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1. INTRODUCTION

Consider perhaps the prototypical extensive form game with perfect
information. There are T players moving in strict sequence at times
t=1,...,T. Player t has perfect information on all previous moves and must
select from some choice set. A strategy for player t then is a function from
histories before t into this choice set. Each strategy vector yields a unique
choice vector and this choice vecéor can be assumed then to determine all
payoffs.

If all choice sets are finite, it is easy to construct a subgame perfect
equilibrium in pure strategies for such a game. If choice sets are infinite,
however, existence of an SPE is less obvious. The apparent problem is that
the strategies of players t+l,...,T seem to lack continuity properties to
guarantee that player t's maximization problem has a solution.

Harris (1985), however, does prove the existence of an SPE in pure
strategies for a class of extensive form games including that described in thé
first paragraph.‘ Harris considers two substantial generalizations -- that the
choice sets can depend on histories in a continuous fashion, and that the
number of players can be infinite. Hellwig and Leininger (forthcoming)
provide a somewhat more accessible existence result for essentially the same
class of games as Harris. (Hellwig and Leininger also establish that the
equilibrium strategies may be taken to be measurable functions of the
histories.) Hellwig and Leininger (1986) also provide an existence proof for
the case of the first paragraph. This is, however, incidental to the main
focus of this second paper which is to investigate the relationship between an

infinite-action game and approximating finite action games. Indeed,



this new proof, is to some extent, an adaption of the proof of existence in
their first paper and is of a similar length and degree of sophistication.
The main contribution of the present paper is to provide a shorter and o

more elementary proof of existence which is also thus more intuitively

(]

compelling. A by-product of the proof is a demonstration that infinite-action
games can be usefully approximated by appropriate finite-action games. The
present paper assumes that choice-sets are history-independent and that there
are a finite number of players. This is for the sake of brevity, as the
current approach can be extended. (Robson, 1987, provides an example of an
oligopoly model satisfying these restrictions. Harris, 1985, and Hellwig and
Leininger, forthcoming, are motivated to allow greater generality by
infinite-horizon planning models with, perhaps, capital. Hellwig and
Leininger, 1986, make the simpler assumptions.) The topological assumptions
in the present paper are, however, quite general in that choice sets are

assumed to be sequentially compact, first countable and separable. (In both

(®

of their papers cited here Hellwig and Leininger make stronger assumptions--in
the first, that choice sets are compact subsets of R"-—-in the second, that
they are compact metric spaces. Harris assumes choice sets are compact
Hausdorff spaces which neither implies nor is implies by the present
assumption. However, compact metric spaces satisfy both the present
assumption and Harris'.)

The method of establishing existence here, as in Hellwig and Leininget'
(1986), is to approximate the choice sets by a finite but arbitrarily large

"grid"” of choices. Any such finite-action game has an SPE. The general idea

\e

behind each proof is to show that an SPE of the original infinite-action game
can be obtained by a limiting construction based on these SPE's of >

finite-action approximating games. Each construction also establishes
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a link between some SPE of the infinite action gage and SPE's of the
finite-action games. However, the present construction generates the
equilibrium strategies in a much more direct and elementary fashion.

We intend to use the present techniques to construct equilibria for

classes of infinite-action games without perfect information.

2. TWO EXAMPLES

The nature of the difficulty and the present resolution of it can best

_ be illustrated by means of examples. With two players, backward induction,

augmented by a simple tie-breaking rule, suffices to establish existence of an
SPE. To illustrate this consider a game with two players—-1 and 3. (Of
course, player 2 waits in the wings.) Players 1 and 3 move in the obvious

sequence and have payoffs and choice sets given by

1}

e, - C_, c16[—1,1] =C

1 3

Uy(eys ey) 1

U3(c1. c3) = cl . c3 cse[-1.2] = C

Player 3's equilibrium strategy must be a selection from the best reply

3"

correspondence _
{
| (-1} c €[-1,0)
‘ 1
¢ (e ) ={[-1,2] c =0
31 1
{2} c_€(0,1]
1

This has a closed graph and hence Ul(cl’ ca) reaches a maximum on this graph.
Indeed this is at the point
O c3) = (0, -1).

This can be supported as an equilibrium path by the SPE strategies
{



-1 2 €[-1,0]

2 cl 6(091]

Thus the tie-breaking rule for two player games is just that the second player
breaks ties in favor of the first.

