic is used for the aggregation of various uncertainties into overall 

stage discharge measurement uncertainty.  

In the second part of the research we use fuzzy nonlinear regression for the analysis of 

the uncertainty in the single valued stage – discharge relationship. The methodology is 

based upon fuzzy extension principle. All input and output variables as well as the 

coefficients of the stage - discharge relationship are considered as fuzzy numbers. Two 

different criteria; the minimum spread and the least absolute deviation are used for the 

evaluation of output fuzziness. The results of the fuzzy regression analysis lead to a 

definition of lower and upper uncertainty bounds of the stage – discharge relationship and 

representation of discharge value as a fuzzy number. 

The third part of this research considers uncertainties in a looped rating curve with an 

application of the Jones formula. The Jones formula is based on approximate form of 

unsteady flow equation, which leads to an additional uncertainty. In order to take into 
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account of the uncertainties due to the use of approximate formula and measurement of 

discharge values, the parameters of the Jones formula are considered fuzzy numbers. This 

leads to a fuzzified form of Jones formula. Its spread is determined by a multi-objective 

genetic algorithm. We used a criterion to minimize the spread of the fuzzified Jones 

formula so that the measurements points are bounded by the lower and upper bound 

curves.  

The study therefore considers individual sources of uncertainty from measurements to the 

single valued and looped rating curves. The study also shows that the fuzzy set theory 

provides an appropriate methodology for the analysis of the uncertainties in a non-

probabilistic framework. 

Keywords: discharge calculation, fuzzy arithmetic, fuzzy number, fuzzy nonlinear 

regression, hysteresis, Jones formula, measurement uncertainty, stage-discharge 

relationship, unsteady flow, uncertainty aggregation. 
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CHAPTER 1 

Introduction 

1.1 General Background 

River stage and discharge records are essential for hydrologic and hydraulic analyses. 

While stage is measured directly, discharge value is usually calculated using velocity area 

method from measurements of flow velocity, depth and channel cross-section. Several 

guidelines by the International Organization for Standardization (ISO-748 1997; ISO/TR-

5168 1998), Environment Canada (Terzi 1981) and U.S. Geological Survey (Rantz et al. 

1982) have outlined different sources of uncertainty in the measurement of discharge and 

stage. An extensive literature review of measurement uncertainty is available in Pelletier 

(1988). In general, the measurement uncertainty arises due to (i) random and systematic 

errors in measurement instrumentation; and (ii) approximation of velocity distribution 

and channel geometry with a finite number of measurements. Therefore, the 

measurements obtained from gauging stations should not always be readily accepted 

without the understanding and quantification of different sources of uncertainty that may 

affect them (Whalley et al. 2001). 

The stage-discharge relationship or the rating curve is established from simultaneous 

measurements of stage and discharge values. Therefore, uncertainties in stage and 

discharge measurements propagate into the rating curve and affect the discharge values 

derived from it. Besides measurement uncertainty, the stage-discharge relationship is also 

affected by natural uncertainties due to (i) hysteresis of the rating curve (ii) changes in 

river cross sections due to erosion and sedimentation of river channel. If these 

uncertainties are not taken into account, rating curves will not be able to represent natural 

flows in the rivers and lead to errors in discharge values established from rating curves. 

These uncertainties can cause potentially large errors, influencing flood forecasting, 

annual maximum flood statistics and design and decisions to promote flood defence 

schemes (Parodi and Ferraris 2004; Samuels et al. 2002). 
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This report presents a comprehensive fuzzy set theory based methodology for the analysis 

of uncertainties in stage and discharge measurements and the rating curves. The report 

builds on the previous studies by Shrestha et al. (2007) and Pappenberger et al. (2006), 

who used fuzzy sets for the representation of uncertainty in the stage-discharge 

relationship and the analysis of flood inundation. Three companion papers describe the 

methodology developed in this research in detail: (i) Shrestha and Simonovic (2008a) 

deals with the analysis of uncertainties in the stage and discharge measurements, (ii) 

Shrestha and Simonovic (2008b) analyzes the uncertainties in stage-discharge 

relationship using fuzzy nonlinear regression and (iii) Shrestha and Simonovic (2008c) 

analyzes the hysteresis in stage-discharge relationship using fuzzified Jones formula.  

1.2 Methods of discharge and stage measurements  

1.2.1. Discharge measurement by current meter 

The velocity area method based on the current meter measurements of velocity, is the 

widely accepted method for discharge determination (Herschy 1999; Whalley et al. 

2001), which is the standard in Canada too (Terzi 1981; Pellitier 1988). In this method, 

flow velocity, water depth and cross section width are measured at a number of points 

distributed over a number of verticals covering the channel cross section (Figure 1.1). 

Point measurements are then aggregated over a cross section and total discharge in the 

cross section is determined using mid-section method.  

The discharge Q measurement using mid section method can be expressed as: 

∑
−

=

−+ 






 −
=

1

2
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n

i

i

ii

i d
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vQ         

 (1.1) 

where, b is the width measurement from a common reference point [m], d is the depth 

measurement [m], and v  is the mean velocity [m/s]. 
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Figure 1.1. Discharge measurement using mid section method (After Herschy 1995) 

According to review by Pelletier (1988) standard discharge measurement in Canada is 

usually performed using an individually rated Price AA current meter. A minimum of 20-

25 observation verticals (for narrow streams fewer than 10) are recommended to be taken 

in the cross sections. The price AA current meter is calibrated on rod suspension, and on 

a cable suspension using a 13.6 kg Columbus type sounding weight. It is recommended 

that point velocity be observed for 40-80 seconds (Terzi 1981) and in practice the 

observation is made for 40-50 seconds (Pelletier 1988). For the estimation of mean 

velocity in a vertical, 0.6 depth is used for measurement where depths are less than 0.75 

m and 0.2 and 0.8 depth where depths are greater than 0.75m (Terzi 1981). 

1.2.2. Discharge measurement by Acoustic Doppler Current Profiler (ADCP) 

Acoustic Doppler current profiler is a modern method of discharge measurement. The 

ADCP operates at an acoustic frequency and measures phase change caused by Doppler 

shift in acoustic frequency that occurs when a transmitted acoustic signal reflects off 

particles in the flow (Remmel 2007). The discharge measurements by ACDP can be 

made by either a moving boat method (Muste et al. 2004a) or the fixed boat method 

(Muste et al. 2004b). The first generation of the ACDP use narrow-band width, single 

pulse systems, while the broadband ADCP was developed in 1992 and has been 
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increasingly used for measurements in shallower waters, such as rivers. Using broadband 

ADCP, velocity measurements can be obtained in waters as shallow as 1 m with 

relatively high spatial resolution (0.10 m) (Muste et al. 2004a).  

In the broadband ADCP, the instrument transmits sound pulses at a fixed frequency in the 

column of water and receives returning echoes to produce successive segments, called 

depth cell or bin, which are processed independently. The relative velocity along acoustic 

beam (radial velocity) between the ADCP and particles in each depth cell is determined 

using frequency difference between transmitted and echoed acoustic signals using the 

phase difference between two superimposed echoes (Muste et al. 2004a). Velocities that 

are measured by the ADCP are assigned to individual depth cells constitute the center-

weighted mean of velocities measured throughout the sample window (Simpson 2001). 

As shown in Figure 1.2, the ADCP can only measure the central portion of total flow in 

the river. The areas at left, right, top and bottom areas cannot be directly measured by the 

instrument and is referred as the ummeasurable flows. The unmeasurable flows need to 

be estimated for the calculation of total discharge in the rivers.  

 

Figure 1.2. Schematic of measurable and unmeasurable areas of river cross section in 

ADCP discharge measurements (After González-Castro and Muste 2007) 
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1.3 Sources of uncertainty in discharge and stage measurements 

1.3.1 Uncertainty in discharge measurement by current meter 

In velocity-area method, velocities, widths and depths are measured in a finite number of 

verticals in a cross section. A major source of uncertainty according to the ISO-748 is in 

the approximation of bed profile and velocity distribution using a limited number of 

verticals. In general, selection of too few verticals may lead to a considerable error in 

discharge. ISO-748 recommends that the interval shall not be greater than 1/15 of the 

width in case of regular bed profiles and 1/20 of the width in case of irregular bed 

profiles. The ISO-748 suggested values of uncertainty for number of verticals is 

summarized in Table 1.1. 

Table 1.1. ISO-748 suggested uncertainties for no. of verticals (at 95% confidence level) 

Number of verticals Uncertainties [%] 

  5 

10 

15 

20 

25 

30 

35 

40 

45 

15 

  9 

  6 

  5 

  4 

  3 

  2 

  2 

  2 

The velocity measurement involves three types of uncertainty: (i) number of limited 

points on a vertical, (ii) exposure time of velocity measurement, and (iii) current meter 

measurement. The first uncertainty is due to approximation of velocity distribution on a 

vertical using a limited number of sampling points. Common methods of determination 

of the mean velocity are usually based on one point, or two point methods, which 

involves measurement of velocity at 0.6 of the depth (0.6D), and at 0.2D and 0.8D, 

respectively. The ISO-748 suggested uncertainties at 95% confidence level are 

summarized in Table 1.2.  
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The second uncertainty arises due to limited exposure time of local point velocity on the 

vertical with an assumption of steady flow condition. An instantaneous measurement of 

the velocity at a point could be considerably different from mean velocity at that point. 

The mean flow velocity determined from measurement during finite measuring time will 

be therefore an approximation of true mean flow velocity at that point (Sauer and Meyer 

1992). By observing the velocity for a longer time, the pulsation differences are averaged 

and mean velocity during exposure approaches true velocity. The ISO-748 suggested 

uncertainties at 95% confidence level due to exposure time are summarized in Table 1.3. 

Table 1.2. ISO-748 suggested uncertainties for no. of points on a vertical (at 95% 

confidence level) 

Method of measurement Uncertainties [%] 

Velocity distribution  

5 points 

2 points 

1 point 

 1 

 5 

 7 

15 

Table 1.3. ISO-748 suggested uncertainties for time of exposure (at 95% confidence 

level) 

Point in vertical 

0.2D, 0.4D or 0.6D 0.8D, or 0.9D 

Exposure time [min] 

 

Velocity 

[m/s] 

0.5 1 2 3 0.5 1 2 3 

0.05 

0.10 

0.20 

0.30 

0.40 

0.50 

1.00 

> 1.00 

50 

27 

15 

10 

  8 

  8 

  7 

  7 

40 

22 

12 

7 

6 

6 

6 

6 

30 

16 

9 

6 

6 

6 

6 

 5 

30 

13 

7 

5 

5 

4 

4 

 4 

80 

33 

17 

10 

  8 

  8 

  7 

  7 

60 

27 

14 

7 

6 

6 

6 

6 

50 

20 

10 

6 

6 

6 

6 

5 

40 

17 

8 

5 

5 

4 

4 

4 
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The third type of uncertainty arises in the current meter measurement of velocities, which 

can consist of errors due to several sources like the effect of suspension (rod or cable 

suspension), boundary effect (like near rough boundaries and shallow depth), effect of 

oblique flow, vertical motion (wave action or rocking of the boat) and effect of 

turbulence (Pelletier 1988). However the range of uncertainty for these sources is not 

available and uncertainty in the current meter measurement is usually only considered in 

terms of current meter rating (individual or group rating). The ISO-748 suggested 

uncertainties at 95% confidence level for current meter rating are summarized in Table 

1.4. 

Table 1.4. ISO-748 suggested uncertainties for current meter rating (at 95% confidence 

level) 

Uncertainties  

Velocity 

[m/s] 

Individual 

rating 

Group or 

standard rating 

0.03 

0.10 

0.15 

0.25 

0.50 

>0.50 

20.0 

5.0 

2.5 

2.0 

1.0 

1.0 

20 

10 

  5 

  4 

  3 

  2 

Relatively small uncertainty also arises in the measurements of water depth and channel 

width. Under most discharge measurement conditions, measurements of the overall width 

and of distances between verticals can be made with reasonable precision. The ISO-748 

suggested errors for width measurement is given in Table 1.5.  

The instrumental error in the measurement of depth depends to a large extent on the 

composition of river bed. The ISO-748 suggested errors for the depth measurement is 

given in Table 1.6.  
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Table 1.5. ISO-748 suggested uncertainties for width measurements (at 95% confidence 

level) 

Range of width 

[m] 

Absolute errors 

[m] 

Relative Error 

[%] 

0 to 100  

150 

250 

0.3 

0.5 

1.2 

±0.3 

±0.4 

±0.5 

Table 1.6. ISO-748 suggested uncertainties for depth measurements (at 95% confidence 

level) 

Range of 

depth [m] 

Absolute 

errors [m] 

Relative error 

[%] 

Remarks 

0.4 - 6  

6 - 14 

0.04 

0.05 

±0.7 

±0.4 

sounding rod 

log-line and air- and wet line corrections 

 

1.3.2 Uncertainty in discharge measurement by ADCP 

In most cases, ADCP discharge measurement system is dramatically faster than 

conventional discharge measurement systems and has comparable or better accuracy 

(Simpson 2001). However, the ADCP discharge measurement is also affected by a 

number of uncertainties, which can affect accuracy of total discharge measured by the 

instrument. A major source of uncertainty arises due to the unmeasurable areas at the left, 

right, top and bottom portions of the discharge measurement section as shown in Figure 

1.2. González-Castro and Muste (2007) outlined other sources of errors in the ADCP, 

which include: spatial averaging of the measurement, Doppler noise, velocity ambiguity 

error, timing errors, side-lobe interference error, sound speed error, beam angle error, 

boat speed error, sample timing error, near transducer error, reference boat velocity error, 

depth error, cell mapping error, rotation error, edge estimation error, vertical velocity 

distribution error, discharge model error, finite summation error, measuring environment 

and operational errors. A framework for the quantification of uncertainty ranges in ADCP 
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is still under development (WMO 2008) and suggested uncertainty values for these 

uncertainties are not available. 

1.3.3 Uncertainty in stage measurement 

The uncertainty in stage measurement depends upon the characteristics of gauging station 

and water surface elevation. Since the stage can be measured directly, it is reasonable to 

assume that errors in the measurement of stage are small compared to errors in the 

discharge (Clarke 1999). However, displacement of measured values from the reference 

point, caused by processes such as turbulent fluctuations, wind and stationary waves can 

lead to error in the measured stage (Schmidt 2002). Uncertainty values in different 

measurement instruments as suggested by Herschy (1995) are given in Table 1.7.  

