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NONPARAMETRIC ESTIMATION OF ECONOMETRIC FUNCTIONALS
ABSTRACT
In this paper we have reviewed and explored the nonparametric density
estimation approach for analyzing various econometric functionals. The
applications of density estimation have been emphasized in the specification,
estimation, and testing problems arising in econometrics. Some limitations of
the nonparametric approach are also examined, and potential future areas of

applied and theoretical research have been indicated.
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1. INTRODUCTION

Since the introduction of econometrics as a subject, almost four decades
ago, the estimation and testing of econometric models has been carried on
under many strong parametric assumptions. For example, consider an economic
model

y = M(x) + u
where y is a dependent variable, x is a vector of regressors, u is the
disturbance and M(x) = E(y|x) is an unspecified regression function; i.e. the
conditional mean of y given x. Then the first assumption of parametric
econometrics is that the form of M(x) (usually linear) is known. Secondly,
forms of other econometric functions, such as the conditional variance of y
given x and the autocorrelation of u, are also specified. Third, the
parametric joint density (data generating process) of y and x is assumed to
be, usually, normal. In addition, the x's in many econometric studies are
simply considered to be nonstochastic when, in fact, they are stochastic. A
serious disadvantage of parametric econometrics based on these assumptions is
that it may not be robust to any slight inconsistency between the data and the
particular parametric specification. Indeed, it is well known that the true
functional form of the model M(x) and of the other econometric functions are,
rarely, if ever, known and any misspecification in this regard may lead to
erroneous conclusions. Under this scenario one might consider an alternative
procedure for inference (estimation and testing). Such an alternative is
data-based nonparametric modelling and inference, which is the theme of this

1
paper.
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The need for a nonparametric approach to the economics of production and
consumption is implicit in the important work of Afriat (1967) and Hanoch and
Rothschild (1972). The initiation of this approach, however, goes back to
Samuelson's (1938) introduction of revealed preference analysis. The idea has
been further developed and forcefully advocated in the recent important papers
by Diewert and Parkan (1978) and Varian (1984). These papers deal with
nonparametric tests of, among other things, the consistency of the data with
the maximization principle, homothecity, and various forms of seperability,
without any functional form specification for M(x). However, a basic problem
with this work is that it neither provides any econometric example nor
provides an econometric framework for their proposed tests. In addition, the
stochastic nature of y and x's is ignored, although the recent work of Varian
(1985) and Epstein and Yatchew (1985) attempts to remove some of these
difficulties. In these papers tests are given for the null hypothesis that
the regression function M(x) lies in a particular compact family of functioms
which need not necessarily be a parametric family. It has been indicated that
the common hypotheses of economic theory can be formulated in this general
testing framework. However, these tests are based on the assumption that the
disturbance variance is known, so it is not clear how their procedure could be
implemented in practice.

A related, but different, approach is the approximation of unknown
functions M(x) by flexible functional forms. The first important papers in
this respect were by Diewert (1971) and Christensen et al (1973). A drawback

of this literature is that it provides local Taylor series approximations
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which may be poor approximations on non-local sets. Recently, Gallant (1981,
1982), Gallant and Golub (1984), and Barnett and Lee (1985) among others, have
suggested various useful non-local approximations of M(x). For example, while
Barnett and Lee (1985) have suggested that the miniflex Laurent series
expansions are a useful alternative to explore, Gallant's (1981) pioneering
work introduced a general Fourier series expansions. Building on this work,
Elbadawi et al (1983) demonstrate how one can estimate elasticities without
knowing the functional form, and Gallant (1982) shows how the assumptions such
as homotheticity and constant returns to scale can be tested by imposing
restrictions on Fourier flexible approximations. This is in contrast to the
work of Varian (1985) and Epstein and Yatchew (1985) where a revealed
preference approach is followed. However, Gallant's test procedure is also
based on the assumption of known variance of the disturbance u. Further while
fourier approximations are superior to Taylor appoximations in many respects,
they are heavily parametrized.

Another recent development is the semi-parametric estimation of economic
models. In general, in this literature one basically estimates parametric
models with less restrictive distributional assumptions. This is particularly
popular in the context of estimating models with limited dependent variables.
Important developments are: the maximum score estimator (Manski (1975)), the
distribution-free maximum likelihood estimator (Cosslett (1983)), smoothing
splines estimation (Engle et al (1986)); and the recent work by Gallant and
Tauchen (1987), Horowitz (1987), Newey (1987) and Powell (1986). However, a
problem with the semi-parametric approach is that it again requires limited

parametric specification of certain functions.
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On the other hand the data based, purely nonparametric, technique of
specification and testing to be considered here is based on the specification
of the unknown M(x) through its nonparametric estimation. This nonparametric
specification of M(x) is truly flexible in Diewert's (1971) sense; that is, it =
attains arbitrary levels of first and second order derivatives at a
predetermined point. The essential ingredient for the nonparmetric estimation
of M(x) is the direct estimation of the unknown joint density of x and y. The
first published paper in this area is due to Rosenblatt (1956). Since then a
vast amount of literature has appeared on this subject in various statistics

journals, including the recent work by Prakasa Rao (1983), Devroye and

Gyorfi (1985) and Silverman (1986). However, despite the flow of articles by
statisticians on density estimation over the past thirty years, particularly
in the past decade, very little has been done to apply density estimation to
econometrics; although see recent attempts by McFadden (1985), Bierens (198S),
Ullah (1985), Ullah and Singh (1985) and Robinson (1986b). There are, perhaps
two reasons for this gap. First, an important reason is that the statistical
literature is highly technical, and has thus created a wide impression that
density estimators are of only theoretical significance. This becomes clear
when one notices that there are hardly any significant applied papers
published which employ density estimates. Another important reason for the
lack of application of density estimation in applied statistics, and in
particular among econometricians, is the fact that the statistics literature
has not dealt with nonparametric estimation and testing of functionals which
are of primary interest to these practitioners., e.g. response functions,
elasticities, second order partial derivatives and average partial derivatives a

of the regression function.
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The aim of this paper is to review and develop a nonparametric approach
to estimation and testing without any functional form assumption about M(x).
With this in view, section 2 presents the functionals of interest in
econometrics, and motivates the need for density estimation. Section 3 then
briefly reviews the statistical literature on density estimation, and provides
nonparametric estimators of various functionals presented in section 2.
Section 4 provides the consistency, asymptotic normality and rate of
convergence of various nonparametric estimators. Some practical limitations
of the nonparametric approach are also described. Finally, in section 5 we
present illustrative examples. It is hoped that the simplicity of the
approach, and the availability of good data and computing facilities will soon
make nonparametric econometrics a useful alternative to the usual parametric

econometrics.

2. ECONOMETRIC FUNCTIONALS

Suppose we have n independent and idéntically distributed observations
(yi,xil,...,xip), i=1l,...,n from an absolutely continuous p+l variate
distribution with density f(y,xl,...,xp) = f(y,x). Here we consider y to be a
dependent variable and x to be the vector of p regressors. 1If E|y| < » then
the conditional mean of y given x exists and it takes the form
(2.1) E(ylx) = M(x)
where M(x) is a real valued function of x. M(x) is called the regression

function and it provides a formulation for the regression model as

(2.2) y = M(x) + u
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where, by construction, the disturbance term u is such that E(u|x) = 0. Now
our aim is to estimate the unknown regression function M(x), and other unknown
functionals which are encountered in the econometric analysis of the model
(2.2) without making explicit assumptions about their functional forms. "
Below, we first present various functionals and then provide their estimates
in Section 3.