Consider an example with three players. The notationally overdue player
2 enters and moves in the obvious place in the sequence. Now payoffs and

choice sets are given by

!
Q

Ul(cl’ c., c3) =e, - C c, €[-1,1] =

2
Uz(cl, s c3) =¢, * Cs Cy €[-1,2] 2

]
Q

I
Q

U3(c1, Cye c3) =€) * €30 Gy €[(-1,2] = 3
A natural generalization of the tie-breaking rule from the two player case
would be to have any player break a tie in favor of his immediate
predecessor. Indeed this procedure will work in some examples. But suppose

here that player 3 breaks ties in favor of player 2, choosing strategy

f (¢, c) =
31 2

-1 , ¢ €[-1,0)
1

2 , c1 €[0,1]

Then player 2 chooses the strategy

f (¢ ) =
2 1

-1 c €[-1,0)
1

2 c_ €[0,1]
1

and player 1's maximization problem has no solution. In this example, it is
clear why this naive tie-breaking rule fails, since player 2 has no
substantive effect on the original game between players 1 and 3. The unique

SPE is clearly

1]

‘o

[



[ -1 ¢ €[-1,0]
1

2 e, €(0,1]

-1 c1 €[-1,0]
f (c ,c)
31 2 2 cl €(0,1]
where 3, as before, breaks ties in favor of player 1. What is not immediately
obvious, however, how to carry out an analysis in terms of tie-breaking in the
general case.

It should be noted that Harris (1985) presents a proof of existence
without explicitly discussing this issue of tie-breaking. Hellwig and
Leininger (forthcoming) do more explicitly discuss tie-breaking rules and are
able to show that these can be devised so as to produce an SPE. Hellwig and
Leininger, 1986, contains a proof of existence which is, to some extent, an
adaptation of that in their first paper, but which does not explicitly discuss
tie-breaking. The approach here is the most direct in terms of obtaining
existence and also obviates the need to discuss tie-breaking explicitly.

To illustrate the present procedure, consider again the three player

example above. Replace the infinite choice sets cl’ CZ’ and c3 by

k 2
C1 = {-1, -1 + ;, eeey 1}

k k 3

c =¢C ={-1, -1 + -, ..., 2}
2 3 k

where each of these finite sets has k+l elements. The resultant finite action
game must have an SPE. To construct any such SPE, ties can be broken

arbitrarily. If oec? and player 3 breaks the resulting tie by choosing



-1, then the equilibrium path of the original infinite-action game is attained
exactly. If O ¢ ct or if player 3 breaks the tie in any other way, then
player 1's equilibrium choice is

k 1 2 k
¢ =--0r--€C¢C
1 k k 1

so that player 2 and 3 choose

k k k k
2 = c3 = -1 € CZ = 03.

The key feature here is that these finite-action game equilibrium paths

[

converge to an equilibrium path of the infinite-action game. This is true

even if player 3 breaks the tie in the "wrong" way in the finite-action game.

However, note that it is not true that the equilibrium strategies of the

finite-action games must converge to equilibrium strategies of the

infinite-action game. Indeed, if player 3 breaks the tie "incorrectly” so that
f:(o,cz) = 2

then, of course,’

k
1im f (0, ¢ ) = 2
k 3 2

which has already been shown to be inconsistent with an SPE. Nonetheless, the
complete equilibrium strategies of the infinite-action game can be derived by
consideration of equilibrium paths of finite-action games and those of all
subgames of these. To see how this can be done, set firstly

£f. S c, = 1lim ck =0

1 1 1
- 0 N
fz(O) = 1lim fz(cl) = lim e, = -1
- s k, k _k, k.. k _
f3(0,—1) = lim f3(c1. fz(cl)) = lim c3 = =1

(U]

(e



Note here that the arguments of each strategy function are also subject to the
limit. This completely defines fl, but f2 and f3 are not prescribed off the
equilibrium path. Consider then a subgame of the infinite-action game defined

by any c, # 0. Find some sequence

¢ »¢c , wherec €C Vk.
1 1l 1 1

Define then

k ~k
£(c)=1limf (¢ ) = -1, ¢ €[-1,0).
2 1 2 1 1l

2, c_ € (0,1]
1

k k ~k
£( ,£(c))=limf (c, £ ())=|-1, c €[-1,0)
31 2 1 31 21 b §

2, ¢ €0,1]
1

This completes the definition of fz. In general it would be necessary to
complete the description of 63 by considering subgames defined by (cl, cz)
where c, # fz(cl). However, in this case <, is irrelevant to player 3's
equilibrium choice, and so, for all c, € Cz, define

f3(c1, °2) = f3(°1' fz(cl))
where f3(c1. fz(cl)) is as above. That this method of finding SPE strategiles

is quite general is shown in the next two sections.

3. THE CLASS OF INFINITE ACTION GAMES

2D A e e ——————————

The structure here is derived essentially from Hellwig and Leininger.

As noted above, choice sets are history-independent but have a more general
f

topology. In addition, only the case with a finite number of players is

considered.