Table 1.7. Uncertainties for stage measurements at 95% confidence level (Herschy 1995) 

Method Uncertainty 

[mm] 

By float operated punch tape recorder 

By float operated autographic recorder 

By point gauge, electrical tape gauge, tape 

gauge etc 

By reference vertical or inclined gauged 

3 

10 

1 

 

3 

A source of uncertainty often neglected in stage measurement is the determination of 

mean reference gauge height corresponding to the measured discharge. According to 

Rantz et al. (1982), if the change in stage is uniform or no greater than 0.05 m, the mean 

stage can be obtained by averaging the stage at the beginning and end of the 

measurement. In the case of non-uniform stage, mean stage can be obtained by weighting 

each stage by partial discharge. There is no suggested uncertainty range available for the 

determination of mean stage. 
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1.4 Sources of uncertainty in stage-discharge relationship 

1.4.1 Propagation of measurement uncertainty  

As outlined in section 1.3, each of the discharge and stage measurements consists of 

random and systematic uncertainties. The discharge values in particular consist of a 

number of uncertainties arising out of measurement uncertainties of velocity, width and 

depth. Therefore, the discharge values consist of aggregate of these individual 

uncertainties. As the rating curves are established with the measurements of discharge 

and stage, the measurement uncertainties propagate into the rating curve.  

1.4.2 Change in river cross section 

Another source of natural uncertainty in the stage-discharge relationship is due to change 

in river cross-section. Rivers are affected by dynamic physical processes of erosion and 

sedimentation. Discharge and stage measurements are made over a period of time, 

usually over a few years. If the change in the cross section is not taken into account, it 

introduces systematic error or bias in the regression data and affects the rating curve 

established using the regression analysis.  

1.4.3 Uncertainty due to hysteresis 

A major source of uncertainty in the rating curve arises due to assumption of a single-

valued rating curve. In situations where a gauging station is located in sufficiently steep 

gradient, rate of change of discharge is low and downstream channel has sufficient 

capacity, the relationship between stage and discharge is sufficiently consistent with a 

single-valued assumption (ISO 1100-2, 1998; Rantz et al. 1982). However, assumption of 

the single-valued curve is not suitable if river flow is significantly affected by 

unsteadiness in flood wave propagation. The phenomenon may lead to a looped form of 

stage–discharge relationship which is commonly referred to as hysteresis. A number of 

factors contribute to the form of looped rating curve which include acceleration of flow in 

time and space, longitudinal bed slope, channel roughness and downstream boundary 

condition (Henderson 1966; Cunge et al. 1980; Rantz et al. 1982; Chow et al. 1988; 

Ponce 1989). Due to these reasons, river discharge is not just a function of stage and the 

assumption of single valued stage-discharge relationship becomes inconsistent. 
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A typical looped rating curve as shown in Figure 1.3 is characterized by peak flow 

always preceding peak stage and higher discharge in rising limb in comparison to falling 

limb of a hydrograph. The effect is due to the slope of flood wave front, which is 

significantly steeper on the rising limb compared to the falling limb, thus the flow is 

accelerating on the rise and decelerating on the fall (ISO 1100-2, 1998, USACE, 1993). 

The steeper slope in the rising limb allows a river channel to transit higher discharge at a 

particular stage compared to the falling limb. The bed slope is another important factor 

that affects the unsteady flow in rivers. The rating curves show more pronounced loops in 

rivers with flat bed slope, and greater the slope, smaller is the deviation from the single 

valued rating curve (Cunge et al. 1980). The channel roughness also affects shape of the 

loop such that higher channel roughness leads to lower peak and wider loops compared to 

lower channel roughness (Cunge et al. 1980). 

 

 

 

 

 

 

 

Figure 1.3. Schematic representation of steady and unsteady state rating curves  

After Chow et al. (1988)  

1.5 Structure of this report  

Chapter 2 of this report discusses the fuzzy set theory based methodology for the 

uncertainty analysis. The rationale of the use of fuzzy sets for the uncertainty analysis is 

described. Basic concepts of fuzzy sets including fuzzy numbers, membership functions, 

fuzzy alpha cut, fuzzy arithmetic and fuzzy regression are introduced. 
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Chapter 3 of this report describes a fuzzy set theory based methodology for consideration 

of different sources of uncertainty in the stage and discharge measurements and their 

aggregation into a combined uncertainty. The uncertainty in individual measurements of 

stage and discharge is represented using triangular fuzzy numbers and their spread is 

determined according to the ISO-748 guidelines. The extension principle based fuzzy 

arithmetic is used for the aggregation of various uncertainties into overall stage-discharge 

measurement uncertainty. In addition, a fuzzified form of ISO-748 formulation is used 

for the calculation of combined uncertainty and comparison with the fuzzy aggregation 

method. This chapter also presents a methodology for the analysis of uncertainties in an 

Acoustic Doppler current profiler discharge measurement. The methodology is based on 

the representation of random uncertainties in discharge measurement at different sections 

in terms of fuzzy numbers and aggregation into combined fuzzy uncertainty. 

Chapter 4 of this report builds on the results of chapter 3, for the analysis of uncertainty 

in stage-discharge relationship using fuzzy nonlinear regression. The methodology for 

fuzzy nonlinear regression which is based upon fuzzy extension principle is described in 

detail. All input and output variables as well as coefficients of the stage-discharge 

relationship are considered as fuzzy numbers. Two different criteria are used for the 

evaluation of output fuzziness: (i) the minimum spread; and (ii) the least absolute 

deviation criteria.  

Chapter 5 of this report analyzes the uncertainties in a looped rating curve with a 

fuzzified form of Jones formula. A fuzzy set theory based methodology is investigated by 

considering the parameters of Jones formula as fuzzy numbers. The spreads of 

parameters of Jones formula is analyzed with a multi-objective optimization algorithm. 

Chapter 6 of this report summarizes the major finding of this study and discusses 

dominant sources of uncertainties in the measurement and rating curve. This chapter also 

discusses means for the reduction of uncertainties. 
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CHAPTER 2 

Uncertainty analysis using fuzzy set theory 

2.1 Rationale for application of fuzzy sets  

For the quantification of stage-discharge measurement uncertainties, the International 

Organization for Standardization (ISO-748) suggests the range of values at 95% 

confidence level for different sources of uncertainty. This recommendation is based on 

investigations carried out since 1968. The ISO-748 recommends independent 

determination of uncertainty in each measurement for the application to a particular case 

study. However, in most cases, independent value of confidence interval in the 

measurement is not available, which limits the applicability of statistical quantification of 

the uncertainties. It is to be noted too that randomness is not the only source of 

uncertainty in discharge measurements as they can be also affected by systematic 

uncertainty, human error and other subjective uncertainties that cannot be treated in a 

statistical framework. For example, the evaluation of individual current meter discharge 

measurement on the basis of hydrographer observation can be subjective as each 

measurement can receive different ratings based on the hydrographer’s perception 

(Clemmens and Wahlin 2006). The ISO (1993) guide for expression of uncertainties has 

recognized these limitations by distinguishing two different categories of uncertainties 

according to method used to estimate their numerical values: Type A, method of 

evaluation of uncertainty by the statistical analysis of series of observations, and Type B, 

evaluation of uncertainty by means other than the statistical analysis of series of 

observations.  

The ISO-748 also provides a statistical framework for aggregation of confidence levels of 

measurement uncertainties. The combined uncertainty is expressed as the ratio between 

the sum of percentage errors in segment discharges and the sum of segment discharges 

(Herschy 1995). However, such aggregation method only provides a means of combining 

the confidence levels and cannot provide a confidence interval of the output unless the 
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probability distribution function that characterizes its dispersion is known (Ferrero and 

Salicone 2003). Therefore, there are a number of limitations in the application of the 

statistical methodology in the aggregation of the overall uncertainties in discharge and 

stage measurements.  

In addition to the measurement uncertainties, the stage-discharge relationship also 

consists of natural uncertainties due to change in river cross sections, which can introduce 

bias in the regression data. The hysteresis introduces non-uniqueness in the stage-

discharge relationship. The Jones formula (Jones 1916) is a popular method for 

reproducing hysteresis in the stage-discharge relationship. However, the modeling of 

hysteresis using Jones formula is affected by uncertainty due to simplifying assumptions 

of the formula. These uncertainties due to bias, non-uniqueness and simplification in the 

stage-discharge relationship cannot be directly expressed in the statistical framework 

using confidence intervals. Therefore, probabilistic methods of uncertainty analysis are 

not considered in this study.  

The fuzzy set theory-based approach is explored in this study as an alternative way of 

analyzing various uncertainties associated with measurements and the rating curve. The 

fuzzy approach provides a non-probabilistic framework for representation of 

uncertainties using vaguely defined boundaries of fuzzy sets. El-Baroudy & Simonovic 

(2006) and Guyonnet et al. (2003) used fuzzy sets to treat uncertainties due to lack of 

knowledge and scarcity of data, respectively. In recent years, the fuzzy sets have been 

used for the expression of uncertainty in measurement by a number of researchers 

(Mauris et al. 2001; Xia et al. 2000). The study by Xia et al. (2000) considered 

application of fuzzy set for the estimation of uncertainty when the number of 

measurements is very small and the probability distribution unknown. Mauris et al. 

(2001) used fuzzy sets for the representation of vertical interpretation of probability 

distribution and nested stacks of intervals as horizontal interpretation of distribution 

function for representation of measurement uncertainty. The study also showed that fuzzy 

representation of measurement uncertainty in terms of possibility distribution is 

compatible with the ISO (1993) guide for expression of uncertainties, as it can 

characterize dispersion of observed data and provide a confidence interval that contains 
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an important proportion of the observed values. Another approach for the consideration 

of measurement uncertainties uses random-fuzzy variables (Ferrero and Salicone 2003; 

2004; Urbanski and Wasowski 2003) to define random properties of uncertainties in 

terms of probability distribution and systematic components in terms of possibility 

function. However, in the absence of information on the random uncertainties, purely 

fuzzy treatment can still be used.  

The fuzzy set approach, known as fuzzy regression, can be used for addressing the non-

uniqueness in the relationship between dependent and independent variables. Due to the 

non-unique characteristics of the stage-discharge relationship, it is more appropriate to 

define the upper and lower uncertainty bands around the measurement values. It is also 

appropriate to analyze a band of possible lower and upper values around the looped rating 

curve developed by Jones formula. The fuzzy regression analysis can handle such a 

problem by defining a band around the relationship in terms of possible upper and lower 

values. Following the initial work by Tanaka et al. (1982), there are numerous 

applications of fuzzy regression analysis in the recent years (e.g. Bárdossy et al. 1990; 

Lee et al. 2001; D'Urso 2003; Kao and Chyu 2003; Mousavi et al. 2007). 

The study therefore considers a fuzzy set theory based methodology for the consideration 

of the uncertainties from the source and propagation of uncertainties in the rating curves. 

The rest of this chapter describes the basic principles of fuzzy sets for handling 

measurement and rating curve uncertainties. 

2.2 Introduction to fuzzy set theory 

Zadeh (1965) introduced the fuzzy set as a class of object with a continuum of grades of 

membership. In contrast to classical crisp sets where a set is defined by either 

membership or non-membership, the fuzzy approach relates to a grades of membership 

between [0, 1], defined in terms of the membership function of a fuzzy number. Hence, 

the classical notion of binary membership has been modified for the representation of 

uncertainty in data.  

The numerical values of fuzzy numbers in a domain are assigned by membership level, 

which may take any value between 0 and 1, with no membership at 0 and full 
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membership at 1. In mathematical terms, assuming X as a universe set of x values 

(elements), then A as a fuzzy subset of X, in ordered pairs is given by:  

( ) [ ]{ }1,0)(,;)(, ∈∈= xXxxxA AA µµ        (2.1) 

where, )(xAµ  is the grade of membership of x in the fuzzy subset A.  

A membership function can be of any shape depending on the type of a fuzzy set it 

belongs to. The only condition a membership function must satisfy is it should vary 

between 0 and 1. 

2.2.1. Fuzzy Numbers 

Fuzzy numbers are normal and convex fuzzy sets, whose numerical values in the domain 

are assigned by specific grades of membership. While Boolean operations such as union 

and intersection can be carried out on any fuzzy sets, the fuzzy numbers can be used to 

perform arithmetic operations such as addition, subtraction, multiplication and division. 

The commonly used fuzzy numbers are outlined below. 

i. Triangular fuzzy number. It is based on fuzzy number A = (a, b, c) with a ≤ b ≤ c. 

The interval (a, c) is the support of the triangular fuzzy number. This membership 

function is shown in Figure 2.1 and given by: 
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ii. Trapezoidal fuzzy number. The function is based on fuzzy number A = (a, b, c, d), 

where a ≤ b ≤ c ≤ d. The interval (a, d) is the support of the trapezoidal fuzzy number. 

This membership function is shown in Figure 2.2 and given by: 
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Figure 2.1. Triangular fuzzy number Figure 2.2. Trapezoidal fuzzy number 

iii. Left-Right (L-R) fuzzy number. The linear function used in the definition of the 

triangular fuzzy numbers may be replaced by a monotonic function. This is called Left-

Right or L-R representation of fuzzy numbers (Dubois and Prade 1980). For example, 

coefficient Â  is expressed as ( ) m fA βα ,,ˆ = , where m is the central value and α and β 

are the left and right spreads respectively. The membership function )(xAµ , of the 

triangular L-R fuzzy number is given by equation 2.4 and shown in Figure 2.3 (D'Urso 

2003):  
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2.2.2 Alpha level cut 

Fuzzy alpha-level cut (α – cut) can be used for resolving fuzzy numbers into crisp 

numbers, so that crisp mathematical operations such as addition, subtraction, division, 
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square and square root can be performed (Simonovic 2008). An example of fuzzy number 

with α – cut and its support is shown in Figure 2.4. Let an α – cut intersect the 

membership function of a fuzzy number at two points a1 and a2 (a1, a2ෛ A). Then, the 

subset Aα contains all possible values of the fuzzy variable A, including and between a1 

and a2, which are referred to as the lower and upper bounds of the α – cut. The subset Aα 

also contains a set of elements, which have at least a membership value greater than or 

equal to α, as given by: 

{ }αµα ≥∈= )(, AAaA A         (2.5) 

Aα
α

1

α - level cut

0 x
a1 a2

µA(A)

 
Figure 2.4. Fuzzy number and α level cut 

2.2.3 Fuzzy arithmetic 

The fuzzy alpha level cut based fuzzy arithmetic provides a mean to generalize crisp 

mathematical operations to fuzzy sets. For the fuzzy arithmetic operations, two fuzzy 

numbers A and B, are considered at α – level: Aα = [a1, a2], Bα = [b1, b2].  