The Regression Function (Conditional Mean). For the joint density

f(y,x) the regression function in (2.1) can be written as

f(y,x)

2.3 E = M(x) =
(2.3) E(ylx) (x nyl(x)

dy

where fl(x) is the density of x marginal to f(y,x). The true form of the
regression function M(x) can be determined if the true joint density is
known. For example, if f(y,x) for p=1 is a bivariate normal density then it

is well known that M(x) is linear, i.e., M(x) = a+Bx where a« = Ey - BEx and

1

B = cov(x,y)/v(x). However since the joint density is rarely, if ever, known

¢

the true form of M(x) is generally unknown. Under this scenario, in
parametric econometrics, one often assumes various forms for M(x). Also, ad
hoc specifications of the conditional expectations of the type (2.3) are used
in the parametric rational expectations models. But it is now well known that
any misspecification in M(x) has serious consequences for econometric
inference and policy evaluation. For example, as a consequence of
misspecification the estimators of the regression parameters can be seriously
biased.2 Also in a testing situation, the true rejection probability of a
test can exceed its nominal rejection probability. Thus the knowledge about

the true form of M(x) or its consistent approximation is of utmost importance s

in econometrics.
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‘The Response Function (Regression Coefficients). The estimation of

regression parameters is one of the main objectives of econometrics analysis.
The response or regression coefficient of y with respect to changes in a
regressor, say xj(j=1,...,p), is defined as the partial derivative of M(x)

with respect to x.,. It is denoted by Bj(x) = B(x) where

J
oM M(x+h/2) - M(x-h/2
(2.4) B(x) = i = lim (x ) (x )
ax:i h»0 h

where M(x+h/2) = H(xl,....xj + h/2,...,xp).

Note that (2.4) is a varying response coefficient since it is a function

of x. The fixed response coefficient can be defined as B(x), i.e., B(x)

evaluated at x = x = (xl,...,x ). Alternatively, one can define B = EB(x),
P

the average derivative, as the fixed response coefficient.

The question here is, how do we determine B(x) without specifying the
form of M(x)?

Curvature (Higher Order Derivatives of M(x)). Economic theory often
imposes theoretical curvature conditions (concavity or convexity) on M(x).
For example, the expenditure function is considered to be concave, and the
profit function convex in price, If the true form of M(x) is known these

assumptions can be verified by considering

2
(2.5) COx) = Bt = Phixy = 1im PEKH/2) - B(x-h/2)
. X = X = cme—— X = im
3 x
i

and seeing whether C(x) is positive or negative.
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The question is whether or not the unknown M(x) satisfies the curvature
conditions implied by economic theory.
Heteroskedasticity Function (Conditional Variance). The conditional
variance of y given x can be written as

2 f(y,x) 2

(2.6) V(ylx) = V(x) = [y dy - (E(y|x))
fl(x)

where fl(x) and E(y|x) are as in (2.3). The quantity V(x) by itself is

quite often of interest in economics; for example, the question of variability
in inflation given the past information set. Also in many economic models,
especially finance models, the conditional variance of the type (2.6) appears
as an unobservable variable; e.g. risk premiums. 1In many other econometric
problems one is interested in analysing the conditional variance V(u|x), where
u = y-E(y|x) is the disturbance term as in (2.2). This is known as the
heteroskedasticity problem.

Again, the question is, what is the form of V(x)?

Covariance Function (Autocorrelation). The covariance of y and w given

X can be written as

f(y,w,x)
(2.7) cov(y,w|x) = y(x) = Iyw-—;—z;;—dydw - E(y|x) E(w]|x)
2

where fz(x) is the density of x marginal to f(y,w,x). In many macroeconomic

models the quantity y(x) may appear as one of the regressors, see, e.g.
Mascaro and Meltzer (1983). 1In the context of the econometric model (2.2),

however, one might be interested in cov(u, ,u,
i

), i=2,...,n, autocovariance
i-1]x

function of the disturbance u. This is essentially (2.7) with y = u, and w =

u; - The question is what is the form of y(x).

“

44

*
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Disturbance Density Function. Consider u = y - M(x) as in (2.2), and
its density function as f(u). Then information about the form of f(u) itself
is of considerable interest in understanding the behavior of the random part
of the model (2.2).

The above are some of the commonly encountered functions in
econometrics. There are many other such functions, for example: hazard
functions, entropy functions, score functions, discriminant functions. The
list is large and the discussion of each one of them requires a separate study
and thus is beyond the scope of this paper. One common element in these and
in the functions above, however, is that they all depend on the unknown joint
density. This suggests that the questions about their forms can be answered
by estimating the joint density f and its marginal and conditional densities.

We also note here that not only do the above mentioned functions but
even the hypotheses generated by economic theory depend on the unknown joint
density. For example if M(x) in (2.2), for p=2, is the production function,
then the hypothesis of constant returns to scale is aH(x)/ax1 + aH(x)/ax2= 1
or B(xl) + B (xz) = 1 which depends on the unknown joint density since M(x)
does so. 1In parametric econometrics one often uses the Cobb-Douglas or
translog approximations for M(x), which may have nothing to do with the
unknown joint density, and then tests the hypothesis B(xl) + B(xz) =1. 1In
the nonparametric case one can test this hypothesis by directly estimating the
joint density and hence B(x) = aM(x)/3x. Thus density estimation is
basically a more direct way of dealing with econometric estimation and testing

problems.
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Before proceeding to the estimation of the density in Section 3, we note
that the functions discussed above are not confined to the regression model
(2.2). 1In fact, although not considered here explicitly, the extension to
dynamic models with stationary variables, system models, and simultaneous
equations models, are straightforward. For example, for the first order

autoregressive model the regression function in (2.1) becomes E(yly ) where
1

y 1 is the lagged value of the stationary variable y. Similarly for the

system model y will be a vector of say q endogenous variables and E(y|x) will
be a vector regression function. We restrict ourselves to the model (2.2) for

the sake of simplicity in exposition.

3. KERNEL ESTIMATION OF ECONOMETRIC FUNCTIONALS
In statistical analysis the idea of density estimation was first
explored in the unpublished work of Fix and Hodges (1951). They introduced

the following naive estimator of the density. Consider the density function

of a random variable X at a point x as

1
(3.1) £f(x) = lim - P(x-h/2 < X < x+h/2).
h*o h

Let xl,...,xn be the sample observations. Then we can estimate

P(x-h/2 < X < x + h/2) by the proportion of the sample falling in the interval
(x-h/72, x+h/2). Thus an obvious estimator of the density f(x) is given by

1

(3.2) f (x) = — [number of x ,...,x in (x-h/2, x+h/2)],
n nh 1 n

where h is chosen to be a small number. Alternatively, we can write (3.2) as
X -x

~1n i
(3.3) f (x) = (nh) T W(
n i=1 h

)y

Q
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where W is the weight function such that

1 if - % <z <%

0 otherwise.

W(z)

(3.4)

i

Note that [W(z)dz = 1.

The first published paper to deal explicitly with the density estimator
was Rosenblatt (1956). He generalized (3.3) by replacing W(x) with a real
positive kernel function K satisfying [K(x)dx = 1. His general "kernel"
estimator is

X -X

-1n i
(3.5) £ =f (x) = (nh) z K(
n n izl h

)

where h, the window-width (also called the smoothing parameter or band-width),
is a positive function of the sample size n which goes to zero as niw.
Usually, but not always, K will be a symmetric density function, e.g., the
normal density. The choices of h and K, and the asymptotic properties of the
kernal estimator are discussed in Section 4. Whittle (1958), independently of
Rosenblatt, formulated the general weight function (Bayesian) class of
estimators, and Parzen (1962) extended Rosenblatt's estimator to cases where
the weight function need not be non-negative.

