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ABSTRACT  

Repeated crystallisation of salt minerals has been considered as the driving force for surface scaling of concrete 

exposed to physical sulphate attack. This damage is initiated when stresses induced by the internal pressure created 

via repeated salt crystallisation exceed the tensile strength of the concrete. The degree of such damage will depend 

mainly on the structure and connectivity of pores, which control the penetration of sulphates into the concrete. 

Several factors affect the pore structure including the concrete constituents, mixture proportions and the curing 

process. Therefore, in this paper, the effect of the pore structure on concrete deterioration by physical sulphate attack 

was investigated. Results show that the durability of concrete against physical sulphate attack can be controlled by 

tailoring the pore structure of the concrete surface. 
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1. INTRODUCTION  

Despite the current knowledge and specifications on concrete deterioration due to sulphate attack, there are only 

limited information and studies regarding the damage of concrete due to physical sulphate attack. According to 

Haynes et al. (2008), in certain environmental conditions, physical sulphate attack can cause substantial damage of 

the concrete surface. This was reported in several field investigations for concrete structures around the world (Al-

Amoudi, 2002; Hime et al. 2001; Novak and Colville, 1989; Yoshida et al. 2010). However, for decades, chemical 

sulphate attack on concrete was the main research interest, while physical sulphate attack has mainly been ignored 

(Haynes, 2008; Aye and Oguchi, 2011). It is only recently that researchers started to focus on the performance of 

concrete under physical sulphate attack. Nevertheless, there are contradictory views in the existing literature 

regarding concrete damage by physical sulphate attack. For instance, a field study by Irassar et al. (1995) reported 

that concrete with low permeability exhibited higher damage when exposed to an environment prone to physical 

sulphate attack than concrete with high permeability. It was suggested that concrete with fine pores, which can be 

achieved using a low w/c, is more vulnerable to damage due to physical sulphate attack (Hime 2003). Primarily, this 

concept was suggested based on the fact that stones with finer pores are more vulnerable to damage due to salt 

weathering or the so-called physical salt attack. However, laboratory investigation by Folliard and Sandberg (1994) 

showed that concrete made with w/c = 0.30 had better performance than concrete made with w/c = 0.50 under rapid 

salt crystallisation. Yet, a study by Nehdi and Hayek (2005) showed that concrete mortars with an intermediate              

w/c = 0.45 had an extensive efflorescence formation compared with w/c = 0.30 and w/c = 0.60. Therefore, more 

research is needed to investigate the main role of the concrete pore structure when exposed to physical sulphate 

attack. 

 

Studies have shown that salt weathering can cause serious damage to rocks and stones based on their pore structures 

(Angeli et al. 2008; Scherer, 2004; Buj and Gisbert, 2010). Buj and Gisbert (2010) investigated fifteen samples of 

stones that are similar to those commonly used in the architectural heritage. They found that stones with low 

porosity and high amount of small pores with low connectivity are less vulnerable to damage than stones with high 
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porosity and higher average pore radius. Thus, the previous suggestion regarding the poor performance of concrete 
with low w/c ratio under physical sulphate attack is questionable. According to Wellman and Wilson (1965), rocks 

that contain large pores connected by micro-pores are more venerable to damage due to salt weathering.  When a 

rock or a porous material is exposed to evaporation and its large and small pores are filled with a saturated salt 
solution, salt crystals will grow in the large pores at the expense of the smaller crystals in the small pores. This 

process will continue till damage occurs. The damage depends on the size of the small pores and the interfacial 

tension between the crystal face and its saturated solution compared with the strength of the rock (Wellman and 

Wilson, 1965). The current paper provides companion research data to that reported by Nehdi et al. (2014) and 

Suleiman et al. (2014) on concrete exposed to dual sulphate attack.  

2. RESEARCH SIGNIFICANCE 

Previous studies have shown that the susceptibility of stones and rocks exposed to salt weathering depends on their 
pore structure. Thus, factors that affect the concrete pore structure including the w/b ratio, binder type, and curing 

conditions were investigated under an environment prone to physical sulphate attack. The results of this study 

should explain the main role of these factors in concrete exposed to physical sulphate attack, which could allow to 

improve the durability design of concrete in sulphate environments. 