The individual arithmetic operations on the α – cut of A and B can be defined in terms of 

following equations (Klir 1997; Simonovic 2008): 

]  ,[  ] ,[ ] ,[ 22112121 bababbaa ++=+        (2.6) 

]  ,[  ] ,[ ] ,[ 12212121 bababbaa −−=−        (2.7) 

)],, ,max(),,, ,[min(  ] ,[ *] ,[ 22122111221221112121 bababababababababbaa =   (2.8) 
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For the calculation of the fuzzy square root, Salicone (2007) proposed the following 

relation: 
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Similarly, for the calculation of fuzzy square, the following equation can be used: 

[ ]
[ ]
[ ]

 

0  when           -

0,0     when           -

0n        whe          

 ] ,[

21

2

2

2

1

21

2

1

2

2

21

2

2

2

1

2

21









≤≤−

><

≤≤

=

aaa,a

aaa,a

aaa,a

aa                 (2.11) 

2.2.4 Fuzzy regression 

The classical regression approach defines the relationship between the independent and 

dependent variables in terms a mathematical relationship, which can be expressed as:  

ipPii xAxAAy +++= ...110                  (2.12) 

Where y is the dependent variable, x is the independent variable, A is the coefficient of 

regression, p is the number of independent variables and ni ...,2,1=  is the observation 

of each independent variable.  

In real world problems, the relationships between the independent and dependent 

variables can rarely be expressed in terms of simple linearized equation such as (2.12). 

The relationships are often affected by data uncertainties and complex physical processes, 

which cannot be represented by simplified linear or nonlinear equations. It is more 

appropriate to define such relationships in terms of credible bands of lower and upper 

scenarios to represent the uncertainties in the data and complexities in the relationship. 
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Fuzzy extension principle (Zadeh, 1965) based fuzzy regression approach can handle 

such a problem by defining the coefficients of the relationships as fuzzy numbers, which 

can be expressed as: 

ipPii xAxAAy ˆ...ˆˆ
110 +++=                  (2.13) 

The L-R (left–right) representation of fuzzy number provides a suitable means for 

representing the fuzzy coefficient jÂ . Due to measurement uncertainties of the 

independent and dependent variables, it may be necessary to define the variables and well 

as coefficients of the variables and fuzzy numbers, which can be expressed as:  

ipPii xAxAAy ~ˆ...~ˆˆ~
110 +++=                  (2.14) 

The left and right spreads of the L-R fuzzy number can be extended to incorporate the 

uncertainty not captured in available data sets using a degree of belief, H (Chang and 

Ayyub 2001). According to this approach, each of the observed data points must be 

within the band around estimated regression curves at H level as shown in Figure 2.5. 

The spread of the membership function and, hence, the fuzziness of the regression 

variables can be controlled by specifying the H level between 0 and 1. Accordingly, for 

the degree of belief H, the left and right spreads of the L-R fuzzy number Â and B̂  can be 

expressed as: 

)1(ˆ)1( HmAHm jjjjj −+≤≤−− βα                (2.15) 

The spread of the fuzzy regression curve also depends upon the reference point of the 

corresponding independent variable to which fuzzy regression analysis is performed. For 

example, if two fuzzy regression analyses are performed with the reference points at; (i) 

the minimum value of the independent variable and (ii) the maximum value of the 

independent variable; the spread of the regression curve will be higher around the 

maximum of the independent variable in case (i) compared to the case (ii). Depending 

upon the regression data, one or more reference points may be used, where the regression 

is believed to be the most accurate. The reference point should be selected where the 

regression is supposed to be the crispest, like around the average or the maximum value 

(Bárdossy et al. 1990).  
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Figure 2.5. Representation of degree of belief H in L-R fuzzy number 
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CHAPTER 3 

Analysis of uncertainties in stage-discharge measurements 

The chapter presents two case studies on the analysis of stage-discharge measurement 

uncertainties. The first case study presents a combined methodology for uncertainty 

analysis of discharge and stage measurement. The methodology uses data from current 

meter discharge measurement and float operated stage measurement from Thompson 

River near Spences bridge in British Columbia, Canada. The second case study presents a 

methodology for uncertainty quantification in discharge measurement using Acoustic 

Doppler current profiler from Richelieu River in Quebec, Canada. 

3.1 Methodology for uncertainty analysis 

3.1.1 Analysis of current meter discharge measurement uncertainty 

3.1.1.1 Aggregation of uncertainties using fuzzy arithmetic  

For consideration of uncertainties in measurement of depth, width and current meter 

measurement of velocity, each of measurement quantities is expressed as a symmetrical 

triangular fuzzy number with the spread given by percentage fraction between –xi and xi, 

and central value at 0 as shown in Figure 3.1.  

As described in chapter 1, uncertainty in the measurement of velocity consist of three 

different sources: (i) uncertainty in the number of points on a vertical pX̂ ; (ii) current 

meter rating cX̂ ; and (iii) time of exposure eX̂ . Each of these uncertainties is 

independent of each other, therefore, the total uncertainty can be considered to be less 

than arithmetic sum of individual uncertainties. Therefore, a method based on the ISO-

748 is used, which calculates the total uncertainty as the square root of sum of squares of 

individual uncertainties. As the individual uncertainties are expressed in terms of 

percentage fraction between –xi and xi, and central value at 0, the combined fuzzy 
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uncertainty in the mean velocity iv̂ is calculated as the sum of total uncertainties plus 

unity, multiplied by the crisp mean value of velocity measurement iv : 

( ) ( ) ( ) 





 +++=

222 ˆˆˆ1ˆ
ecpii XXXvv        (3.1) 
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0
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Figure 3.1. Expression of measurement uncertainty in terms of fuzzy number 

Similarly, fuzzy number of the width measurement ib̂
 

and depth measurement 

id̂ considering the measurement uncertainties is expressed as: 

( )bii Xbb ˆ1ˆ +=           (3.2) 

( )dii Xdd ˆ1ˆ +=          (3.3) 

Here bX̂  and dX̂  are the fuzzy numbers of uncertainties in width ib
 
and depth id

 

measurements, respectively.  

The computation of discharge using mid section velocity area method is the standard in 

Canada (Pelletier 1988). For the width measurement from a common reference point, the 

discharge Q measurement using mid section method may be expressed as: 
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Using the fuzzified values of velocity, depth and discharge, from equations (3.1), (3.2) 

and (3.3), the total discharge is calculated as a fuzzy number Q̂ : 
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In order to take into consideration the uncertainty due to limited number of verticals, mX̂ , 

expressed as a fraction, the total uncertainty in the discharge measurement is calculated 

using the following relationship: 

( )mtot XQQ ˆ1ˆˆ +=          (3.6) 

3.1.1.2 Aggregation of uncertainties using fuzzified ISO method  

For the comparison with the above method, aggregation of uncertainties using fuzzy 

variables with a conventional treatment of measurement, uncertainties according to ISO-

748 is used. In this case, instead of aggregation of confidence level of uncertainty, each 

of the uncertainties is fuzzified and aggregated using fuzzy arithmetic. According to the 

ISO-748 suggested formulation, a combination of confidence level of uncertainties is 

expressed as: 
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It is to be noted that the equation (3.7) is different from equation given in ISO-748. The 

derivation of the equations for the aggregation of uncertainties according to the ISO-748 

is documented in Herschy (1995), where two different forms of equations are listed. The 

equation without squaring of the terms on the right hand side is used in this study as it 

confirms with definition of total uncertainty as a ratio of sum of percentage errors in the 

segment discharges to the sum of the segment discharges. Hence, the original form of 

equation by Herschy (1995) is used for the aggregation of uncertainties. Expressing each 

uncertainty in terms of fuzzy numbers leads to: 
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The total uncertainty in discharge measurement is expressed as: 

( )Qtot XQQ ˆ1ˆ +=          (3.9) 

3.1.2 Analysis of Acoustic Doppler current profiler discharge measurement 

uncertainties  

As described in chapter 1, the measurement of discharge using Acoustic Doppler current 

profiler (ADCP) consists of number of different sources of uncertainties. A major source 

of uncertainty arises due to unmeasurable areas at the left, right, top and bottom portions 

of the discharge measurement section as shown in Figure 1.2. However, suggested 

uncertainty values for these uncertainties are not available.  

The random sources of uncertainties in the ADCP discharge measurement can be 

quantified from the ADCP measurements, which are usually undertaken in a number of 

tracks. Based on the quantified uncertainties, measurements in each section in a channel 

can be expressed as a fuzzy number: 

( )iii XQQ ˆ1ˆ +=                    (3.10) 

where iQ  is the discharge measurement at any section of river channel, and iX̂  and iQ̂  

are the fuzzy numbers of uncertainties and discharge, respectively at the measurement 

section.  

From the uncertainty in each portion of discharge measurement defined by equation 

(3.10), the total uncertainty in discharge measurement by ADCP can be expressed as: 

rightbottommiddletoplefttotal QQQQQQ ˆˆˆˆˆˆ ++++=                (3.11) 

where, leftQ̂ , topQ̂ , middleQ̂ , bottomQ̂  and rightQ̂  are fuzzy numbers of discharge measurement 

at left, top, middle, bottom and right sections. totalQ̂ is the fuzzy number of total discharge. 
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3.1.3 Analysis of stage measurement uncertainties 

In the case of stage measurement, two different sources of uncertainty are considered: (i) 

error in the measuring instrument, insX̂ ; and (ii) error in the determination of mean 

reference gauge height corresponding to the measured discharge, refX̂ . Since the 

uncertainty (ii) is dependent on (i), the combined uncertainty can be calculated as the sum 

of uncertainties (i) and (ii). Therefore the aggregated uncertainty in stage measurement 

can be expressed as: 

( ){ }refins XXhh ˆˆ1ˆ ++=                   (3.12) 

where, h is the measured stage and ĥ  is the fuzzified stage. 

3.2 Case study 1: Combined uncertainty analysis of current meter discharge and 

stage measurements  

Stage and discharge measurements from Thompson River near Spences bridge from 1970 

to 2000 are used for a combined fuzzy analyses of measurement uncertainties. Thompson 

River is a major tributary of the Fraser River in British Columbia, Canada with a gross 

drainage area of 54,900 km
2 

at the gauging station. The station is located in a narrow 

gorge with well defined banks. The analysis of the river cross sections from 1970 to 

2000, showed a very little change in channel geometry indicating the cross section to be 

very stable.  

The case study uses 58 measurements of stage and discharge values for the rating curve 

uncertainty analysis. The minimum, mean and maximum values of stage data are 0.44 m, 

3.75 m and 8.93 m, respectively. The minimum, mean and maximum discharge values 

used in the analysis are 155 m
3
/s, 1392 m

3
/s and 4081 m

3
/s, respectively. Individually 

rated current meter is used for the discharge measurements with 20-30 observation 

verticals in a cross section. Only a single point on each vertical is used for the estimation 

of mean velocity. The total discharge is calculated using mid-section method. 

The available information from the Spences bridge gauge and general practice of 

discharge measurement in Canada (Terzi 1981, Pelletier 1988) are used in the analyses. 

The ISO-748 suggested random uncertainty values (at 95% confidence level) are used as 
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a reference for the expression of each of the uncertainty in terms of triangular fuzzy 

number. As already outlined, ISO-748 recommends determination of the values 

independently for the application to a particular case. Therefore, in order to account for 

the lack of information on random uncertainties and possible systematic uncertainties, the 

spread of each fuzzy number, in this case, is increased by 50%. Therefore, the fuzzy 

number of each of the uncertainty sources is viewed as a combination of both; the 

random and systematic uncertainty. The left or right spread (one half of the support) of 

the symmetrical triangular fuzzy number taken for each of the errors is given in Table 

3.1.  

Table 3.1. Half of the support of fuzzy number of errors in discharge measurement due to 

different uncertainty sources  

Uncertainty source Half of support of fuzzy 

number (%) 

Limited number of verticals (20-30) 

Limited number of points in a vertical (single point) 

Limited exposure time (one minute) 

Current meter rating (individual rating for velocity > 0.5 

m/s) 

Depth measurement (0.4-6 m) 

Width measurement (0-100 m) 

7.5-4.5 

22.5 

9.0 

1.5 

 

1.05 

0.45 

 

In the case of uncertainty in the stage measurement, half of the support of fuzzy number 

of errors considered is summarised in Table 3.2. 
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Table 3.2. Half of the support of the fuzzy number of errors in stage measurement due to 

different uncertainty sources  

Uncertainty source Half of the support of fuzzy number 

(mm) 

Measurement instrument 

Determination of mean reference gauge height  

15 

15 

 

3.2.1 Results and discussion 

3.2.1.1 Fuzzy arithmetic aggregation method 

The aggregation of uncertainties using fuzzy variables leads to nonlinear fuzzy numbers 

of discharge values. The membership functions of the largest measured discharge and 

corresponding stage are shown in Figures 3.2 and 3.3, respectively. The results show high 

uncertainty in discharge due to measurement uncertainties characterized by wide support 

of discharge fuzzy number. The central value of discharge and stage fuzzy numbers 

represents the values without consideration of uncertainty. The left and right spreads 

represent the total uncertainties in the measurement. The fuzzy numbers can be 

interpreted in terms of membership levels, with 0 as the highest uncertainty, i.e., the 

extreme possible measurement value. The closer the membership level is to 1, the lower 

is the uncertainty.  

The independent (non-interactive) measurements of discharge and stage are combined to 

form a joint fuzzy number of the corresponding measurements. This leads to a tri-

dimensional representation of the fuzzy number as shown in Figure 3.4. The joint 

membership function of the stage and discharge values provides a visualization of 

uncertainties in stage and discharge at any membership level. The joint membership 

function of the fuzzy numbers Qhµ  is given by:  

)min( , hQQh µµµ =                   (3.13) 

where, Qµ  is the discharge membership level and hµ is the stage membership level. 
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Figure 3.5 shows a ‘top view’ of the uncertainty in observed stage and discharge values 

represented by spread of joint membership functions of fuzzy numbers. Each rectangle in 

Figure 3.5 represents four points a, b, c and d with membership level 0 as shown in 

Figure 3.4. It is evident from Figure 3.5 that the spread of discharge fuzzy numbers 

increases with the higher discharge while the spread of the stage fuzzy numbers remains 

constant. This is due to the fact that uncertainties in each of the elements of discharge 

measurement (velocity, depth and width) are expressed in terms of percentage values, 

while constant uncertainty is used for all stage values.  
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Figure 3.2. Membership function of fuzzy number of maximum observed discharge 

using fuzzy arithmetic aggregation method 
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Figure 3.3. Membership function of fuzzy number of maximum observed stage using 

fuzzy arithmetic aggregation method 
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Figure 3.4. Joint membership function of maximum observed stage and discharge in 

terms of tri-dimensional representation of fuzzy number (fuzzy arithmetic aggregation 

method) 
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Figure 3.5. Uncertainty in observed stage and discharge represented by spread of joint 

membership functions using fuzzy arithmetic aggregation method 

3.2.1.2 Fuzzified ISO method  

The result of fuzzified ISO method also shows the large spread of the fuzzy number of 

largest measured discharge as shown in Figure 3.6. In this case also, there is increase in 

spread of discharge fuzzy numbers with the higher discharges as shown in Figure 3.7. A 

comparison of the left and right spread of fuzzy numbers for the minimum, mean and 

maximum discharge is given in Table 3.3. It can be seen from the Table that the spreads 

are higher in the case of fuzzy aggregation method in comparison to the ISO method. 