A few remarks about kernel estimations are in order. Observe from (3.4)
that while the naive estimator can be considered as a sum of ‘'rectangles' of
width h and height (nh)—1 centered at the data points, the kernel estimator is
a sum of curves placed at the data points. The kernel K determines the shape
of the curves and the window width h determines their width. Another point to
be noted is that so long as K is everywhere non-negative and satisfies
JK(x)dx = 1, fn will be a probability density. Furthermore, fn will possess
all the continuity and differentiability properties of the kernel K. Note,

however, that the naive estimator (3.3) is not continuous, but has jumps at
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the points xi + h/2 and has zero derivative everywhere else. The
generalization to the kernel estimator fn in (3.5) overcomes this difficulty.

Since the published work of Rosenblatt (1956) several other density
estimation techniques have appeared in the literature. Some of these are:
the orthogonal series (Cencov (1962)), the nearest neighbourhood (Loftsgaarden
and Quesenberry (1965)), the maximum likelihood (Wegman (1970)), the maximum
penalized likelihood (Good and Gaskins (1971)), the histogram (Van Ryzin
(1973)); see Prakasa Rao (1983) for details. Apart from the histogram, the
kernel estimator is probably the most widely used estimator and is perhaps the
most thoroughly studied in the statistics literature. This is the estimator
that will be considered throughout this paper. We note, however, that
although the histogram is a useful method of density estimation, it has the
drawbacks of being discontinuous, sensitive to the origin and to the width of
the class interval, and extremely complicated for two and more variables. The
kernel estimator too suffers from a drawback. Since the window width is fixed
across the data points, the estimates in the tails may show slight spurious
bumps. Attempts to further smooth the tails (by changing h) may distort the
middle part of the distribution. A better alternative is to consider the

kernel estimator fn with the window width varying across the data points; i.e.

X -x
* 1 n 1
(3.6) f (x) =- § —K(—),
n n i=z1 h h
ni ni

where hni is the distance between X, and its kn—th (a positive integer)

nearest point in the remaining n-1 data points. The choice of a positive

integer kn determines how responsive the window width is to very local

: 3,
detail. A rule of thumb choice is kn = né. Varying hni in this way ensures

that data points in the regions where there are fewer observations will have

'(4
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flatter kernels. The estimator (3.6) is known as the variable kernel

estimator (VKE), see e.g. Breiman, et al. (1977).
The estimator (3.6) is related to the nearest-neighbour estimator (NNE)
which can be thought of as (3.6) with hni replaced by hn(x), the distance of x

from its kn—th nearest neighbour among x X - See, for example, Mack and

10
Rosenblatt (1979). Note that in the NNE the window widths depend on the point
x at which the density is estimated; in the VKE the window widths are
independent of the point x. Furthermore, while the VKE will itself be a
probability density function this is not true for the NNE.

A useful alternative to the VKE and the NNE is the adaptive two-stage

estimator (A2SE) considered by Breiman et al. (1977) and Abramson (1982). The

A2SE is essentially (3.6) with h, = h§ ., & . = [(f (x,)/G]™" where G is the
geometric mean of fn(xi) over all LI 0 <A<1is a sensitivity parameter
and fn(xi) is any convenient initial kernel or NNE. Brieman et al. suggested
\ = d-l, where d is the dimensionality of the space in which the density is
being estimated. However, the numerical results of Abramson (1982) and others
suggest that A=% gives good results, and that for this value of A the

approximate bias is smaller than that of the kernel estimator fn in (3.5).

When hni in (3.6) is replaced by positive smoothing factors h,, then the

i!

estimator (3.6) can be thought of as the recursive estimator (RE). It was

introduced by Wolverton and Wagner (1969) and independently by Yamato (1971).

* L -
The fn(x), for hni = hi’ is recursive in the sense that when an additional
data point becomes available it can be updated according to

X -X
* -1 =x -1 n+l

(3.7) ¢ (x) = (n+l) [nf (x) + h K(emm——)1].
n+l n n+l h 1
n+
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This estimator is especially useful in the context of time series analysis.
An extensive study comparing the performances of RE, fn’ VKE, NNE and A2SE
would be a useful subject of future research, although see Wegman (1972) and
Kumar and Markmann (1975) for Monte Carlo Studies regarding performances of -
the histogram, kernel and orthogonal series estimators.

The estimator fn in (3.5) was first generalized to the estimation of
multivariate density functions by Cacoullos (1966). As in Section 2, let
z = (y,x) be the vector of p+l=q random variables. Then the kernel estimator

of the density f(z) is the following straightforward generalization of (3.5)

n
I K(

).
i=1 h

1
(3.8) f (y,x) = f (2) = ==
n n q

nh

Furthermore, the kernel estimator of the marginal density fl(x) is
X -X

1 n

(3.9) £ (x) = Jf (2)dy = — K (o =
In I n y hp 151 1 h )

n

where Kl(x) = [K(z)dy such that IKl(x)dx =1 and x is a vector of p random
variables. The estimator of the conditional density is then

f (z)
n

(3.10) f (yl») = .
n f (x)
in

Similarly, the extensions of the recursive estimator, VKE, NNE and A2SE
to the multivariate case are straightforward.

The use of a single h for all the q variables in z may not be
appropriate if the variation in one of z's is much greater than in the

others. In these situations, it may be more appropriate to use a vector or

'n;;
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matrix of window width parameters, see e.g. Singh et al. (1987) and Singh and
Ullah (1986). An attractive practical approach is to linearly transform the
data to have unit covariance matrix; use (3.8) for the transformed data and

finally transform back to the original metric.

3.1 Estimation of Econometric Functionals

In Section 2 we discussed how various econometric functionals depend on
the unknown joint density function, and how in parametric econometrics the
analysis is carried out by assuming various forms for these functionals or
by implicitly assuming the form of the joint density. Here we present the
nonparametric estimators of the functionals (2.3) to (2.7) by directly
substituting into them the joint density estimator fn(y,x) from (3.8) and the
marginal density estimator fln(x) from (3.9). These nonparametric estimators,
after some simplifications, are given below and their asymptotic properties
are presented in the following section.

First of all consider the estimation of the regression function in
(2.3). Substituting (3.8) and (3.9) into (2.3) it can easily be verified that

f (y,%x)
(3.11) M =M (x) = Iyn—-dy =g y r (x)
n i ii

n £f (x) i=1
in

X =X X X

i n i
where r (x) = K (——=)/% K (
i 1 h 1 1

). M is known as the Nadaraya (1964) and
n

Watson (1964) type regression function estimator.

Substitution of Hn into (2.2) gives the nonparametric model

(3.12) y = M (x) + e.
n

where e is the nonparametric residual. We observe that this nonparametric



16
model (3.12) has been obtained without making assumptions about the functional
form of Hn, the joint density of y and the x's, or the non-stochastic behavior

of the x's. Furthermore, since (3.12) has been obtained by estimating the

=,

joint density it does not require the assumption of weak exogenity of Engle et
al (1983). Thus the nonparametric model is free from some of the basic
assumptions required in parametric econometrics. Also, it avoids the
specifications of any local or non-local flexible forms in production or
consumer economics.

The model in (3.12) is useful for nonparametric forecasting. Also,
since Hn(x) is the conditional expectation, it provides a way out of
specifying expectation variables appearing in various econometric models.