Definition 1. Infinite Action Game, T

The set of players is P = {1,...,T} assumed to be finite. Each player

t has a choice set ct which is sequentially compact (meaning that all .

sequences have convergent subsequences), first countable (meaning each point

has a countable local basis), and separable (meaning C, possesses a countable

t
dense subset.) The set of histories up to and including time (t-1) is

Et—l = clx... xct-l'

Payoffs are continuous functions

: -’ .
Ut BT R

When player t moves at time t, it is with perfect information on

et_1 € Et-l'

Hence, the set of strategies for player t is

s, =C, S

= : -> =2,...,T.
1 1 t {ft ct}' t=2, T

Et—l

I

Clearly any strategy vector implies a uniquely determined choice vector

and hence the payoff vector in RT.

Definition 2. Subgames, Subgame Perfect Equilibrium

These are defined in the obvious fashion. Any history e 4 € Et—l

determines a unique subgame played by t,...,T over strategies in stx...xsT.

The .complete sequence of choices (et t....,cT) in this subgame determines

-1’ ¢

a unique payoff vector in RT.
A strategy vector (fl,....fT) is a subgame perfect equilibrium iff, for

]
all t=1,...,T, for all e € Et-l’ and for all ¢, €EC

t t’

...fT) where the arguments of

t-1

£ o Eg) 2 Uy (e, £

1]
t* fearr e -1 S

.,fT are omitted for compactness of notation. For example, on the .

Ut(et—l’ t+10 .

ft"'

left-hand side of the above inequality,



£, = f,e, )
i = frar@rorr felopr?)
f = f ( £ ( ), £ ( £ ( )

e+2 = feaa(®1r fel®e1) feaa®e1r Pt %

and so on. Thus, particular choices are denoted by Cyo particular histories

by

but ft’ f fT denote strategies, that is, functions of previous

-1’ 75 AR

histories.
The choice vector determined uniquely by (fl""’ft) is called the
equilibrium path of the game I'. The equilibrium path for any subgame is

defined analogously.

4, THE EXISTENCE RESULT

e —————————————a—

Consider the following approximation to TI.

k
pDefinition 3. Finite Action Game I

A2 R R L A

Since each ct is separable, there exists a countable dense subset

1 2 k
{ct. ct.....ct....} C ct t=1,...,T.
Define
k 1 k
ct = {ct,...,ct} t=1,...,T, k € N.

The game rk is defined precisely as is I', where c: replace the Ct'

t=1,...,T. Now Et_l denotes the set of histories at t and st the set of

strategies for player t, t=1,...,T. ‘An SPE for rk is then as in Definition 2.

k
Lemma 1. Existence of an SPE for I

Pl B O 1

The game Pk always has an SPE.

Proof. See Selten (1975).
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Therem 1. Existence of an SPE of I'; The Approximation Result

A. The game I', as in Definition 1, has an SPE.

B. At least one of the SPE's of T has the property that its equilibrium
path is the limit of a subsequence of equilibrium paths of SPEs of Pk.
Furthermore, this SPE of I' has the property that the equilibrium pﬁth for any
subgame of I' is the limit of a subsequence of the equilibrium paths for
approximating subgames of Fk generated by SPE of Fk. (The subsequences

involved may depend on the subgame considered.)

Proof. An SPE of T will be constructed to satisfy "B".

Given Lemma 1, denote any particular SPE of Fk by

k k k k
(f ,...,fT) € slx...xST,

The definition of the candidate for an SPE of T is carried out by the

k=1’2’0 ..

following step-by-step procedure. The idea is that stage "t" defines the
equilibrium path for any subgame involving player "t" deviating from his
equilibrium straiegy and being the last to do so. If player "t" does not
deviate, then stage "t" adds nothing to what has been already defined.

As a preliminary step, choose for all t=1,...,T, for all ¢, €C fixed

t ?
sequences

o~

~k k
c(c)>c,c(c)€EC forallkeEN
t t t t ¢t t

using the separability and first countability of ct (see Dugundji, p. 218,

6.2).

to

(»

(¢
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Stage 0. This is the case in which no player deviates. Consider the sequence

k -k
{f})={}, keN.
1 1

By the sequential compactness of Cl. this must have a convergent subsequence
such that
- -k
¢ =limec .
1 1

- k -k
Define then f1 = cl. Consider now the associated sequence {fz(cl)} lying

in C,. By the sequential compactness of C,, define then

2 2’