This is due to the fact that aggregation of uncertainty using fuzzy arithmetic method uses 

direct combination of fuzzy numbers of different uncertain quantities and there is no 

reduction of uncertainty. In the case of the ISO method, the fuzzified form of the ISO 

equation (Equation 3.10) is used, which combines the fuzzy numbers of uncertainties as a 

square root of the sum of squares of all the uncertainties. Therefore, there is reduction of 

uncertainties in the ISO method. It is to be noted too that the ISO method leads to a linear 

fuzzy number of discharge, and the fuzzy aggregation leads to a nonlinear fuzzy number. 

The right spread of the fuzzy numbers for minimum, mean and maximum are higher than 

the left spread in the case of fuzzy aggregation method, while the left and right spreads 

are equal in the case of fuzzified ISO method.  
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Figure 3.6. Membership function of fuzzy number of maximum observed discharge 

using fuzzified ISO method 
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Figure 3.7. Uncertainty in the observed stage and discharge represented by spread of 

joint membership functions using fuzzified ISO method 
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Table 3.3. Comparison of the left and right spreads of the fuzzy numbers of discharge 

using fuzzy aggregation and fuzzified ISO method  

 Left spread (m
3
/s) Right Spread (m

3
/s) 

 Min Mean Max Min Mean Max 

Fuzzy arithmetic aggregation method 45 406 1211 49 459 1361 

Fuzzified ISO method 38 338 1013 38 338 1031 

3.2.1.3 Recommendations for reduction of uncertainties in the case study 

The possibilities of reducing total uncertainty in discharge measurement is analyzed by 

considering different spreads of membership functions of the uncertainty sources. Three 

parameters with highest range of uncertainty values are chosen for the analyses, which 

include: approximation due to the limited number of verticals, velocity uncertainties due 

to the limited numbers of points on a vertical and the measurement exposure time. 

Different values of uncertainties used for the analyses are summarized in Table 3.4.  

Table 3.4. Values of uncertainties used for the uncertainty reduction analyses  

Criteria Uncertainty values in % 

No of verticals 6.0 4.5 3.0 1.5 

No of points in a vertical 22.5 15.0 10.5 2.5 

Exposure time 9.0 7.5 6.0 3.0 

Figures 3.8 and 3.9 show the effects of uncertainty in the number of verticals for fuzzy 

aggregation and fuzzified ISO methods, respectively. For the reduction of uncertainty 

from 6% to 1.5%, the reduction in support of fuzzy number in the fuzzy aggregation and 

the fuzzified ISO method are obtained to be 13.4% and 2.5%, respectively. This shows 

that the uncertainty due to limited number of verticals has a more significant effect with 

the application of fuzzy aggregation method than with the application of the fuzzified 

ISO method. This difference is due to the fact that ISO method combines the 
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uncertainties as a square root of the sum of squares of all the uncertainties and the highest 

value of uncertainty dominates. This leads to a lower effect of elements with the low 

uncertainty level.  
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Figure 3.8. Reduction in uncertainties in the number of verticals (fuzzy arithmetic 

aggregation method) 
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Figure 3.9. Reduction in uncertainties in the number of verticals (fuzzified ISO method) 
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In the case of uncertainty due to limited number of points on a vertical, higher reduction 

of uncertainties are observed in both methods as shown in Figures 3.10 and 3.11. The 

reduction in support of the fuzzy numbers of 47% and 55% are obtained in the fuzzy 

aggregation and the fuzzified ISO methods, respectively, when the uncertainties are 

reduced from 22.5% to 2.5%. The uncertainty due to limited number of points on a 

vertical has the highest range of values of all the uncertainties considered, which 

therefore provides a high possibility for the reduction of the uncertainties regardless of 

the method used for aggregation. However, it is interesting to note that the effect of the 

uncertainty is less dominating in the fuzzy aggregation method, which uses the direct 

combination, compared to the fuzzified ISO method, which uses square root of the sum 

of squares of all the uncertainties. 

The effect of uncertainties due to exposure time is similar in both methods as shown in 

Figures 3.12 and 3.13. For the reduction of uncertainty from 9% to 3%, reduction in the 

support of the fuzzy number in the fuzzy aggregation and the fuzzified ISO method are 

obtained to be 4.8% and 5.9%, respectively. This shows that there is a limited possibility 

for the reduction of uncertainties for the exposure time. 
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Figure 3.10. Reduction in uncertainties due to the number of points in a vertical (fuzzy 

arithmetic aggregation method) 
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Figure 3.11. Reduction in uncertainties due to the number of points in a vertical 

(fuzzified ISO method) 
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Figure 3.12. Reduction in uncertainty due to exposure time (fuzzy arithmetic aggregation 

method) 
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Figure 3.13. Reduction in uncertainty due to exposure time (fuzzified ISO method) 

3.3 Case study 2: Uncertainty analysis of Acoustic Doppler current profiler 

discharge measurements  

The second case study presents a methodology for uncertainty quantification in discharge 

measurement using Acoustic Doppler current profiler. We use seven ADCP measurement 

data from Richelieu River in Quebec, Canada. Each of the measurements was repeated in 

4-5 tracks, based on which ensemble of discharge at each section in the river channel 

were calculated. We use the discharge measurement values from different tracks to 

calculate the uncertainties at 95% confidence intervals. The calculated 95% confidence 

interval uncertainty values are summarized in Table 3.5. 

Table 3.5. ADCP measurements at 95% confidence interval  

Measurement section Uncertainties [%] 

Left 

Top 

Middle 

Bottom 

Right 

43.20 

1.95 

0.58 

1.22 

37.80 
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Based on calculated uncertainty values, measurements at each section in a river channel 

is defined as fuzzy numbers with both the left and right spreads of the fuzzy number of 

uncertainties increased by 50%. An example of fuzzy numbers of discharge measurement 

at different measurements sections are shown in Figure 3.14. Based on the defined 

uncertainties at different sections in a river channel, the total uncertainty is calculated 

using fuzzy arithmetic as shown in Figure 3.15. 

It is to be noted that the uncertainties quantified in the given example only consists of 

random uncertainties. However, the method can be adapted to quantify other sources of 

random uncertainties as outlined in section 13.2 as well as systematic uncertainties. It can 

also be seen that the ADCP discharge measurement uncertainty (Figure 3.15) is very 

small compared to total uncertainty using current meter measurement (Figure 3.4). 

Although the uncertainties in the ADCP does not incorporate different sources of possible 

uncertainties, it can still be expected that the total uncertainty in the measurement will 

still remain small compared to the current meter discharge measurement uncertainty. 
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Figure 3.14. ADCP Discharge measurement uncertainties at different sections in a river 

channel 
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Figure 3.15. Total ADCP Discharge measurement uncertainty  
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CHAPTER 4 

Fuzzy nonlinear regression analysis of stage-discharge relationship 

This chapter presents a methodology for the analysis of uncertainty in a stage-discharge 

relationship. The methodology builds on the results of chapter 3, where the measurement 

uncertainties of stage and discharge are defined as fuzzy numbers, to define the lower and 

upper bounds of the stage discharge relationship. The same discharge and stage data from 

Thompson River near Spences bridge in British Columbia, Canada is used for the 

analysis. 

4.1 Methodology for fuzzy regression analysis of stage-discharge relationship  

4.1.1 Derivation of fuzzy regression equations for stage-discharge relationship 

The relationship between the stage, hi and the discharge, Qi is established by statistical 

regression analysis using a number of simultaneous observations of stage and discharge 

and is expressed in the mathematical form as:  

B

ii AhQ =           (4.1) 

where A and B are the coefficients of the relationship. 

Expressing the stage and discharge values, as well as regression coefficients, as fuzzy 

numbers leads to: 

B

ii hAQ
ˆ~ˆ~

=           (4.2) 

The membership functions of fuzzy discharge and stage variables, iQ
~

 and ih
~

, can be 

derived from the measurement uncertainties. The membership functions of the fuzzy 

coefficients Â and B̂  can be evaluated using fuzzy regression analysis, which is based on 

fuzzy extension principle (Zadeh 1965). The L-R (left–right) representation of fuzzy 

number as defined in chapter 2.1.1 provides a suitable means for representing the fuzzy 

coefficients. As defined in section 2.2.4, it may be necessary to extend the spread of the 
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L-R fuzzy number to incorporate the uncertainty not captured in available data sets using 

a degree of belief, H. Accordingly, for the degree of belief H, the left and right spreads of 

the L-R fuzzy number Â and B̂  can be expressed as: 

)1(ˆ)1( HmAHm AAAA −+≤≤−− βα       (4.3) 

)1(ˆ)1( HmBHm BBBB −+≤≤−− βα       (4.4) 

The spread of discharge fuzzy number iQ̂  and stage fuzzy number iĥ  obtained from 

measurement uncertainty analysis (chapter 3) can be expressed as follows:  

iiii QQiQQ mQm βα +≤≤−
~

        (4.5) 

iiii hhihh mhm βα +≤≤−
~

        (4.6) 

Considering the reference point for stage value as refh , as outlined in chapter 2.2.4, leads 

to the following modification of equation 4.6: 

i

i

i

i

h

ref

h

ref

i
h

ref

h

h

m

h

h

h

m
βα +≤≤−

~

        (4.7) 

For the derivation of the lower and upper bounds of the stage-discharge relationship, the 

results of stage and discharge measurement uncertainty analysis as described in chapter 3 

can be used. Based on the uncertainty plot of combined uncertainty of stage and 

discharge measurement as shown in Figure 3.5, we derived conditions for fuzzy 

regression. From Figure 3.5, it can be seen that the lower bound of fuzzy rating curve will 

intersect with zero stage membership value at boundary of right spread and zero 

discharge membership value at boundary of left spread. Similarly, the upper bound of 

fuzzy rating curve will intersect with zero stage membership value at the boundary of left 

spread and the zero discharge membership value at the boundary of right spread. 

Therefore, we combined equations (4.3), (4.4), (4.5), (4.7) and (4.2), so that the lower 

bound of fuzzy rating curve intersects with the zero stage membership value at the 

boundary of right spread and the upper bound intersects with zero stage membership 

value at the boundary of left spread. This leads to the expressions for the lower and upper 

bounds of the fuzzy regression curve in the following form: 
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For most gauging stations it is necessary to consider two or more curves for a reasonable 

fit of the measured stage and discharge data. Therefore, we consider two curves, for low 

and high flows, meeting at a break point breakh in equation (4.2):  

breaki

B

ii hhhAQ <= for
~ˆ~

1
ˆ

1
                 (4.10) 

breaki

B

ii hhhAQ >= for
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2
ˆ

2
                 (4.11) 
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B
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~ˆ~ˆ 21

ˆ

2

ˆ

1                 (4.12) 

where the indices 1 and 2 denote the low and high range of the measurement data.  

The consideration of two curves meeting at a point breakh  leads to the expression of 

equation (4.8) and (4.9) as follows:  
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In addition, the curves for low and high flow data should also meet at lower and upper 

bounds as well as central value of the relationship curve. This leads to the following 

additional condition: 
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4.1.2 Fuzzy regression model fitting  

The fuzzy regression model can be evaluated using a number of different criteria. Two 

criteria are considered for the evaluation of output fuzziness: (a) minimum spread (Wang 

and Tsaur 2000), and (b) least absolute deviation (Choi and Buckley 2008). The 

minimum spread of fuzzy numbers is obtained by minimization of output support for the 

total of n observations, consisting of p low flow observations as: 
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The second criterion is implemented through the consideration of deviations between the 

observations and regression outputs of left and right spreads as well as central values.  

The deviations for the left spread l, the right spread r and the central value c considering 

two curves meeting at the point boundh  are expressed as equations (4.17), (4.18) and 

(4.19), respectively: 
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The total absolute deviation of the observations from the regression output is obtained as 

the sum of individual deviations of the left spread l, the right spread r and the central 

value c: 

crlv ++=2                    (4.20) 

The set of equations (4.10) to (4.20) provides the mathematical formulation of the fuzzy 

regression analysis problem using fuzzy form of input and output variables. The 

formulation leads to an optimization problem for the evaluation of the coefficients in 

equations (4.10), (4.11), (4.12) in terms of the central value and the left and the right 

spreads. Equations (4.13), (4.14) provide nonlinear inequality constraints and equation 

(4.15) provides equality constraint for the optimization. There are two different objective 

functions for the optimisation: the least spread and the least absolute deviation given by 

equations (4.16) and (4.20), respectively. 

4.2 Case study: Nonlinear fuzzy regression with fuzzy variables and coefficients 

We use the results of stage and discharge measurement uncertainty analysis from 

Thompson River near Spences bridge, which is presented in chapter 4. Based on the 

results of uncertainty aggregation of using fuzzy arithmetic, as shown in Figure 3.5, we 

applied the fuzzy regression equations (4.10) to (4.20) for the analysis of uncertainty in 

the rating curve. For simplicity, we use symmetrical triangular L–R fuzzy numbers for the 

coefficients A1, B1, A2 and B2 with equal left and right spreads. This reduces the decision 

variables for fuzzy regression to eight, central values ma1, ma2, mb1, mb2, and spreads αa1, 

αa2, αb1, αb2 for the low and high flow coefficients. We analysed the available 
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measurements to determine the break point between low and high flows for the 

development of two different relationships. The break point is selected to be at the stage 

of m 3.36=breakh and the same stage is selected to be a location of reference point. To 

capture uncertainties due to limited number of measurement points, and due to hysteresis 

and change in river cross section we use a degree of belief H, which increases the spread 

of the fuzzy regression curve and therefore spread of the output. Since, the uncertainty in 

the discharge measurements is expressed by a wide spread of their fuzzy numbers, higher 

values of degree of belief can be used. Three relatively high H values of 0.5, 0.7 and 0.9 

are used to investigate the impact of subjective selection of H on the spread of fuzzy 

regression curve. The sequential quadratic programming method (Fletcher 1987), 

available in the MATLAB Optimization Toolbox (The MathWorks Inc. 2008) is used for 

the optimization of the fuzzy regression equation. The method can effectively handle 

nonlinear equality and inequality constraints required for the optimization of fuzzy 

regression equation. The method makes an approximation of the Hessian of the 

Lagrangian function using a quasi-Newton updating method at each iteration. The 

function is then used to generate an optimal solution using a line search procedure. The 

success of the algorithm in effective convergence to an optimal solution depends on the 

use of appropriate initial estimate of decision variables. The method was successfully 

used for the optimization of fuzzy regression equations by Shrestha et al. (2007). 