For the estimation of the response function B(x) in (2.4), we take a
straightforward partial derivative of Hn(x) in (3.11) with respect to x, and

3

write

M (x)
n n

= E y’
ox i=1 i
J

*
(3.13) B (x) ( -r_ )
n

r
1i 2i

n n n -2
where, for w = (x -x)/h, r_ = K'(w.)lgk(w ), r = K(w );K'(w )(%x(w ))
i i 1i i i 2i i i i

and K'(w,) = 3K(w,K)/3x..
i i 3

The estimator Bn(x) is the yarying response or varying regression

coefficient estimator of B(x). HNote that this nonparametric estimator has

been obtained without specifying any ad hoc functional form for M(x). An

alternative form of Bn(x) can be written, from (2.4), as

M (x+h/2) - M (x-h/2)
n

(3.14) B (x) =
n h

where Hn(x+h/2) = Hn(xl,...,x +h/2,...,xn). The estimator Bn(x) has been

J
studied in Rilstone (1985) and Rilstone and Ullah (1986), while the estimator

i
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in (3.13) has been used in Vinod and Ullah (1985).3 Typically B:(x) =
Bn(x).

The fixed response or fixed regression coefficient estimator can be

obtained by calculating B (;), where ; is the average of the sample
n

observations. Alternatively, one can calculate either the average response

-1n
%B (x) or a weighted average response coefficient.

coefficient B (x) = n
n n

In an important work Powell et al (1986) show that the weighted average

response coefficient estimators have nllz speed of consistency and normality

p+2 1/2 -
compared to the slower speed of (nh ) (because h»0as n’w) for B (x).
n

However, in many practical applications we have found that B (;) provide much
n

more robust estimates compared to the average estimators. This is perhaps
because, as mentioned earlier in Section 3, the kernel estimators do not
perform well in the tails. Thus a better estimator in such situations would
be to consider the median of B(x) or any other Huber-type robust estimator.
An alternative would be to calculate the average estimators by using robust
regression function (M(x)) estimators in Hardle (1984).

Testing any economic restrictions can be easily carried out by using

the estimator B (;), and its standard error given in Section 4. This
n

includes testing for separability and homotheticity in production and consumer
economics. In addition, the estimator Bn(x) provides a natural way to
analyse and test the stability of time series models.

The estimator of curvature C(x) in (2.5) is also straightforward; i.e.

B (x) B (x+h/2) - B (x-h/2)
n n n

ox h

(3.15) C (x) =
n
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where B (x) is as given in (3.14). Alternatively, an explicit expression of
n

Cn(x) can be written by using (3.13). For a point estimate one can

1

- -1n
calculate C(x) or the average n %C(xi). Using (3.15), we can empirically

analyse the curvature conditions implied by economic theory without any a
priori specification of the form of M(x). This is especially useful in the
literature on production and consumption (see section 1) where the commonly
used flexible functional forms usually fail to satisfy the appropriate
theoretical curvature conditions. For applications see McMillan et al (1986)
and Rilstone (1985).

We now consider the estimation of the heteroskedastic conditional
variance in (2.6). Using (3.8) and (3.9) the estimator of the conditional
variance of y given x can be obtained as

n 2 2
(3.16) V (x) = L yr (x) - M (x)
n i=11i1 n

where Hn(x) and ri(x) are as given in (3.11). This estimator is itself of

interest, e.g. in analysing the variability in an economic variable. The
application of Vn has appeared in Pagan and Ullah (1985) for the risk-premium
models in macro economics.

The estimator (3.16) also provides a way to analyse heteroskedasticity
in econometric models without any assumption about their functional forms.4
This estimator follows from the results in Singh and Tracy (1977) and is also
given in Rose (1978). Carroll (1982) considered (3.16) for the generalised
 least squares (GLS) estimation of a parametric linear regression model with
the unknown form of the heteroskedasticity. Some improvements over Carroll's

(1982) results for consistency and rate of convergence have appeared in

Carroll et al (1986), and Robinson (1986a) where the nearest neighbourhood

Y

¥
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estimator has been used to develop Vn. Singh et al (1987) provide an
application of the estimator Vn for the heteroskedasticity problem.

Notice that the Carroll (1982) and Robinson (1986a) approaches are
semiparametric in the sense that the parametric form of the regression
function M(x) is first specified and then V;% is used to transform y and M(x)
to obtain the GLS estimators of the regression parameters. A purely
nonparametric approach would be to take Hn in (3.11), transform y and Hn by
the V;% and then use Bn in (3.13) for this transformed y and Hn. The Bn so
obtained is a new nonparametric GLS estimator under the unknown form of the
heteroskedasticity. The asymptotic properties of this estimator require
further work.

Now we consider the nonparametric estimator of the covariance function.

This can be obtained by substituting expressions like (3.8) and (3.9) into

(2.7);

n
(3.17) Y (x) = £ y w r*(x) - M (x)M*(x)
n i=1'iii n n

z -z X -X
* i n i
where r (x) = K( )/ ) k (
i h i=1 2 h

) and now z = (w, y, x). The sample

. . . x % * .
correlation function is then pn(x) = yn(x)/[Vn(x)an)] , Where Vn(x) is Vn(x)
with Y =W, If LA is the lagged value of ‘A then pn(x) is the

nonparametric estimator of the autocorrelation function.

Finally, for the estimation of the density of the disturbance u, we note
that the nonparametric estimator of u in (2.2) is e = y—un(x) as given in

(3.12). Thus, using (3.5), the estimator of the density of e is

e —-e

-1n 1
(3.18) f(e) = (nh) IK( ).
i=z1 h
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Note that e = u + M(x) - Hn(x) = u since Hn(x) tends to M(x) for large n (see

section 4.3). Thus the graph of (3.18) can provide useful information about

the shape of the distribution of u; in particular, it can indicate departures

from normality. If one has the least squares residuals based on a parametric

ll’(

model, they can be used for e in (3.18). However, the nonparametric residual
e is robust against misspecified functional forms and thus, in large samples,
its use in place of the usual least squares residual should generally give
better results. Further, for large samples, nonparametric residuals can be
used for the testing problems in Yatchew (1987), and in the various
econometric diagnostic tests discussed in Pagan (1983). For small samples,
little is known about the behavior of nonparametric residuals and the tests
based on them.

We observe that the sum of the nonparametric residuals e is not zero.

If, however, the model has an intercept, a, it can be estimated by the least

squares as y - M (x). The nonparametric residual e from this model will
n

't

then sum to zero. Similar adjustments can be made when the model has dummy or
trend variables. For example, if the model has one dummy variable its

coefficient can be estimated from the least squares regression of y-Hn(x) on

the dummy variable. The properties of kernel estimators with discrete and
continuous variables are given in Bierens (1985). However, not much is known
about the properties of the residual variance based on the nonparametric
residuals e, especially in the time series case.

Various other functions, mentioned in Section 2, which depend on the

unknown density function can also be estimated by the nonparametric method.

e

Some of these are: quantile functions (Parzen (1979)), hazard functions

(Watson and Leadbetter (1964), Tanner and Wong (1984)), entropy and i



21
information matrix (Singh (1977)). The details of these and some other
statistical applications can be found in Prakasa Rao (1983). At present, the
applications to econometrics are, however, rare; although see Bierens (1985),
Robinson (1986b) and Ullah (1985) for specification issues, Singh et al (1987)
and Power and Ullah (1986) for Monte Carlo based finite sample econometrics,
Robinson and Ullah (1987) for the simultaneous equations model, Vinod and
Ullah (1985) for production economics, McMillan et al (1986) and Hildenbrand
and Hildenbrand (1985) for consumer economics, and Stock (1985) for
econometric policy evaluation. The areas for future applications are
numerous: perhaps one can analyse any econometric issue by nonparametric
methods. Some potential areas are: estimation of rational expectations and
nonlinear simultaneous equations models, causality analysis, non-nested
hypothesis testing, forecasting and estimation of response surfaces in Monte
Carlo studies; stochastic dominance analysis, income distribution and expected

utility theory; estimation of Euler equation.