- k -k
f (¢c) =1lim £ (c )
2 1 2 1

using a smaller sequence if needed. Similarly, using the sequential

compactness of c3, define

- - k -k k -k
f(c, f())=Zlimf (¢, £ (c)))
3 1 2 1 3 1 2 1

using a still smaller sequence if needed. And so on, finally defining fT on
what will be shown to be the equilibrium path for I'. The selection of a
subsequence of choices implies the selection of a subsequence of the natural
numbers. Thus, for example, the ultimate subsequence found above can be
represented by, say, D(¢) C N, [D(¢)| = ». Here ¢ denotes the empty

history defining the subgame which is the game itself.
tage 1. Tak € If < , define ¢ (c.) = o, €rom Stage O
Stage 1. ake any c c . c=c efine ¢ (c =c rom Stage
Y55 1 1 11 1’ ’

and D(Zl) = D(d).
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Suppose ¢ # ; . Define
1 1

~k
c (c ).
11

k
c (¢ )
1 1

Now, using the sequential compactness of C,, define

2
- g k, k
fz(cl) = lim fz(cl(cl))
using a subsequence of D(¢) if needed. Again, using the sequential

compactness of C_,, define

3’
- k, k k, k
1° f2(°1)) = lim f3(c1(c1), fz(cl(cl)))

using a still smaller subsequence if needed. Construct in this way strategiég

f3(c

for players 2,...,T evaluated on what will turn out to be the equilibrium

path of the subgame determined by player 1's selection of c1 # ;1.

This yields an ultimate sequence of indices D(cl), say, in which all limits
taken so far can be expressed, D(cl) C D(¢). (D(et) is used, in general, to
denote the sequence of indices used to construct the equilibrium path in the

subgame defined by e This construction is made with one eye on the crucial

&
link between defection by some player in the infinite action game and
defection in an approximating finite action game. See the last paragraph
below.)

Stage "t", ¢t=2,...,T-1

Available from previous stages are, for all e 1 € gt—l

(i) A sequence of indices D(et_l) CN

(ii) A sequence of histories

k

e 1

et—l) > et—l’ k € D(et-l)

(o



o
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where
k X \
e 18 1) € By

(iii) Definitions of strategies fl""’ft’
(iv) Strategies for players t+l,...,T defined only on what will turn

out to be the equilibrium path of the subgame determined by e 1°

Now consider the contribution of stage "t". Strategy ft has been
defined already. Suppose

e, = ft(et-l)'
Then, where et = (et-l' °t)' set

D(e,) = D(e, ;)

and

k (ek
t-1"t-1""t-1

which converges for k restricted to D(et-l) by some previous construction.

ct(et) = f (e, .))

Finally set

k

k
e 1o 1)y cle)).

(

x )
et(et) = (e e

Suppose instead
c, # ft(et-l)

Define then

"
[¢]
~
0
~

c (e ) =
t t

and, again,

k - (K k
e (e) = (e, (e 4), c (e.)).

By the sequential compactness of Ct+1 define
- ys. K
ft+1(et) = lim ft+1

using a subsequence of indices from D(et-l) if needed. Again, by sequential

k
(et(et))

compactness of Ct+2 define
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(eys £, (e,)) = lim £x

" kK L,k
t+1'%t tr2(8ele) s fopq(eple)))

ft+2 t+1 bt

using a smaller subsequence if needed. Define in this way strategies for
t+1,...,T evaluated only on what will be the equilibrium path of the subgame

determined by e Define the ultimate sequence of indices as D(et). By

t.

construction
D(et) = D(et-l’ °t) Cc D(et-l)’ |

This completes the recipe for construction of all (fl""’fr)‘

It must finally be shown that these strategies do indeed constitute an

SPE of I'. Suppose not. Then there exists a player t and a history .1 such

that player t can do better by choosing

¢

]
# ft(et—l) where ct € Ct‘

Hence

]
Upleprr Cpr Epppree o o N &

using the abbreviated notation of Definition 2. Consider the sequence of

fT) > Ut(et

indices

)
D(et—l’ ct) C D(et-l) = D(e f ).

t-1° fel8¢

Consider also the sequences

k ~k !
e (e ), ¢ (c)
t-1 t-1 t t

as defined for stage "t" above. Recall how ft""’fT are constructed on the

]
equilibrium paths of the two subgam2s determined by e and by (et-l’ ct)

t-1
]
respectively. It follows that, if k € D(et-l’ ct) is large enough, and using

the continuity of Ug in choices,

8]

)
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k k k k
(e of seee,f)
t-1 t-1 t t+l T

~k ! k k k
(e ), ¢ (¢ ),f seeesf ) DU (e (e
t t  t+l T t t-1 t-1

U
t
again with the abbreviated notation of Definition 2. But this contradicts the
assumption that (fk,...,fg) is an SPE of Pk. Hence the pr?of is complete.
(The above notation apparently implies t > 2, but the case‘for t=1 is

precisely analogous.)
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