4.2.1 Results and discussion 

The results of fuzzy regression analysis using the criteria of (a) minimum spread and (b) 

least minimum deviation for the degree of belief of 0.7 are shown in Figures 4.1 and 4.2, 

respectively. In both cases, the analysis produces upper (U) and lower (L) curves, 

bounding the fuzzy stage-discharge measurement data. The uncertainty bound curves for 

different membership levels (between 0 and 1) represent the degree of belonging of 

discharge values corresponding to a particular measured stage. The closer the 

membership level is to 1, the higher is the degree of belonging. The spread of the fuzzy 

regression curves depends upon the degree of belief used during the regression analysis. 

Figures 4.1 and 4.2 illustrate the spread of uncertainty bound curves for degree of belief 

of 0.7 at two different levels of belonging, 0.0 and 0.3. The curves between 0.0L and 
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0.3L, and 0.0U and 0.3U represents (a) the total uncertainty in the stage-discharge 

relationship together with (b) the uncertainty that is not captured in the available data set 

and the uncertainty that is not directly considered in the analysis, such as rating curve 

hysteresis and/or change in river cross section. The use of the two different criteria for 

optimization of the output fuzziness generates similar results. However, some minor 

difference exists in the spread of fuzzy output numbers as illustrated in Figures 4.3 and 

4.4. The membership functions of fuzzy discharge obtained with the minimum spread and 

the least absolute deviation criteria corresponding to the stage values between 2.33-2.39 

m and 8.9-8.96 m are shown in Figures 4.3 and 4.4, respectively. It can be seen that the 

spreads of discharge membership functions obtained from fuzzy regression analyses 

using both criteria are higher than the spread caused by the discharge measurement 

uncertainty. The higher spread of membership function incorporates additional sources of 

uncertainty not directly considered in the analysis, such as rating curve hysteresis and 

change of river cross section. This also incorporates scatter of observed data around 

defined uncertainty band. Figures 4.3 and 4.4 also show that spreads of discharge 

membership functions increase with an increase in stage. Therefore, the spread caused by 

the discharge uncertainty corresponding to stage beyond 8.9-8.96 cm will be even higher. 

 

 

 

 

 

 

Figure 4.1. Fuzzy regression curves obtained with the minimum spread criteria and 

degree of belief H=0.7 
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Figure 4.2. Fuzzy regression curves obtained with least minimum deviation criteria and 

degree of belief H=0.7 

 
Figure 4.3. Comparison of spreads of fuzzy discharge numbers corresponding to the 

stage between 2.33-2.39 m and the degree of belief H=0.7 
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Figure 4.4. Comparison of spreads of fuzzy discharge numbers corresponding to the 

stage between 8.9-8.96 m and degree of belief H=0.7 

A sensitivity of the spread of fuzzy discharge numbers obtained using two optimization 

criteria and the degree of belief of 0.5, 0.7 and 0.9 is summarized in Table 4.1. An 

increase in the degree of belief leads to a decrease in the total spread of membership 

function in case of both optimization criteria. However, the deviation between 1.0, and 

(1-H)L and (1-H)U membership level shows no change in the case of least absolute 

deviation criterion and a small change for the minimum spread criteria. The least absolute 

deviation criterion uses the difference between 1.0, and (1-H)L and (1-H)U membership 

levels as the objective function value for the optimization. Since the differences are 

calculated between the band of estimated regression curves at 1 and (1-H) membership 

levels and observations, they remain constant for each H level. As expected, the 

minimum spread criterion leads to lower spread of fuzzy regression curves compared to 

the least absolute deviation criterion for all values of the degree of belief. The spread of 

fuzzy discharge numbers is lower in the case of the minimum spread criterion compared 

to the least absolute deviation criterion. On the other hand, the distance criterion 

minimizes the deviation between 1.0, and (1-H)L and (1-H)U membership levels of fuzzy 

numbers of measurement uncertainty and regression curve. This therefore leads to lower 
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deviation between the fuzzy numbers corresponding to the input discharge and the output 

discharge from fuzzy regression at 1.0, and (1-H)L and (1-H)U membership levels as 

shown in Table 4.1.  

The study therefore shows two different criteria for the evaluation of output fuzziness in a 

fuzzy regression analysis using fuzzy input and output variables. As can be seen in 

Figures 4.1, 4.2, 4.3 and 4.4, and Table 4.1, the difference in results using the two criteria 

is small. However, there is important difference in the general applicability of the two 

methods. In the case when observation data is precise or the fuzziness is small, the least 

absolute deviation criterion is suitable for use as it minimizes the deviation between 

fuzzy input and output at different membership levels. In the case when the observation 

data is imprecise or the fuzziness is large, the differences between input and output 

fuzziness is not important. In such situation, it is more appropriate to minimize the total 

spread, which leads to a minimum uncertainty of the output. The discharge data from 

Thompson River used in this study is subject to considerable uncertainties characterized 

by large fuzziness of discharge membership functions. Therefore, the minimum spread 

criterion is more appropriate for use in this particular case.  

The results of the study also show that the total uncertainty (natural and measurement) 

leads to a large uncertainty in the stage-discharge relationship characterized by a large 

spread of discharge fuzzy numbers. Figures 4.1 and 4.2 show higher spread of the fuzzy 

regression curves for high flows compared to low flows for both optimization criteria. 

Therefore, the extrapolation of fuzzy regression curves will lead to higher spread of the 

curves and hence higher discharge uncertainty. In this particular case, discharge 

measurement uncertainty is characterized by a large spread of it’s fuzzy number. The 

uncertainty propagates into the development of stage-discharge relationship and leads to 

a wide spread of membership level curves. It can be seen from Figures 4.1, 4.2, 4.3 and 

4.4 that discharge measurement uncertainty constitutes a large component of total 

uncertainty in the fuzzy stage-discharge relationship. The reduction in the measurement 

uncertainty therefore will provide the most efficient reduction in the uncertainty in the 

stage-discharge relationship.  
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Table 4.1. Sensitivity of fuzzy discharge numbers to different degree of belief 

 Degree of belief Total spread (m
3
/s) Deviation (m

3
/s) 

 H Min. Mean Max. Min. Mean Max. 

Minimum spread criteria 0.5 

0.7 

0.9 

266 

189 

156 

1979 

1405 

1090 

5471 

3864 

2989 

0 

0 

0 

70 

71 

73 

375 

378 

382 

Minimum deviation criteria 0.5 

0.7 

0.9 

255 

181 

140 

1997 

1424 

1105 

5647 

4018 

3116 

0 

0 

0 

67 

67 

67 

348 

348 

348 
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CHAPTER 5 

Hysteresis analysis using fuzzified Jones formula 

This chapter presents a methodology for an analysis of a looped rating curve using 

fuzzified form of Jones formula. The methodology is based on consideration of 

parameters of Jones formula as fuzzy numbers, whose spreads are determined using a 

multi-objective optimization algorithm. The discharge and stage data from three stations 

in the Chattahoochee River in Georgia, USA is used for the analysis. 

5.1 Methodology for hysteresis analysis using fuzzified Jones formula 

5.1.1 Derivation of Jones formula 

The Jones formula is derived from one dimensional hydrodynamic model, which is based 

on the conservation principles of mass and momentum, also known as the St. Venant 

equations. The equations are expressed in terms of the continuity (equation 5.1) and the 

momentum equations (equation 5.2): 
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where, h = depth of flow [m], Q = discharge [m
3
/s], A = active cross sectional area of 

flow [m
2
], g = gravitational acceleration [m/s

2
], Sf = friction slope, S0 = bed slope, x = 

distances along the channel [m] and t = time [s]. 

The momentum equation (5.2) can be rewritten as: 
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Neglecting the local acceleration 
t
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gA ∂
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 and convective acceleration terms 
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, equation (5.3) can be rewritten as diffusion wave equation: 

x

h
SS of ∂

∂
−=           (5.4) 

The friction slope Sf and the bed slope So in the river channel can be evaluated in terms of 

energy loss equations: 

fSKQ =           (5.5) 

0SKQo =           (5.6) 

Where, K is the conveyance of the channel with same dimension as discharge [m
3
/s] and 

Qo is the reference discharge assuming steady flow conditions. The conveyance is 

assumed to be equal for both the unsteady discharge and steady discharge. 

Combining equations (5.4), (5.5) and (5.6) leads to the equation: 
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The longitudinal gradient of the water depth, 
x

h

∂
∂

 can be replaced by an alternative term 

deducible from a flood record at a section as: 
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where, ck = kinematic wave celerity [m/s] and t = time step [s].  

Combining equations (5.7) and (5.8), we obtain the following equation which is also 

referred to as the Jones formula: 
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The kinematic wave celerity can be estimated using the following equation (Ponce 1989): 

A

Q
c o

k ∂
∂

=                    (5.10) 

This leads to a modified form of the Jones formula:  

2/1

1



















∂
∂
∂
∂

+=

A

Q
S

t

h

QQ
o

o

o                  (5.11) 

Therefore, in the Jones formula, the term under the square root modifies the steady state 

discharge to looped form based on channel slope, kinematic wave celerity and rate of 

change of stage. The bed slope in the channel can be estimated from the hydraulic data 

and the water surface slope 
t

h

∂
∂

 can be obtained from the observed stage hydrograph. For 

the calculation of the steady flow discharge Qo, the single value rating curve equation can 

be used: 

b

o ahQ =                    (5.12) 

where, a and b are the coefficients of the relationship. 

Combination of equations (5.11) and (5.12) leads to the following equation: 
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5.1.2 Fuzzification of Jones formula  

A major source of uncertainty in the application of the Jones formula is a number of 

simplifying assumptions, the equation is based upon. Some of the assumptions will never 

be fully met in any natural river, and lead to unknown trade-off between model bias and 

model simplicity (Petersen-Overleir 2006). The Jones formula also needs to be calibrated 

with the measured discharge data. However, the discharge data consist considerable 

uncertainty (Shrestha and Simonovic 2008a), which will also affect the simulation using 
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Jones formula. These uncertainties can be taken into account through fuzzification of 

equation (5.13), by considering coefficients a and b as fuzzy numbers. In addition, the 

bed slope So is also unknown and uncertain parameter, which can be expressed as a fuzzy 

number. Since the term under the square root of the equation (5.13) modifies the steady 

state discharge to a looped form, only the coefficients under the square root are 

considered as fuzzy numbers in this work. The fuzzified form of equation (5.13) is: 
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5.1.3 Analysis of fuzzified Jones formula using fuzzy regression 

The spreads of the fuzzy coefficients â  and b̂ can be evaluated using a fuzzy nonlinear 

regression. More details on fuzzy regression methodology is given in chapters 1 and 4. 

For a degree of belief H, the left and right spreads of the L-R fuzzy numbers â , b̂  and oŜ  

can be expressed as: 

)1(ˆ)1( HmaHm aaaa −+≤≤−− βα                (5.15) 

)1(ˆ)1( HmbHm bbbb −+≤≤−− βα                 (5.16) 

)1(ˆ)1( HmSHm SSoSS −+≤≤−− βα                (5.17) 

The fuzzified form of the Jones formula leads to a possible bounds of inner and outer 

loops incorporating the observation points. Both the inner and outer loops consist of 

rising and falling limbs. Accordingly, the discharge values of the inner loop should be 

either less than or equal to the observations in the rising limb and equal to or greater than 

the observations in the falling limb. Similarly, the discharge values of the outer loop 

should be either greater than or equal to the observations in the rising limb and equal to 

or less than the observations in the falling limb. Therefore the equations (8), (9a), (9b) 

and (9c) are integrated in the following conditions: 

Inner loop rising limb: 
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Inner loop falling limb: 
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Outer loop rising limb: 
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Outer loop falling limb: 
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where refh is the reference point in the stage data about which the fuzzy regression 

analysis is performed.  

The set of equations (5.18), (5.19), (5.20) and (5.21) provides the mathematical 

formulation of the fuzzy regression analysis problem using the fuzzified form of Jones 

formula. The formulation leads to an optimization problem for evaluation of coefficients 

in equations (5.15), (5.16), (5.17) in terms of central value and left and the right spreads. 

The equations (5.18), (5.19), (5.20) and (5.21) provide nonlinear inequality constraints. 

During optimization, the parameters αa, βa, αb, βb, αS, and βS, are allowed to take positive 

or negative values so that they can satisfy the conditions given by equations (5.18), 

(5.19), (5.20) and (5.21). 
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For the evaluation of the spread of the loops a criteria based on minimization of the 

spread (Wang and Tsaur 2000) of the loop is considered, which provides an objective 

function for the optimization: 
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where n is the number of observation data. 

5.2 Case study: Application of fuzzified Jones formula for hysteresis analysis  

We use the stage and discharge measurements at three stations in Chattahoochee River 

reach from Georgia, USA (Faye and Cherry 1980) for the analysis of hysteresis using the 

fuzzified Jones formula. River flow in this reach is predominantly controlled by the 

Buford dam located upstream. The stage and discharge data in the river reach were 

collected during the period of March 21-23, 1976, when the regulated discharge at 

Buford dam was increased to about 8000 ft
3
/s (≈225 m

3
/s). Continuous stage and 

discharge measurements at 5 to 10 minutes interval were obtained at a number of stations 

downstream of the dam using automatic digital recorders. For the measurement of 

discharge, a minimum of 17 verticals were established across the river cross section at 

each station. During the measurement each position was established sequentially and 

flow depth, mean velocity, and time were recorded. Velocity area method was used to 

calculate the total discharge for each measurement. A detailed description of the 

discharge measurement in the Chattahoochee River is available in Faye and Cherry 

(1980). 

Petersen-Overleir (2006) used the Jones formula to reproduce rating curve hysteresis in 

the Chattahoochee River. He used simplifying assumptions about the hydraulic and 
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geometric properties of the river channel and replaced physically based terms in the Jones 

formula with parameters. Although a good reproduction of the hysteresis curve was 

obtained, the use of non-physical parameters adds more uncertainty to the Jones formula. 