4. SOME FINITE SAMPLE AND ASYMPTOTIC PROPERTIES

4.1 Results for Kernel Density Estimators

There is an enormous literature on the proofs of the asymptotic
properties of density estimators, the details of which can be found in the
work of Prakasa Rao (1983) and Devroye and Gyorfi (1985). This statistical
literature is highly technical and so we do not discuss it here. Instead our
aim is to describe the basic assumptions and asymptotic results which may
provide some understanding of the large sample behaviour of the kernel
estimators and of the limitations of nonparametric approach in applied work.
In addition, we present the asymptotic standard errors and normality results
for various functionals considered in Section 3. These will be useful for

applied work, and they are used in Section 5.
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A point to be noted here is that most of the work on density estimation
is for the i.i.d. case; although some work has appeared in the time dependent
but identically distributed case., We first consider the i.i.d. case and state
various assumptions. -
The asymptotic properties of the density estimators can be established
under some regularity assumptions about the kernel K and the density f. We
also require that the window width h=hn depend on the sample size n in some

way. The assumptions we make are:

A.1 Let K be the class of all Borel-measurable bounded real valued functions

K(z), z=(z_,...,Z )' such that
1 ao -

(i) JK(z)dz = 1 (i) [J|K(z)|dz < © (iii) Jz|? |x(z)|»0

as ||zl[»> (iv) Sup|K(z)| < =, where ||z|]| is_the usual Euclidean norm

A.2 hn 20asn-o

% as n » © (or (nh:)—l = o(1))

¢

A.3 nh

A.4 f(z) is continuous at any point z,
We observe that assumption A.1 is satisfied by a large class of functions; for

example, the q variate standard normal density, and the function

-9 q
K(z ,...,2 ) = 2 M I(z ), where I(z )
1 1 3 b

1if -1<z<1ando
q k|

otherwise. Furthermore, the assumptions A.2 and A.3 imply that as n increases

h should decrease but in a way such that nhq is still large; see the

denominitor of the last term in (3.8).
While the pointwise asymptotic unbiasedness of £ (lim Efn > f as n->
n

@) follows only under the assumptions A.1, A.2 and A.4, the pointwise weak
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consistency of fn (fn 2 f in probability, at any point, as n @ o) follows
under the assumptions A.1 to A.4. The pointwise strong consistency, i.e.,fn

tends to f almost surely, follows under A.1 to A.4 and

® q
A.5 Z exp (-anh ) < = for all « > O.
n=1 n

Note that A.5 holds if
1

A.6 nh: (log n)_ 2 ®asn P o,

The above results on the pointwise asymptotic unbiasedness and weak
consistency are from Cacoullos (1966), and the strong consistency result is
due to Devroye and Wagner (1976); see bibliographical notes in Prakasa Rao
(1983, Ch. 3). It is important to note, however, that the assumptions A.1l and
A.4 can be relaxed considerably. For example instead of A.1 if we assume the
kernel K to be a bounded density with compact support and instead of A.4 we
assume that every point is a Lebesgue point for f, then under A.2 and A.3 the
weak consistency of fn follows, see Deheuvels (1974) and Devroye and Gyorfi
(1985, Ch. 6). Devroye and Gyorfi (1985) also discuss the pointwise
consistency (weak and strong) of fn when the window width h depends on n as
well as the data on z.

Uniform weak (strong) consistency, i.e., sup|f (z)-f(z)| tends to
z n

zero as n > © in probability (almost surely) describes the behaviour of fn
for the entire z space, rather than just at a point z, in the space.
Cacoullos (1966) has shown that the uniform weak consistency of fnfollows

under the assumptions A.1, A.2, the characteristic function of K is absolutely
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integrable, and
. . q
A.7 f is uniformly continuous in R

2q
A.8 nh »>woasn» o,
n

The weakest possible conditions for uniform strong consistency available to

date are by Bertrand-Retali (1978). These are A.2, A.6, A.7 and

A.9 K is almost everywhere continuous bounded kernel with compact
support

The other very similar condition was independently obtained by Devroye and

Wagner (1980). The results of Van Ryzin (1969) and Silverman (1978) are under

restrictive assumptions on the kernel K, see Devroye and Wagner (1980, P
61). Devroye and Wagner (1980) and Deheuvels and Hominal (1980) have also
obtained uniform consistency results for many practical situations where h is
a function of n as well as the data on z. For further details, see Devroye
and Gydrfi (1985, Ch. 6).

The conditions for the various consistencies described above are merely
the sufficient conditions. The conditions for consistency under the global L
criterion, that is conditions under which Ilfn—fldz 2+ 0 in probability or
almost surely as n » o, are discussed in the work of Devroye and Wagner

(1979) and Devroye (1983) among others. For an excellent treatment of the L1

criterion, see Devroye and Gyorfi (1985). The main results of Devroye (1983)

are that, under the L1 criterion, various types of consistency are equivalent
and that A.2 and A.3 are the necessary and sufficient conditions for the
consistency. In general, the L1 criterion is well defined and provides
somewhat weaker conditions of consistency. Recently Bai and Chen (1987) have

given the necessary and sufficient conditions for consistency under the L

(L

I
"



)

‘B

25

1/p

criterion, that is conditions under which [IIfn—flpdz] 2 0asn - w,

Note that, except for p=1, the Lp criterion is not scale invariant. The L2
criterion is easier to work with and it has been considered extensively in the

literature. We have discussed above the main results under this ecriterion.
The asymptotic normality of fn has been proved by Parzen (1962), for

q=1, and Cacoullos (1966) more generally. This follows from their results that

f -Ef ®
n n q 2
~ N(0,1) or (nh ) (f -Ef ) ~ N(O, ffK )
f) n n

n

(4.1)

as n 2 o, where V(fn) is the asymptotic variance of fn’

4.2) V(g = mnHT £, 1€ = [P (2)dz.

However, this result is not useful for constructing confidence intervals for
the unknown f. For this we must replace Efn by £ in such a way that

(4.3) (nhq)"(fn—f) = (nhq)A(fn-Efn)-l-(nhq)ABias(fn)~N(0,fj'k2)as N,

3
This can be achieved by choosing h so that the term (nhq)'6 Bias (fn) tends to

. zero as n = «to zero as n¥», For example, we show below that for symmetric

kernels Bias(fn(z)) =« hz. Thus if we choose h such that n h4+q tends to zero
as n @ », the result in (4.3) would hold. For q=1 see e.g. Revesz (1984,

P. 542). An alternative is to consider an almost-unbiased-jackknife estimator
in place of fn in (4.3). The idea is to eliminate bias by taking a linear
combination of two estimators with different window widths, see e.g., Schucany
and Sommers (1977).

4.2 Finite Sample Properties, Determination of h and K, and
Speed of Convergence

The selection of h and K is the first step in the implimentation of the
results in Section 3 to applied work. These may be determined by considering
approximations to the bias, the mean sqaured error (MSE), and the integrated

MSE (IMSE) of the fn, where



26

(4.4) TMSE = [MSE = IE(fn—f)zdz - EI(fn—f)zdz

2
I(Bias) + I(Variance).

Under the i.i.d. assumption the exact mean of fn in (3.8) is

zZ -Z z -Z
q-1 n i q -1 1
Ef (z) = (nh') E I K( ) = (h') EK( )
n i=z1 h h
z -2
q -1 1
= (h) [K( Yf(z )dz .
h 1 1

Similarly, the variance of fn is

2q -1 1
V(f (z)) = (nh ) V(K(—)).
n h

The expressions are, however, of no use and instead one uses approximations to
the bias and the MSE which require the following assumptions:

A.10 The second order derivatives of f are continuous and bounded in

some neighbourhood of z.