Due to this reason, a new methodology is introduced in this paper.  

We use a fuzzified form of the Jones formula to reproduce the hysteresis under various 

sources of uncertainty. We use the data from the stations (i) Georgia Highway 141, (ii) 

Littles Ferry Bridge and (iii) Georgia Highway 120 at the Chattahoochee River for the 

analyses. Since the velocity area method is used for the aggregation of discharge, the 

measurement data is affected by the uncertainties that we considered in our previous 

work (Shrestha and Simonovic 2008a): (i) limited number of verticals; (ii) limited 

number of points on a vertical; (iii) limited exposure time; (iv) current meter rating, (v) 

depth measurement; and (vi) width measurement. However no specific information on 

individual measurements of velocity, width and depth are available, so we did not 

consider these uncertainties in this work.  

The methodology used in this paper is based on the fuzzy nonlinear regression analysis 

with parameters expressed as fuzzy numbers. We use two different curves meeting at a 

point to represent the low and high flows in the steady flow equation (5.12). For 

simplicity, we use symmetrical triangular L–R fuzzy numbers with equal left and right 

spreads for the coefficients â , b̂  and oŜ  in equations (5.15), (5.16) and (5.17), 

respectively. This reduces the decision variables for fuzzy regression to twelve, 

consisting of six central values and six spreads (three each, for low and high flows). The 

available measurement data is analyzed to determine an appropriate break point between 

low and high flows and a reference point. For convenience, the brake point and reference 

points are selected at the same stage for each of the stations. To capture uncertainties in 

the measurement of discharge, we use a degree of belief H, which increases the spread of 

the fuzzy regression curve and therefore spread of the output. Due to lack of information 

on discharge measurement uncertainty, we use relatively low value of degree of belief of 

0.5.  

We initially used the sequential quadratic programming method (Fletcher 1987), 

available in the MATLAB Optimization Toolbox (The MathWorks Inc. 2008) for the 
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optimization of the fuzzy regression equation. The equations (5.18), (5.19), (5.20) and 

(5.21) are used as nonlinear inequality constraints and the equation (5.22) as the objective 

function for the optimization. However, the use of equations (5.18), (5.19), (5.20) and 

(5.21) as constraints which could not be violated (hard constraints) did not yield any 

feasible solution for any of the these stations. We observed that a major problem in the 

use of equations (5.18), (5.19), (5.20), (5.21) and (5.22) for optimization, is the square 

root term in each of these equations. When the term under the square root becomes 

negative, it gives an imaginary number output and optimization could not be completed 

successfully.  

To overcome this problem, we use an alternative strategy for optimization. Instead of 

using equations (5.18), (5.19), (5.20) and (5.21) as hard constraints, they are considered 

as soft constraints by allowing violations. The soft constraint is used as the objective 

function to minimize the number of violations. For this purpose, we specified each 

violation of the criteria as 1 and non-violation as 0, and expressed the sum of violation 

and non-violation instances as the objective function. Therefore, we have two objective 

functions for the evaluation of the coefficients of the fuzzified Jones formula: (i) criterion 

provided by equation (11); and (ii) minimization of the violation of the constraints 

provided by equations (5.18), (5.19), (5.20) and (5.21). In addition, the third objective 

function is used to evaluate the ‘goodness of fit’ of the solution with membership level 1 

with observations. For this evaluation, the criterion provided by the Nash-Sutcliffe 

coefficient is used. Since the optimization problem is considered as a minimization 

problem, we use the Nash-Sutcliffe coefficient of efficiency subtracted from unity. 
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where, NSCE is the Nash-Sutcliffe coefficient of efficiency, n is the number of 

observations, Qj,obs is the observed discharge and Qj,sim is the simulated discharge for 

membership level 1 of fuzzified Jones formula at time step j. 
obs

Q  is the mean of the 

observed discharge. 
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Multi-objective optimization tool called nondominated sorting genetic algorithm-II 

(NSGA-II; Deb et al. 2002) is used in the analysis. It is a fast and elitist multi-objective 

genetic algorithm capable of finding multiple Pareto solutions in a single optimisation 

run. Key features of the NSGA-II are efficient sorting algorithm and maintenance of a 

diverse set of elite population. More details on the NSGA-II algorithm is found in 

original work by Deb et al. (2002), which is also summarized in Shrestha and Rode 

(2008). Four independent optimisation runs of NSGA-II are carried out for each of the 

three stations with population size 60 and 80 and number of generations between 30 and 

40.  

5.2.1 Results and discussion 

The multi-objective optimization runs at each station produce a band of Pareto solutions. 

The minimum values of each of the individual objective functions obtained from the 

optimization runs are given in Table 5.1. The results show that none of the optimization 

runs lead to a full satisfaction of the constraints given by the equations (5.18), (5.19), 

(5.20) and (5.21) at any of the stations. It can be seen from Table 5.1, that similar values 

of 1-NSCE are obtained, when two additional objective functions are also simultaneously 

evaluated. The sum of spreads between 0.5I and 0.5O membership levels represents the 

fuzziness of the output and shows large difference when three different criteria are used. 

Zero value of the total spread between the membership levels 0.5I and O.5O is obtained 

for the minimum spread criteria. It corresponds to zero spread of the coefficients of 

equations (5.15), (5.16) and (5.17). Since the main objective of the application of the 

fuzzified Jones formula is to find a solution that can incorporate the most of measurement 

points within a band of predefined inner and outer membership levels, we recommend the 

solution at the lowest number of violations as the optimal solution. The chosen solution 

has the least number of points outside the inner and outer bounds with 0.5 membership 

level. The optimal results of the multi-objective optimization of the fuzzified Jones 

formula with a degree of belief 0.5 for three stations (i) Georgia Highway 141, (ii) Littles 

Ferry Bridge and (iii) Georgia Highway 120, are shown in Figures 5.1, 5.2 and 5.3, 

respectively. All three cases, (a) shows the discharge hydrographs at different 

membership levels and (b) the fuzzified hysteresis curves for the inner (I) and outer (O) 
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bounds at membership level 0.5. Therefore, the curves between 0.5I and 0.5O represent 

the combined uncertainty in measurement data and simplification of the unsteady flow 

equations using Jones formula.  

The results of the study show that discharge values are higher at the outer membership 

level in comparison to the inner membership level at the rising limb. In the case of falling 

limb, discharge values are higher at the inner membership level in comparison to the 

outer membership level. The results also show that a large spreads of coefficients of 

fuzzified Jones formula is necessary in order to represent the dynamics of the measured 

data. It may be possible to obtain a smaller spread if the inner and outer loops are 

optimized separately. However, the optimization of the outer and inner membership 

levels together with fuzzy regression enables the evaluation of the not only the bounds, 

but also different membership levels inside or outside the bounds.  

Table 5.1. Performance of the multi-objective optimization runs at three station 

Station Criteria Sum of spreads 

bet. 0.5I & 0.5O 

memb. levels 

No. of 

violations of 

constraints 

Nash-Sutcliffe 

coefficient  

(1-NSCE) 

Georgia 

Highway 141 

Min. spread 

Min. no. of violations 

Min. 1-NSCE 

0 

3865 

2179 

144 

6 

32 

0.007 

0.009 

0.004 

Littles Ferry 

Bridge 

Min. spread 

Min. no. of violations 

Min. 1-NSCE 

0 

2877 

3434 

151 

3 

20 

0.006 

0.006 

0.005 

Georgia 

Highway 120 

Min. spread 

Min. no. of violations 

Min. 1-NSCE 

0 

2167 

1638 

155 

14 

66 

0.006 

0.007 

0.006 
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The central value (membership level = 1.0) of the results in Figures 5.1, 5.2, and 5.3 

represents the best fit considering the criteria of minimum violation. Similar results are 

also observed (not shown in the figures) for the least value of Nash-Sutcliffe coefficient 

subtracted from unity. The results show that the membership level 1.0 alone is not able to 

represent the full dynamics of the loop in all three cases considered. This indicates that 

the non-fuzzy (or membership level 1.0) form of the Jones formula has a limitation in the 

reproduction of the rating curve hysteresis. The fuzzified form of the Jones formula is 

therefore a useful methodology for describing the dynamics of the rating curve loops. The 

discharge data is characterized by measurement uncertainty and the Jones formula is 

affected by simplification uncertainty. Therefore, the spread of the membership levels 

represents an impact of combined uncertainty due to these two factors. The proposed 

methodology is especially appropriate as information on individual sources of uncertainty 

is not usually available in practice. It is to be noted too that time series of observation 

data representing hysteresis as shown in this study is rarely available. In such situations, 

the validity of the looped rating curves produced by the Jones formula cannot be fully 

justified. Therefore, it is more appropriate to represent the hysteresis in the fuzzified form 

instead of a single (crisp) loop. 
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Figure 5.1. Results of the fuzzified Jones formula at Georgia Highway 141 station at 

different membership levels: (a) discharge hydrograph, (b) looped rating curve 
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Figure 5.2. Results of the fuzzified Jones formula at Littles Ferry Bridge station at 

different membership levels: (a) discharge hydrograph, (b) looped rating curve 
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Figure 5.3. Results of the fuzzified Jones formula at Georgia Highway 120 station at 

different membership levels: (a) discharge hydrograph, (b) looped rating curve 
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CHAPTER 6 

Conclusions and Recommendations 

Discharge records are essential for hydrologic and hydraulic analyses of river systems. 

The primary purpose of a gauging station is to provide discharge records, usually by 

measuring a stage and converting it to discharge by means of a stage-discharge 

relationship. However, there are inherent uncertainties in measurement of stage and 

discharge values and derivation of the stage-discharge relationship. In general, the 

measurement uncertainty arises due to (i) random and systematic errors in measurement 

instrumentation; and (ii) approximation of velocity distribution and channel geometry 

with a finite number of measurements. On the other hand, the stage-discharge 

relationship is affected by natural uncertainties due to unsteady flow in the river and 

changes in measurement cross section. Due to unsteady flow, the stage-discharge 

relationship takes a loop form, referred to as hysteresis, which makes the hypothesis of 

single valued stage-discharge relationship incompatible. Another source of natural 

uncertainty is change in river cross section due to physical processes of erosion and 

sedimentation. Discharge and stage measurements are made over a period of time, 

usually over a few years. If the change in the cross section is not taken into account, it 

introduces systematic error or bias in the regression data and affects the rating curve 

established using the regression analysis.  

For the quantification of stage-discharge measurement uncertainties, the International 

Organization for Standardization (ISO-748) suggests the range of values at 95% 

confidence level for different sources of uncertainty. This recommendation is based on 

investigations carried out since 1968. The ISO-748 recommends independent 

determination of uncertainty in each measurement for the application to a particular case 

study. However, in most cases, independent value of confidence interval in the 

measurement is not available, which limits the applicability of statistical quantification of 

the uncertainties. It is to be noted too that randomness is not the only source of 
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uncertainty in discharge measurements as they can also be affected by systematic 

uncertainty, human error and other subjective uncertainties. These uncertainties due to 

bias, non-uniqueness and simplification in the stage-discharge relationship cannot be 

directly expressed in the statistical framework using confidence intervals.   

The fuzzy set theory-based approach is explored in this report as an alternative way of 

analyzing various uncertainties associated with measurements and the rating curve. The 

fuzzy approach provides a non-probabilistic framework for representation of 

uncertainties using vaguely defined boundaries of fuzzy sets. The method is used for 

quantification and aggregation of individual sources of uncertainty in discharge 

measurement and definition of uncertainty in the stage discharge relationship. 

In the first part of this report, an original fuzzy set theory based approach is used for the 

consideration of different sources of uncertainty in measurement of stage and discharge 

and their aggregation into a combined uncertainty. Each of the measurement quantities is 

represented as a triangular fuzzy number with the spread determined on the basis of the 

ISO-748 guidelines. The extension principle based fuzzy arithmetic is used for the 

aggregation of different uncertainties and calculation of the total measurement 

uncertainty. The results of the study are compared with the fuzzified form of ISO-748 

formulation for the calculation of combined measurement uncertainty. The results of the 

Spences bridge location on the Thompson river in British Columbia, Canada show high 

uncertainty in the measurement of the discharge (expressed by the wide support of the 

discharge fuzzy number). The analysis of different uncertainty sources shows that the 

number of points on a vertical for the measurement of velocity is the largest source of 

uncertainty in the discharge measurement. Therefore, increase in the number of points on 

a vertical results in the largest reduction in the measurement uncertainty. Number of 

verticals in a cross section is another important source of uncertainty in discharge 

measurement. Although there is a limited reduction in uncertainty when the number of 

verticals is increased beyond 25, there will be a considerable increase in uncertainty when 

the number of verticals is reduced below 10. These results can be used as a basis for the 

improvement in the measurement methods and subsequent reduction in the stage 

discharge measurement uncertainties.  
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The study also presents a methodology for handling overall random uncertainties in the 

Acoustic Doppler current profiler discharge measurement. The results show that the 

ADCP discharge measurement uncertainty is very small compared to total uncertainty 

using current meter measurement. Although the uncertainties in the ADCP does not 

incorporate different sources of possible uncertainties, it can still be expected that the 

total uncertainty in the measurement will still remain small compared to the current meter 

discharge measurement uncertainty. The method can be adapted to quantify individual 

random uncertainties as well as systematic uncertainties.  

The second part of the report builds on the results of quantification of uncertainties at 

Spences bridge location on the Thompson river. Based on the representation of discharge 

and stage measurement uncertainties using fuzzy numbers, the uncertainties in the stage-

discharge relationship is analyzed using fuzzy regression. The methodology is based on 

the fuzzy nonlinear regression analysis with the input and output variables as well as the 

coefficients of the stage-discharge relationship expressed as fuzzy numbers. Therefore, 

the method takes into account the fuzziness in the input and output variables as well as 

the coefficients of the relationship. Two different criteria are used for an optimal 

evaluation of the output fuzziness: minimum spread and least absolute deviation criteria. 

The fuzzy nonlinear regression analysis leads to a definition of lower and upper 

uncertainty bounds on the stage-discharge relationship. The use of two optimization 

criteria for the evaluation of the output fuzziness leads to similar results with lower 

spread in the case of minimum spread criteria and the lower deviation between the fuzzy 

numbers of the input discharge and output discharge from fuzzy regression at different 

membership levels.  

In this particular case study, the discharge measurement uncertainty is characterized by a 

large spread of its fuzzy number. The uncertainty propagates into the stage-discharge 

relationship and leads to a wide spread of the membership level curves. The reduction in 

the measurement uncertainty therefore will provide the most efficient reduction in the 

uncertainty in the stage-discharge relationship.  