A.11 Let.K2 be the class of all non-negative real valued

Borel-measurable bounded functions, K, symmetric about the origin such that

2
IzjK(z)dz = u,
along with A.1(i) to A.1(iii).

Under assumptions A.10 and A.11, the approximate bias, up to the order
of magnitude hz, is
. 2 -1
(4.5) B1as(fn(z)) = Efn -f=nh hl(z). Xl(z) = 2 usz(z)
where Df(z) = azf(z)/azaz'. This follows by first writing from above

z -z

1
Yf(z )dz = [K(w )f(hw +z)dw ,
h 1 1 1 1 1

q -1
Ef (2) = (h) [K(
n

wl = (zl—z)/h, and then using Taylor's series expansion of f(hw1 + z) around

z. Similarly the approximate variance is

IAJ
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V(E_(2)) = DI (2), A (2) = £(2)[K>
n 2 > T2 :

Combining these the approximate MSE is6

(4.6) MSE(f_(2)) h‘ui(z) + (nhq)—lxzcz)

and the IMSE is

(4.7) SE £ (2) = b* [\I(z)dz + maH7! K2,

The idea behind the small h expansions of bias and MSE is similar to
that of Kadane's (1971) small disturbance (or small o) expansions of
estimators in parametric econometrics. 1In fact, as indicated below, one of
the ways to get small h is to have small standard deviation of z.

An intuitive choice of h can now be developed. Observe that while
variance depends on h, n and K the bias depends on K, and n only through h.
Another point to observe is that if, in order to eliminate the bias, a very
small h is used then the variance (also Ivariance) will become large. On the
other hand choosing a large h will reduce the variance at the expense of more
bias. A way out of this problem is to relate h to n in a way that controls
both bias and variance simultanepusly. This choice is

(4.8) h = cn—l/(4+q) « n—l/(4+q)

which makes the order of magnitude of the MSE n—4/(4+q); ¢ is a constant to be
determined later. We will see later that this h minimizes MSE: i.e. any other
choice of h will lead to trade off between the bias and variance which leads
to higher MSE.

Regarding the choice of K satisfying (A.1l), we note that any symmetric
probability density can be chosen. Usually K will be a symmetric unimodel
probability density, for example, the multivariate normal

)—q/2

(4.9) K(z) = (2r exp(-% z'z).

Another possible kernel is the multivariate Epanechnikov (1969) kernel
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-1 -1

(4.10) K(2z) =2 ¢ (q+2)(1-z'z) if z'z < 1
q

=0 otherwise

where cq is the volume of the unit g-dimensional sphere. Some other kernels,
especially useful for quick calculations, are for i = 2 and 3

(4.1 K (2) = (4D 1A - 20 if z'z <1

=0 otherwise
Notice that these kernels have higher order differentiability compared to one
in (4.10).
We note now that the choices of h and K discussed above are similar to

the optimal h and K, discussed below, which minimise the approximate IMSE. A
simple use of calculus shows that the optimal h which minimizes the MSE given

above is

. n_1/(q+4)’ 1/(q+4)

(4.12) 1" = ¢ = lq £(2)(uDE(2)) 2 [x?]
which is as given in (4.8). The h* which minimizes IMSE is also the same as
(4.12) with £(z) replaced by [£(z)dz = 1 and (D£(z))"2 by (J(DE(z))3) L.

Note that h* converges to zero as n » », but at a very slow rate of n-ll(q+4)

and it is inversely related to the dimension of z.

*
To see h explicitly, consider, for example, the case where the true
density f is multivariate normal, with V(z) = aZI. Then for the case of the
normal kernel in (4.9) we get h* which minimizes IMSE as

(4.13) n - a(4(q+z)’1)1/Q+4 n-l/(a+s)

)

‘1
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2 2 -1
In practice o can be replaced by ¢ = q g s, .; sii is the sample
ii

variance of zZ;.

To obtain the optimal kernel we can first substitute h* in the IMSE and
write it as {IKZ(z)dz}4/(A+q). Now we minimize the IMSE, which is the same
as the minimization of IKZ(z)dz subject to fK(z)dz = 1 and Izix(z)dz =
M, This gives the optimal kernel given in (4.10), see Deheuvels (1977).

For q=1, its graph looks like a parabola, and it was first discovered by
Bartlett (1963). Strictly speaking, we should therefore call it Bartlett's
and not Epanechnikov's kernel as usually referred to in the literature.
Epanechnikov (1969) compared the relative efficiency of various kernels with
the optimal kernel and found that any reasonable kernel gives almost optimal
results. However, negative-valued kernels may improve the performance of the
density estimator; see remarks in 4.4. Also, see Davis (1975, 1977) for the
comparison of the MSE of various density estimators.

%
In general, h in (4.12) which minimizes IMSE, depends on the unknown

" -
Df(z). However, an operational h , say h , can be constructed by using the

estimator f, for f, and Df;(z) for Df(z). At the first stage, the estimator

fn can be evaluated by choosing an arbitrary initial value of h. Recently

Hall and Marron (1987), and Marron (1987) have pointed out that the rate of

~

convergence of h is slow though better than that of the well known least
squares cross-validation (cv) procedure (Rudemo (1982) and Bowman (1984)).

ok kX _4/13 *x % -1/10
In particular, for q =1, (h-h )/h ~n whereas (hey - h )/h ~n

Thus for small and moderate size samples, the cross-validation procedure may
be subject to more sample noise. This is despite the comforting result that,

for large samples, cross-validation is optimal in some sense (Hall (1983) and
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Stone (1984)). Marron (1987) and Scott and Terrell (1987) have suggested ways
to improve upon the performance of the cross-validation procedure in small

samples. There are various other methods of choosing h for the kernel and

"J

other density estimators; for details see Prakasa Rao (1983), Silverman

(1986), and the review articles by Titterington (1985) and Scott (1986).

4.3 Results for Other Functions

From (3.11) we observe that the regression function estimator Hn(x)
depends on the density estimators. Thus, in principle, using the asymptotic
results of section 4.1 and with some additional assumptions, the consistency
and asymptotic normality results for the Hn(x) should follow. These can be
found in Schuster (1972), Prakasa Rao (1983, Ch. 4), Singh et al (1987) and
Bierens (1985) among others. Similarly, using the results for the regression
function estimator Hn(x) the results for the response or regression -
coefficient Bn(x) and the curvature Cn(x) can be developed, see Vinod and
Ullah (1985) and Rilstone and Ullah (1986) for the response coefficient and
McMillan et. al. (1986) and Rilstone (1986) for the curvature. Finally, since
the residual e = y-nn(x) = u—(Hn(x)~H(x)) = u for large n, the asymptotic
results in 4.1 hold for the density of the residual in (3.18). We present
here the results for the response coefficient estimator in (3.14) since these
will be of most interest to applied researchers.

The consistency and asymptotic normality result corresponding to (4.3) is
(4.14) Bn(x) - B(x) ~ N(0, A(x))

where

-1 ' 2
V(x)(£(x)) [(K)
(4.15) A(x) = V(B (X)) = :
n p+2 .~
nh
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V(x) = V(y|x) is as given in (2.6) and K'(w) = aK(w)/axj as in (3.13). 1In
practice A(x) can be estimated by An(x), which is A(x) with V(x) and f(x)
replaced by Vn(x) and fn(x), respectively, as given in (3.16) and (3.9). The
result in (4.14) is useful for constructing confidence interval and testing
restrictions on B(x) implied by economic theory.

If we consider the x's to be non-stochastic, or the analysis conditional
on the x's in Engle et. al. (1983) sense, as usually considered in parametric
econometrics, then the nonparametric estimator Bn in (3.13) will be linear in
y's. Further Bn (in (3.13)) will be asymptotically normal with the variance

2
(4.16) V(B (X)) = V() 3 (r. - ).
n i=l 11 2i

For practical implementation of (4.15) or (4.16) we again require h and

K. To this end we first note that the approximate MSE of Bn(x)

(corresponding to the result in (4.6)) is

MSE B_(x) = n? xg(x) + A(x)
where ka(x) is free from h, and A(x) is as in (4.15). It is clear that the
choice of h for which MSE Bn(x) is minimum is

h* - cl(x)n—ll(p+4) « n—l/(p+4)
which is similar to h* in (4.12). However, unlike in (4.12) we do not have an
explicit expression for cl(x). Hence an operational h* cannot be implemented
here. An alternative is to determine , by the cross validation procedure;

that is by minimizing

GAD T B (x) B (x))
.1 -
PR

,n i
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-1/(p+4
1 after replacing h = cl n (» ), B . n represents the

with respect to ¢

response coefficient estimator based on all the observations except X, - An

initial value of h can be taken by considering e, = 1. A better alternative, &
in view of (4.13), is to consider ¢, =0 such that

* - <
(4.18) h = on M/ (P¥H)

In the situation where the p components of x have different variances a

useful value of hi(i=1""'p) is

~1/(p+4)
(4.19) hi = o.n
where o, = V(xi) can be replaced in practice by the sample standard deviation
of x, . An extensive study on the choices of h, for other econometric

functions in section 3, would be a useful subject of future research.

4.4. Remarks on Speed of Convergence (Limitations of Nonparametric Approach)

It has been shown in 4.2 that the rate of convergence for the MSE of the b

~4/(q+4)

density estimator cannot be better than n ,» Wwhere q is the dimension of

the distribution. Similarly, from 4.3., in the case of response coefficient

-2/(p+4)

Bn, the rate of convergence is n where p is the dimension of x's.

This implies that in the case of single x, p=1, the rate cannot be better than
2/5. Further, the higher the dimension the slower the rate, which is the
"curse of dimensionality"™.

The slow réte of convergence implies that the standard errors of the
nonparametric estimates may turn out to be large for moderate size samples.
Also the tests based on nonparametric residuals may be inefficient, at least
in the sense that the rate of convergence in distribution is less than n%. In

this regard the idea of averaging nonparametric estimates in Powell et. al.

(1986) and Stock (1985), also see 3.1, is useful. These average estimates

"
W

converge in distribution at rate né.
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Another alternative to improve upon the rate of convergence is to
consider kernels which take negative as well as positive values and whose
(r—1)th order moments are zero (generalization of A.10), see Parzen (1962) and

Bartlett (1963). For such kernels, assuming that rth order derivatives of f

are continuous around z (generalization of A.11.) Johns and Van Ryzin (1972)
for q=1 and later Singh (1981) have shown that the rate of convergence of the
MSE can be increased to n—2r/(2r+q). The results of section 4.2 are for r=2.

In fact by choosing r large enough one can get the n_l convergence for the MSE

3
and né convergence in distribution. However, for large r it will be difficult

to choose kernels satisfying zero moment conditions. For example, if r=11 we
would require a kernel whose first ten moments are zero. For details on the
choice of kernels whose (r-1) moments are zero, see Muller (1984), Singh

(1981), and Ullah and Singh (1985).

4.5 Dependent Observations

Most of the asymptotic results for the i.i.d. case discussed above go
through for the case of dependent observations. As expected, one can achieve
these asymptotic results by making certain assumptions, along with those in
i.i.d. case, on the nature of the dependence. To understand this, let us

write from (3.8)

q_
(4.20) £ - Ef = (nh)
n

). Then

i
where n_ = K(
i

n=1 n-i
I I covin,n_ ]

q-2n
(4.21) V(f ) = (nh) [} V(n ) + 2
i=1 i i=l j=1 J i+

n
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It is clear that for the i.i.d. observations cov(n , nj i) =0 for 1 # 0,
k] +

and the variance of fn tends to zero as ni» (provided nhqém)._ Thus MSE
consistency is achieved as mentioned before. One way to achieve this MSE
consistency for dependent observations is to impose conditions on the serial
dependence (cov(nj, nj+i)) such that as n»o, the second term on the right of
(4.21) tends to zero. Such conditions are discussed in the work of Robinson
.(1983) where it has been shown that for the asymptotic normality of fn and Hn

respectively, we require

® -1 @ 1-2/0 -1
(4.22) } @ =o(n ) and § o =0(n ), 6> 2
J=n J J=n 3

as n 2 «; “j is called the mixing coefficient of {zt}, and is a measure of
t @ .
dependence of the processes {zt}_m and {zt}t+j defined as

o, = sup |P(ANB)-P(A)P(B) |,
J A,

t ® ‘
where A€ 8 and B eBt ] Bg is the o-field of events generated by
+3

- 00
29, 2Z8+l,...» 2Z8'. It is assumed that the process {zt} is strictly

stationary, and strongly mixing in the sense that “j 2+ 0 as j » o (distant
future is virtually independent of the past and present, and vice versa).
Strongly mixing processes have also been used in density estimation by Ahmad
(1979), in regression estimation by Ahmad and Barry (1987), and in other
contexts by Ibragimov (1970) and Pham and Tran (1980) among others. Bierens
(1983) has considered the estimators fn and Hh for a more restricted
stationary process, namely the ¢-mixing process. The process {zt} is said
to be ¢-mixing if the mixing coefficient ¢j < 0 as j @ », where

¢ = sup|P(B]A) - P(B)|
Jj A,B

and A and B are defined above. Notice that every ¢-mixing process is a

strong-mixing. For further details on the properties of nonparametric

't
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estimators under ¢-mixing, see Bierens (1985) and Abdulal (1984).

Strong consistency results are not yet available for stationary
processes nor are results available for non-stationary processes. An
extensive study on the asymptotic as well as small sample properties of
various econometric functionals in Section 3, for the dependent observations,

would be a useful subject of future research.

5. ILLUSTRATIVE EXAMPLES
Below we present two examples; first related to industrial organization
and the second to finance. These examples illustrate the estimation and

testing of economic parameters of interest in these models without specifying

their functional forms.7

5.1 Industrial Organization Example

Classical economic theory suggests that the "profit maximization
hypothesis™ should dictate the compensation of business executives. In the
literature on industrial organization, Baumol (1967) and others have proposed
the alternative "corporate growth hypothesis" of executive compensation.
Empirical evidence by Ciscel and Carroll (1980) and Guerard and Horton (1984),
hereafter denoted as GH84, suggests an eclectic view whereby sales, profits
and employment all have a significant impact on the executive compensation.

The compensation committee of a large chemical firm was interested in
evaluating whether their executives are paid according to the norm in the
industry. We use the data based on compustat tapes for 1980 for a sample of
33 peer firms, GH84. If the sales, profits and/or employment changes by one
percent, the committee would like to know the appropriate adjustment in the

executive compensation in thousands of dollars. The partial derivatives of



36

the following semi-log nonparametric regression model provides the desired

answer.