The third part of this reports deals with fuzzified form of Jones formula for the treatment 

of uncertainties in a looped rating curve using data from three stations in the 
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Chattahoochee River in Georgia, USA. The Jones formula is one of the methods used for 

the analysis of looped rating curves. However, it is subject to uncertainty arising from the 

simplification of unsteady flow equation. There are also additional uncertainties in the 

application of the Jones formula as discharge values used for fitting the formula are 

affected by the measurement uncertainties. Based on the representation of coefficients of 

Jones formula as fuzzy numbers, the uncertainties in the looped stage-discharge 

relationship are defined using an optimization scheme. A multi-objective optimization 

scheme NSGA-II is used for the evaluation of the output fuzziness. The measurement 

data from three stations in the Chattahoochee River in Georgia, USA is used for the 

analyses. 

The multi-objective optimization scheme leads to a definition of the inner and the outer 

uncertainty bounds on the looped stage-discharge relationship. From the Pareto solutions 

obtained from the multi-objective optimization runs, a solution which has the most 

number of observation points inside the inner and outer loops as the optimal solutions is 

selected. The fuzzified form of Jones formula is able to represent the dynamics of 

hysteresis loop, which gives an estimation of the combined uncertainty, due to discharge 

measurement errors and simplification of the unsteady flow equations. It is to be noted 

that time series of observation data representing hysteresis is rarely available. Due to this 

reason, the validity of the looped rating curves produced by the non-fuzzy Jones formula 

cannot be fully justified and it is therefore recommended to represent the hysteresis in the 

fuzzified form. 

The study has therefore demonstrated that the fuzzy set theory-based approach is an 

effective means of treating uncertainties in stage-discharge measurement and the rating 

curves in a non-probabilistic framework. The method considers uncertainties using 

vaguely defined boundaries of fuzzy sets and can incorporate different sources of 

uncertainty arising from random and systematic errors. The method allows quantification 

and aggregation of individual sources of uncertainty in discharge measurement and 

definition of uncertainty in the stage discharge relationship. Moreover, the method allows 

assessment of random and systematic uncertainties in the measurement and indirect 

consideration of uncertainties due to hysteresis and changes of river cross section. The 
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method also allows the treatment of classical methods such as Jones formula in a 

fuzzified form, which leads to a representation of dynamics of looped rating. For most 

gauging stations, confidence levels of different uncertainty sources are usually 

unavailable for a probabilistic consideration of uncertainties. In these situations, the fuzzy 

set theory is recommended to be used as an alternative methodology. 
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APPENDIX 1  

Matlab source code 

 

1a: Discharge uncertainty calculation using fuzzy arithmetic 

 
fuz_arith_q.m 
function q_res=fuz_arith_q() 
% Calculation of the discharge uncertainties considering the individual 
% uncertainties in the measurement of each of the quantities 
% Each of the quantities: velocity, depth and width are considered as  
% fuzzy numbers and total uncertainty is calculated using fuzzy 
% arithmetic  
  
% load the data with first column id second width, third depth and the  
% fourth velocity 
load q_data.txt; 
[m1,m2]=size(q_data); 
  
  
% alpha cut of fuzzy number 
% alpha cut intervals 
alpha=0.1; 
a=[-1:alpha:1];a1=length(a); 
% tot_fuz1=zeros(a1,1);       
% define the id 
id=q_data(1);  
q_res=zeros(1,a1+1); 
  
j=0; 
while id<=q_data(m1); 
     
    [R,C] = find(q_data==id); 
  
% Check whether the id number exist 
    if (~isempty(R)); 
     
    j=j+1; 
    n=sum(C); 
% select the data with the same id     
    qdat0=q_data(R(1):R(n),2:4);  
% sort the rows in ascending order with distance     
    qdat1=sortrows(qdat0,1);  
  
% Discharge calculation using mid-section method 
% The area between the first and second, and second last and last 
verticals 
% are neglected 
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% Define the Width measurement (b(j+1)-b(j-1))/2 
    b3=qdat1(3:n,1); b1=qdat1(1:n-2,1); 
    b=(b3-b1)/2; 
    qdat=[b qdat1(2:n-1,2:3)]; 
  
% Define uncertainties in % and increase the 95% confidence interval 
value 
% by 50% to cover 99.7% (within three standard deviations) 
    f=1.5; 
% Interpolate uncertainties according to the no of verticals 
    xm=vert_uncert(n);xm1=xm*f; 
% width measurment (range of width between 0 to 100 m) 
    xb=0.3;xb1=xb*f; 
% Depth measurement (sounding rod?) 
    xd=0.7;xd1=xd*f; 
  
% Velocity measurement depends upon the actual velocity 
% one point method is used which has uncertainties as high as 15%! 
    xp=15;xp1=xp*f; 
% current meter rating (individual rating is used) 
    xc=1;xc1=xc*f; 
% time of exposure (for exposure time 1 min and velocity > 1 m. 
    xe=6;xe1=xe*f; 
% Total uncertainties in the velocity measurement is calculated as the 
% square root of the sum of squares of all the uncertainties in 
velocity 
% measurement 
    xv1=sqrt(xp1^2+xc1^2+xe1^2); 
     
  
% fuzzify  
% first column width 
    width_fuz=fuzzify(qdat(:,1),xb1,alpha,'percent'); 
% second column depth 
    depth_fuz=fuzzify(qdat(:,2),xd1,alpha,'percent'); 
% third column velocity 
    vel_fuz=fuzzify(qdat(:,3),xv1,alpha,'percent'); 
  
% do an element wise multiplication to calculate partial fuzzy 
discharge 
% between the verticals 
    q_fuz=width_fuz.*depth_fuz.*vel_fuz; 
% calculate the total fuzzy discharge 
    Q_fuz=sum(q_fuz); 
  
% Multiply by uncertainties due to number of verticals 
% first fuzzify the uncertainties 
    vert_fuz=fuzzify(0,xm1,alpha,'zero'); 
% Calculate the total fuzzy discharge 
    Q_dis=(1+vert_fuz).*Q_fuz; 
  
% negative values for negative alpha level 
%     k=1; 
%     while k<=a1; 
%     if a(k)<0; 
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%         tot_fuz1(k)=-tot_fuz(k); 
%     else tot_fuz1(k)=tot_fuz(k); 
%     end 
%     k=k+1; 
%     end 
  
  % Calculate the total fuzzy discharge 
%     Q_dis=((1+tot_fuz)*Q_fuz(11)); 
  
  
% write the matrix of results with id; 
    res0=[id Q_dis]; 
     
    q_res(j,:)=res0; 
       
    else 
    end 
  
id=id+1;      
end 
  
 

1b: Discharge uncertainty calculation using fuzzifed ISO method 

qiso.uncert.m 
 
function q_res=qiso_uncert() 
% Calculation of the discharge uncertainties considering the individual 
% uncertainties in the measurement of each of the quantities 
% Each of the uncertainties in the measurement of velocity, depth and 
width 
% are considered as fuzzy numbers and aggregated using ISO 748 method 
  
% load the data with first column id second width, third depth and the  
% fourth velocity 
load q_data.txt; 
[m1,m2]=size(q_data); 
  
  
% alpha cut of fuzzy number 
% alpha cut intervals 
alpha=0.1; 
a=(-1:alpha:1);a1=length(a); 
tot_fuz1=zeros(a1,1);     
% define the id 
id=q_data(1);  
q_res=zeros(1,a1+1); 
  
j=0; 
while id<=q_data(m1); 
     
    [R,C] = find(q_data==id); 
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% Check whether the id number exist 
    if (~isempty(R)); 
     
    j=j+1; 
    n=sum(C); 
% select the data with the same id     
    qdat0=q_data(R(1):R(n),2:4);  
% sort the rows in ascending order with distance     
    qdat1=sortrows(qdat0,1);  
  
% Discharge calculation using mid-section method 
% The area between the first and second, and second last and last 
verticals 
% are neglected 
  
% Define the Width measurement (b(j+1)-b(j-1))/2 
    b3=qdat1(3:n,1); b1=qdat1(1:n-2,1); 
    b=(b3-b1)/2; 
    qdat=[b qdat1(2:n-1,2:3)]; 
  
% calculate the partial discharge between the verticals 
    par_dis=qdat(:,1).*qdat(:,2).*qdat(:,3); 
%     sq_dis=par_dis.^2; 
    tot_dis=sum(par_dis); 
  
% Define uncertainties in % and increase the 95% confidence interval 
value 
% by 50% to cover 99.7% (within three standard deviations) 
    f=1.50; 
% Interpolate uncertainties according to the no of verticals 
    xm=vert_uncert(n);xm1=xm*f; 
% width measurment (range of width between 0 to 100 m) 
    xb=0.3;xb1=xb*f; 
% Depth measurement (sounding rod?) 
    xd=0.7;xd1=xd*f; 
  
% Velocity measurement depends upon the actual velocity 
% one point method is used which has uncertainties as high as 15%! 
    xp=15;xp1=xp*f; 
% current meter rating (individual rating is used) 
    xc=1;xc1=xc*f; 
% time of exposure (for exposure time 1 min and velocity > 1 m. 
    xe=6;xe1=xe*f; 
   
  
% fuzzify and calculate the square of the uncertainty values 
% width 
    width_fuz=fuzzify(0,xb1,alpha,'zero'); 
% depth 
    depth_fuz=fuzzify(0,xd1,alpha,'zero'); 
% velocity on of points in a vertical 
    velp_fuz=fuzzify(0,xp1,alpha,'zero'); 
% current meter rating 
    velc_fuz=fuzzify(0,xc1,alpha,'zero'); 
% time of exposure 
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    vele_fuz=fuzzify(0,xe1,alpha,'zero'); 
% Uncertainties due to limited no of verticals  
    vert_fuz=fuzzify(0,xm1,alpha,'zero');     
  
     
% do element wise multiplication (square) of the fuzzified 
uncertainties 
% (except, no of verticals) 
    
com_fuz=width_fuz.^2+depth_fuz.^2+velp_fuz.^2+velc_fuz.^2+vele_fuz.^2; 
     
% multiply the square area with the com_fuzzy 
    i=1; 
    temp=zeros(n-2,a1); 
    while i<n-2; 
        temp(i,:)=par_dis(i)*sqrt(com_fuz); 
        i=i+1; 
    end 
         
% calculate the total uncertainties 
    tot_fuz=sqrt(vert_fuz.^2+(sum(temp)/tot_dis).^2); 
  
% negative values for negative alpha level 
    k=1; 
    while k<=a1; 
    if a(k)<0; 
        tot_fuz1(k)=-tot_fuz(k); 
    else tot_fuz1(k)=tot_fuz(k); 
    end 
    k=k+1; 
    end 
  
% Calculate the total fuzzy discharge 
    Q_fuz=((1+tot_fuz1)*tot_dis)'; 
  
% write the matrix of results with id; 
    res0=[id Q_fuz]; 
     
    q_res(j,:)=res0; 
       
    else 
    end 
  
id=id+1;      
end 
  

 

1c: Stage uncertainty calculation using fuzzy arithmetic  

 
fuz_arith_h.m  
 

function h_res=fuz_arith_h() 
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% Calculation of the stage measurement uncertainties considering the  
%Uncertainties in gauge measurement & mean gauge height during 
measurement 
  
  
% load the data with first column id and second stage 
  
load h_data.txt; 
[m1,m2]=size(h_data); 
  
  
% alpha cut of fuzzy number 
% alpha cut intervals 
alpha=0.1; 
% a=[-1:alpha:1];a1=length(a); 
  
% Define uncertainties in % and increase the 95% confidence interval 
value 
% by 50% to cover 99.7% (within three standard deviations) 
    f=1.5; 
% stage measurement (float operated autographic recorder) 
% No information is available on mean gauge height determination  
% uncertainties during measurement, so assuming equal to xh  
    xh=0.01;xh1=2*(xh*f); 
  
% fuzzify  
% first column width 
    stage_fuz=fuzzify(h_data(:,2),xh1,alpha,'value'); 
  
% write the matrix of results with id; 
    h_res=[h_data(:,1) stage_fuz]; 
     
 

 

1d: Fuzzification the variables using user defined uncertainty 

 
fuzzify.m 
 

% fuzzify variables using user defined uncertainty level and alpha 
function var_fuz=fuzzify(var,unt,alpha,operator) 
% var = vector of variable to fuzzify 
% unt = uncertainty value in % 
% alpha = alpha level intervals to fuzzify 
c=length(var); 
  
a=(-1:alpha:1);b=length(a); 
var_fuz=zeros(c,b); 
j=1; 
while j<=c; 
        if strcmp(operator, 'percent'), 
        var_fuz(j,:)=var(j,:)*(1+a*(unt/100)); 
        elseif strcmp(operator, 'value'), 
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            var_fuz(j,:)=var(j,:)+a*unt; 
        elseif strcmp(operator, 'zero') 
            var_fuz(j,:)=0+a*(unt/100); 
        else 
        end 
        j=j+1; 
end 
 

 

1e: Interpolation of uncertainties due to number of verticals 

 
Vert_uncert.m 
 
function xm=vert_uncert(vert_num) 
% Interpolate uncertainties due to number of verticals 
xy=[5   15; 
10  9; 
15  6; 
20  5; 
25  4; 
30  3; 
35  2; 
40  2; 
45  2]; 
x=xy(:,1); 
y=xy(:,2); 
  
xm=interp1(x,y,vert_num); 
 

 

1f: Fuzzy regression of fuzzy stage and discharge values with minimum distance criteria 

 
f_regression_mindist.m 
 
function [b,fval] = f_regression_mindist() 
  
% This code requires MATLAB optimization toolbox! 
% The code generates lower and upper membership bounds of the stage  
% discharge relationship curves with both stage and discharge 
(variables)  
% treated as fuzzy numbers. 
% It generates fuzzy parameters of the stage discharge relationship 
  
% Degree of belief  
dob = 0.5; 
 % Initialize shared variable 
% load the data 
hq_fuz=load('hq_fuz.txt'); 
hqdat=sortrows(hq_fuz,6); 
  
% Scale the data and devide the reference point 
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h11=(hqdat(1:28,5)+1)/3.36;h21=(hqdat(1:28,6)+1)/3.36;h31=(hqdat(1:28,7
)+1)/3.36; 
h117=(h21-(h21-h11)*dob);h317=(h21+(h31-h21)*dob); 
h12=(hqdat(28:56,5)+1)/3.36;h22=(hqdat(28:56,6)+1)/3.36;h32=(hqdat(28:5
6,7)+1)/3.36; 
h127=(h22-(h22-h12)*dob);h327=(h22+(h32-h22)*dob); 
  