Let yi be the compensation in thousands of dollars per year for the i-th

(a

firm. Similarly, X denotes log sales, Xi denotes log profits and X:q

denotes log of the number of employees. Now the nonparametric specification

fa
"

of the model is

(5.1) y =Mx,_, x ,x )+u =By |x ,x ,x )+u
i i1 i2 i3 i il i1 i2 i3 i

which is a special case of (2.2) for p = 3. Note that the estimate of M and

its partial derivatives with respect to x_, x_ and x_ can be calculated by

1 2 3
using (3.11) and (3.13), respectively. For the calculations the kernel used

was the normal kernel given in (4.9), and following the results in section 4
-1/7

2
h_taken was sjn where for j=1,2,3, s =
J J

(x.. - ;‘) /n. >
J1 J

el 1]

A parametric approach to estimating the model by GH84 is to specify:

(5.2) E(y |x ,x ,x )=D +bx +bx +bx .
: il i1 i2 i3 o 11l 2 i2 3 i3

Table 1 reports the estimates based on ordinary least squares (OLS) and
ridge regression from GH84, as well as, our nonparametric estimates of the
partial derivatives, evaluated at the mean values of the regressors.

Note that the compensation committee is specifically interested in the
estimates of the partial derivatives, not in the regression coefficients of a
linear model, per se. The linearity is an artifact of our specification. The
fact that the coefficient (=-98.144) of the log Sales variable has a negative
sign does not mean that typical chemical industry executives are punished by a
$98,144 reduction in their salary when the Sales of their corporations
increase by one percent. The partial derivative of log Sales variable need

not be negative if the underlying model is highly nonlinear. Our

nonparametric method estimates the partial derivatives directly by actually
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keeping the variation in other regressors at zero. We find that a one percent
increase in Sales, Profits and Employment respectively leads to $60,874,
$63,706 and $60,131 increase in executive compensation. Also, these numbers
are found to be subject to smaller standard error compared to OLS. Note,
however, that the usual OLS standard errors are conditional, i.e., appropriate
under the assumption of fixed regressors, whereas our nonparametric standard
errors from (4.15) are unconditional. For a more direct comparison with OLS
we have also computed nonparametric conditional standard errors using (4.16).
These are 21.09, 21.24 and 20.48 for sales, profits and employment
respectively, which are again smaller. In GH84 ridge regression is used to
alleviate the multicollinearity, and has yielded all positive estimates
similar to those of nonparametric model. Since the nonparametric estimation
has avoided some of the difficulties associated with multicollinearity as well
as linear specifications, applied econometricians may find nonparametric

approach attractive in a variety of other problems.

5.2 Finance Example

Estimation of the systematic risk or the beta coefficient has attracted
the attention of many researchers in finance. For a given stock, the central
parametric model in most of the research has been the single index market model
(5.3) yi = a + Bxi + ui
where y; is the return on security at time i, X is the market return at time
i, uy is the disturbance term, and B is the beta coefficient on the
systematic risk of the stock. One of the several assumptions that model (5.3)
is based on is that B is constant across time. However, many recent studies

have examined (5.3) under various specifications of random betas and have

found that they are in fact not constant across time, see e.g., Fabozzi and
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Francis (1978) and Sunder (1980). Recently Fabozzi et. al. (1984), using
ridge regression procedure and the data set in Fabozzi and Francis (1978),
claimed that betas are in fact fixed and not random as claimed in earlier
studies. All these parametric studies are based on ad hoc specifications of :
E(y|x) = M(x), as in (5.3), and also of B(x) = 9aM(x)/3dx. To avoid these
specifications we explore below the question of randomness of beta by the
nonparametric approach.

To illustrate the nonparametric method we consider 73 months of
return = y (price change plus dividends) and market returns = x data from
December 1965 to December 1971 on the two stocks as given in Fabozzi et. al.
(1984, p 159). The market returns are based on the Standard and Poor's
composite index. The nonparametric estimates of the systematic risk B and
its standard error can be calculated by using (3.13) and (4.15) respectively.

For the calculations the kernel used was the normal kernel in (4.9) and h

taken was sn-]'/5 as described in section 4; s is the sample standard deviation

i

of x. The estimates and their standard errors in parenthesis for two stocks

are
Stock 1: Bn = .5617 Stock 2: Bn = 1.3453
(.2182) (.3145)
AThe OLS parametric estimates and their standard errors are
Stock 1: .9445(.1574) and Stock 2: 1.1811(.1685). These parametric and

nonparametric estimates indicate that the systematic risk B is significant

for both stocks.
Next, for Stock 2, we also obtained nonparametric estimates of Bn(x)
across the values of x and these are plotted in Figure 1. The figure shows s

that the systematic risk is a nonlinear function of the market return. This

i
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result has not been explored in the parametric literature. We also observe
from Figure 2 that Bn across time is random. This indicates that the

parametric result of Fabozzi et. al. (1984) that B's are fixed may not be

correct. Similar results were obtained for Stock 1.

1\
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Table 1: OLS, Ridge and Nonparametric Regression Results, Chemical Industry
Cross Section of 33 Large Firms for 1980
2
Coeff. of: Intercept Sales Profits Employment R
OLS by GH84 -360.67 -98.144 109.825 99.617 .56
(214.88) (69.08) (48.19) (50.98)
Ridge by GH84 -284.69 15.774 46.710 38.229
(11.83) (14.48) (12.89)
Nonparametric 60.874 63.706 60.131
(32.76) (32.90) (30.69)

Note: Residual Sum of Squares for OLS is 371432, and for the nonparametric

model it is 299179.7. The ridge estimates of standard errors are only

suggestive because they ignore the bias of the ridge estimator, and also they

are conditional on fixed regressors.

"
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FOOTNOTES

*1 thank R. Carter, Y. Fan, G. MacDonald, M. Parkin, A. Pagan, P. Rilstone, C.
Robinson, D. Scott, H.D. Vinod and the participants of the workshops at the
Universities of New South Wales, Canterbury, Guelph, Indiana and Yale for
their comments on the subject matter of this article. I also thank two
referees for their useful comments. The support of the NSERC is gratefully

acknowledged.

1'I‘he nonparametric methods considered in this paper refer to the nonparametric
density estimation methods, not the nonparametric methods in the sense of
distribution-free methods (method based on ranks, signs or permutations). For

the latter, see for example, Puri and Sen (1985).

zThis is a classical misspecification problem where the true E(y|x) is, say,
a+Bx+yx2+6x3 but the investigator estimates instead, say, a+Bx+Yx2. We also
note here that although it may always be possible (provided f(y, x) is stable
across observations and second moments exist) to write M(x) in (2.2) as the
linear regression (best linear predictor) of y given x, it may not be the same
as E(y|x) which is the best predictor of y given x in the mean square error
sense. See Amemiya (1985, p. 3) for further discussion on this point. 1In
this paper we consider the direct estimation of E(y|x) without specifying its

form.

3In a related work Gasser and Muller (1984) considered the derivatives of a
univariate regression where the regressor is a fixed design variable such as

time or age.
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4It should however be noted that the heteroskedasticity has been assumed to be

a stable function of x.

5The author is grateful to a referee for helpful suggestions and bringing to
his notice several important references related to the material in this

section.

6
For a good treatment of the IMSE, see Tapia and Thompson (1978) and Deheuvels
(1977). For the comparisons of the rates of MSE and IMSE of various density

estimates, see Davis (1975, 1977) and Watson and Leadbetter (1963).

7The program used for the calculations in this section is available on request

from the author.
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