% Define the coresponding discharge data 
q11=hqdat(1:28,2);q21=hqdat(1:28,3);q31=hqdat(1:28,4); 
q12=hqdat(28:56,2);q22=hqdat(28:56,3);q32=hqdat(28:56,4); 
  
% Make a starting guess at 1the solution 
  
b0 = [667   1.81 513    -0.18   667 1.68    513 -0.07]; 
  
options = 
optimset('Display','iter','LevenbergMarquardt','on','MeritFunction', 
'multiobj'); 
options.TolCon =6e-06; 
OPTIONS.MaxFunEvals=200000; 
  
[b, fval] = fminimax(@fobfun,b0,[],[],[],[],[],[],@fconst,options);    
  
    function f = fobfun(b) 
    % Objective function description 
     % minimum distance criteria 
      
    % calculate the distances 
    l11=sum(abs((b(1)-b(3)*dob)*h317.^(b(2) -dob*b(4))-q11)); 
    l12=sum(abs((b(5)-b(7)*dob)*h327.^(b(6) -dob*b(8))-q12)); 
     
    u11=sum(abs((b(1)+b(3)*dob)*h117.^(b(2) +dob*b(4))-q31)); 
    u12=sum(abs((b(5)+b(7)*dob)*h127.^(b(6) +dob*b(8))-q32)); 
     
    c11=sum(abs(b(1)*h21.^b(2))-q21); 
    c12=sum(abs(b(5)*h22.^b(6))-q22); 
     
    % Nonlinear objective function 
    f=l11+u11+c11+l12+u12+c12; 
         
     end 
  
     function [c,ceq] = fconst(b) 
  
% Constraints descriptions 
  
% Nonlinear inequality constraints 
    
 c = [-q11+(b(1)-dob*b(3))*(h317.^(b(2)-dob*b(4)));-q12+(b(5)-
dob*b(7))*(h327.^(b(6)-dob*b(8)));q31-
(b(1)+dob*b(3))*(h117.^(b(2)+dob*b(4)));q32-
(b(5)+dob*b(7))*(h127.^(b(6)+dob*b(8)))];     
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% Nonlinear equality constraints 
  
ceq=[b(1)*(1.^b(2))-b(5)*(1.^b(6));(b(1)-dob*b(3))*(h317(28).^(b(2)-
dob*b(4)))-(b(5)-dob*b(7))*(h317(28).^(b(6)-
dob*b(8)));(b(1)+dob*b(3))*(h117(28).^(b(2)+dob*b(4)))-
(b(5)+dob*b(7))*h117(28).^(b(6)+dob*b(8))]; 
  
     end 
end 
  

 
 

1g: Fuzzy regression of fuzzy stage and discharge values with minimum spread criteria 

f_regression_minfuz.m 
 
function [b,fval] = f_regression_minfuz() 
  
% This code requires MATLAB optimization toolbox! 
% The code generates lower and upper membership bounds of the stage  
% discharge relationship curves with both stage and discharge 
(varaibles)  
% treated as fuzzy numbers. 
% It generates fuzzy parameters of the stage discharge relationship 
  
% Degree of belief  
dob = 0.5; 
  
  
 % Initialize shared variable 
% load the data 
hq_fuz=load('hq_fuz.txt'); 
hqdat=sortrows(hq_fuz,6); 
  
% Scale the data and devide the reference point 
h11=(hqdat(1:28,5)+1)/3.36;h21=(hqdat(1:28,6)+1)/3.36;h31=(hqdat(1:28,7
)+1)/3.36; 
h117=(h21-(h21-h11)*0.5);h317=(h21+(h31-h21)*0.5); 
h12=(hqdat(28:56,5)+1)/3.36;h22=(hqdat(28:56,6)+1)/3.36;h32=(hqdat(28:5
6,7)+1)/3.36; 
h127=(h22-(h22-h12)*0.5);h327=(h22+(h32-h22)*0.5); 
  
% Define the corresponding discharge data 
q11=hqdat(1:28,2);q21=hqdat(1:28,3);q31=hqdat(1:28,4); 
q12=hqdat(28:56,2);q22=hqdat(28:56,3);q32=hqdat(28:56,4); 
%b0 = [2.33e-07     3.20 1.58e-07 0.040284]; 
  
% Make a starting guess at 1the solution 
%b0 = [168.0527045  1.817693566 366.0680943 -0.143095172    468.0527045 
1.689835877 365.4645759 -0.064609709];    
b0 = [667,1.8,509.5,-0.18,667.1,1.68,508.9,-0.06;]; 
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options = 
optimset('Display','iter','LevenbergMarquardt','on','MeritFunction', 
'multiobj'); 
options.TolCon =6e-06; 
OPTIONS.MaxFunEvals=200000; 
  
[b, fval] = fminimax(@fobfun,b0,[],[],[],[],[],[],@fconst,options);    
  
    function f = fobfun(b) 
    % Objective function description 
    % minimum fuzziness criteria 
     
     u11=sum(abs((b(1)+b(3)*dob)*h117.^(b(2) +dob*b(4))-(b(1)-
b(3)*dob)*h317.^(b(2) -dob*b(4)))); 
    u12=sum(abs((b(5)+b(7)*dob)*h127.^(b(6) +dob*b(8))-(b(5)-
b(7)*dob)*h327.^(b(6) -dob*b(8)))); 
     
     
    % Nonlinear objective function 
     f=u11+u12; 
         
     end 
  
     function [c,ceq] = fconst(b) 
  
% Constraints descriptions 
  
  
% Nonlinear inequality constraints 
    
 c = [-q11+(b(1)-dob*b(3))*(h317.^(b(2)-dob*b(4)));-q12+(b(5)-
dob*b(7))*(h327.^(b(6)-dob*b(8)));q31-
(b(1)+dob*b(3))*(h117.^(b(2)+dob*b(4)));q32-
(b(5)+dob*b(7))*(h127.^(b(6)+dob*b(8)))];     
           
% Nonlinear equality constraints 
  
ceq=[b(1)*(1.^b(2))-b(5)*(1.^b(6));(b(1)-dob*b(3))*(h317(28).^(b(2)-
dob*b(4)))-(b(5)-dob*b(7))*(h317(28).^(b(6)-
dob*b(8)));(b(1)+dob*b(3))*(h117(28).^(b(2)+dob*b(4)))-
(b(5)+dob*b(7))*h117(28).^(b(6)+dob*b(8))]; 
  
     end 
end 
 

1h: Fuzzified Jones formula for calculation of looped rating curve 

 
jonesmodfuzzy.m 
 
function [Q,Q1,Q2] =jonesmodfuzzy(y,h_break,xy,par) 
 
% This code requires NSGA-II code! 
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% Fuzzified Jones formula for the calculation of looped rating curve 
% par = parameters of the Jones formula generated by NSGA-II code 
% h_break=break point between low flow and high flow in stage discharge 
% relationship 
% xy=cross section data 
% Q=central value of Jone formula output 
% Q1, Q2 =Inner and outer loops of Jone formula output 
par 
%Coefficients of the relationship 
a1=par(:,1);a11=par(:,5); 
b1=par(:,2);b11=par(:,6); 
a2=a1;a21=b11; 
b2=par(:,3);b21=par(:,7); 
s0=par(:,4)*1e-4;s01=par(:,8)*1e-5; 
  
% stage time series 
%Smoothen the water level data using moving average function 
[m1,m2]=size(y);h=zeros(m1,1);span = 5; % Size of the averaging window 
window = ones(span,1)/span; 
y_sm = convn(y,window,'same'); 
y_smooth=[y(1:2);y_sm(3:m1-2);y(m1-1:m1)]; 
  
  
% both y and h and stage time series, h is  y divided by reference 
point 
%random number is added to y in case h 
% at two consecutive time steps are same. 
  
j=2;h=y_smooth/h_break; 
while j<=m1; 
if y_smooth(j)==y_smooth(j-1);h(j)=y_smooth(j)/h_break+0.001; 
else  
end 
j=j+1; 
end 
  
  
% Inatialise discharge variables, qhd=steady state discharge, Q is the 
% discharge modified by Jones formula. 
Q=zeros(m1,1);Q1=zeros(m1,1);Q2=zeros(m1,1); 
qstd=zeros(m1,1);qstd1=zeros(m1,1);qstd2=zeros(m1,1); 
  
% calculate the area at specified vertical interval using areawidth 
code 
[H,A,W,P] =areawidth(xy(:,1),xy(:,2),0.1); 
  
% calculate the area at each time steps 
ai = interp1(H,A,h(:,1)*h_break); 
  
% Use fuzzified Jones formula for the power coefficients of the rating 
curve 
% equation 
% Central value 
i=1; 
while i<=m1; 
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    if h(i)<=1; 
        qstd(i)=a1*h(i)^b1; 
        if i==1; Q(i)=qstd(i); 
        else Q(i)=qstd(i)*sqrt(1+((h(i)-h(i-1))/300)/(s0*((qstd(i)-
qstd(i-1))/(ai(i)-ai(i-1))))); 
        end 
    else qstd(i)=a2*h(i)^b2; 
        Q(i)=qstd(i)*sqrt(1+((h(i)-h(i-1))/300)/(s0*((qstd(i)-qstd(i-
1))/(ai(i)-ai(i-1))))); 
    end 
i=i+1; 
end 
  
% Lower spread 
i=1; 
while i<=m1; 
    if h(i)<=1; 
        qstd1(i)=(a1-a11*0.5)*h(i)^(b1-b11*0.5); 
        if i==1; Q1(i)=qstd1(i); 
        else Q1(i)=qstd(i)*sqrt(1+((h(i)-h(i-1))/300)/((s0-
s01)*((qstd1(i)-qstd1(i-1))/(ai(i)-ai(i-1))))); 
        end 
    else qstd1(i)=(a2-a21*0.5)*h(i)^(b2-b21*0.5); 
        Q1(i)=qstd(i)*sqrt(1+((h(i)-h(i-1))/300)/((s0-s01)*((qstd1(i)-
qstd1(i-1))/(ai(i)-ai(i-1))))); 
    end 
i=i+1; 
end 
  
% Lower spread 
i=1; 
while i<=m1; 
    if h(i)<=1; 
        qstd2(i)=(a1+a11*0.5)*h(i)^(b1+b11*0.5); 
        if i==1; Q2(i)=qstd2(i); 
        else Q2(i)=qstd(i)*sqrt(1+((h(i)-h(i-
1))/300)/((s0+s01)*((qstd2(i)-qstd2(i-1))/(ai(i)-ai(i-1))))); 
        end 
    else qstd2(i)=(a2+a21*0.5)*h(i)^(b2+b21*0.5); 
        Q2(i)=qstd(i)*sqrt(1+((h(i)-h(i-1))/300)/((s0+s01)*((qstd2(i)-
qstd2(i-1))/(ai(i)-ai(i-1))))); 
    end 
i=i+1; 
end 
end 
 
 

 

1i: Cross section variables calculation for different water levels 

 
areawidth.m  

 
function [H,A,W,P] =areawidth(x,y,int) 
% Cross section variables calculation for different water levels 
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% x= x coordinate of cross section 
% y= y coordinate of cross section 
% int = interval for interpolation 
% H = elevation intervals 
% A = Area at interval 
% W = width at interval 
% P = Weighted perimeter at interval 
  
dist=x; 
elev=y; 
[m1,m2]=size(elev); 
interv=int; 
  
elmax=max(elev); 
elmin=min(elev); 
  
elint=elmin+interv; 
elinterv=[elmin+interv:interv:elmax]'; 
[m3,m4]=size(elinterv); 
aout=zeros(m3,1);width=zeros(m3,1);     
p=1; 
while elint<=elmax; 
    s=1; 
    [m1,m2]=size(elev); 
   
  
    elev1=elev; 
    dist1=dist; 
  
    while s<=m1-1; 
        if (elev1(s)>elint && elev1(s+1)<elint); 
            elv11=elev1(1:s);elv12=elev1(s+1:m1); 
            dis11=dist1(1:s);dis12=dist1(s+1:m1); 
            disint=dist1(s)+(dist1(s+1)-dist1(s))*(elev1(s)-
elint)/(elev1(s)-elev1(s+1)); 
            elev1=[elv11;elint;elv12];dist1=[dis11;disint;dis12]; 
            m1=m1+1; 
        elseif (elev1(s)<elint && elev1(s+1)>elint); 
            elv11=elev1(1:s);elv12=elev1(s+1:m1); 
            dis11=dist1(1:s);dis12=dist1(s+1:m1); 
            disint=dist1(s)+(dist1(s+1)-dist1(s))*(elint-
elev1(s))/(elev1(s+1)-elev1(s)); 
            elev1=[elv11;elint;elv12];dist1=[dis11;disint;dis12]; 
            m1=m1+1; 
        else elev1(s)=elev1(s);%dist1(r)=dist(s); 
        end; 
        s=s+1; 
    end; 
  
        [m1,m2]=size(elev1); 
     
        elev2=elint-elev1; 
        n=1; 
        while n <= m1;  
            if elev2(n)<0;elev2(n)=0; 
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            else elev2(n)=elev2(n); 
            end; 
        n=n+1; 
        end 
         
        q=1;length=zeros(m1-1,1); 
        dist2=zeros(m1-1,1); 
        while q <= m1-1;  
        dist2(q)=dist1(q+1)-dist1(q); 
        q=q+1;     
        end   
        
        r=1; 
        while r <= m1-1;      
            if elev2(r)==0 && elev2(r+1)==0; length(r)=0; 
            else length(r)= dist2(r); 
            end; 
        r=r+1;     
        end 
        width(p)=sum(length); 
           
        m=1; 
        trap=zeros(m1-1,1); 
        while m <= m1-1; 
            trap(m)=abs((dist1(m+1)-dist1(m))*(elev2(m+1)+elev2(m)))/2; 
            m=m+1; 
        end 
        aout(p)=sum(trap); 
         
        t=1; 
        hypo=zeros(m1-1,1); 
        while t<=m1-1; 
            if elev2(t)==0 && elev2(t+1)==0; hypo(t)=0; 
            else hypo(t)=sqrt((dist1(t+1)-dist1(t))^2+(elev2(t+1)-
elev2(t))^2); 
            end; 
            t=t+1; 
        end 
        perim(p)=sum(hypo); 
        p=p+1; 
     
elint=elint+interv; 
end 
  
% Outputs 
H=elinterv; 
W=width; 
A=aout; 
P=perim'; 
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