3. EXPERIMENTAL PROGRAM 

3.1 Materials and Specimen Preparation  

Three groups of concrete mixtures with different w/b ratio (i.e. 0.30, 0.45, and 0.60) were tested. In each group, 

three binder types were used including ordinary portland cement (OPC), OPC with 25% class F fly ash (FA), OPC 

with 8% silica fume (SF), and OPC with 8% metakaolin (MK). The physical and chemical properties of the cement, 

mineral additives, and aggregates are summarized in Tables 1 and 2. The proportions of the concrete mixtures are 

provided in Table 3. For each of the concrete mixtures, standard cylinders 100×200 mm (4×8 in.) were cast 

according to ASTM C192 (Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory). 

Table 1: Physical and chemical properties of various binders used in this study 

Components /Property 
Cement 

Type (10) 

Silica 

Fume (SF) 

Metakaolin 

(MK) 

Fly ash 

(FA) 

Silicon oxide (SiO2) (%) 19.6 95.3 52.2 43.39 

Aluminum oxide (Al2O3) (%) 4.8 0.2 41 22.1 

Ferric oxide (Fe2O3) (%) 3.3 0.1 1.8 7.7 

Calcium oxide (CaO) (%) 61.50 0.49 - 15.63 

Magnesium oxide (MgO) (%) 3.0 0.27 -  

Sulfur trioxide (SO3) (%) 3.50 0.24 0.04 1.72 

Loss on ignition (%) 1.90 1.99 1.1 1.17 

Insoluble residue (%) 0.44 - - - 

Equivalent alkalis (%) 0.7 - - - 

Tricalcium silicate (C3S) (%) 55 - - - 

Dicalcium silicate (C2S) (%) 15 - - - 

Tricalcium aluminate (C3A) (%) 7 - - - 

Tetracalcium aluminoferrite (C4AF) (%) 10 - - - 

Blaine fineness (m2/kg) 371 - - - 

Autoclave expansion (%) 0.09 - - - 

Compressive strength 28 days (MPa) 40.9 - - - 

Specific gravity 3.15 2.58 2.20 2.50 

Time of setting (min) Vicat Initial  104 - - - 
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Table 2: Physical and chemical properties of fine and coarse aggregates 

 

Table 3: Proportion of tested concrete mixtures 

Mixture # Binder Type Cement 

Content 

(kg/m3) 

Pozzolanic 

Content               

(kg/ m3)                

Aggregate Content 

(kg/m3) 

w/b Super-

plasticizer 

(ml/m3) Coarse Fine 

1 OPC 450 0.000 1110 804 0.30 2250 

2 OPC + 25% FA 337.5 122.5 779 0.30 1600 

3 OPC + 8% SF 414 36.00 791 0.30 3200 

4 OPC + 8% MK 414 36.0 797 0.30 2900 

5 OPC 400 0.000 1110 727 0.45 1570 

6 OPC + 25% FA 300 100.0 705 0.45 900 

7 OPC + 8% SF 368 32.00 715 0.45 2100 

8 OPC + 8% MK 368 32.00 720 0.45 1850 

9 OPC 350 0.000 1110 689 0.60 --- 

10 OPC + 25% FA 262 87.50 754 0.60 --- 

11 OPC + 8% SF 322 28.00 679 0.60 --- 

12 OPC + 8% MK 322 28.00 797 0.60 --- 

 

3.2 Curing Conditions 

Concrete cylinders from each concrete mixture were cured for 28 days in a moist room at RH ≥ 95% and T = 20°C 

[68°F] before exposure to the sulphate environment. The curing was carried out according to ASTM C511 (Standard 

Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of 

Hydraulic Cements and Concretes). To investigate the curing effect, another identical group of cylinders from each 

mixture was exposed to the sulphate environment after 24 hours. 

3.3 Environmental Exposure Conditions 

All concrete cylinders were partially immersed in a 5% sodium sulphate solution and placed inside a walk-in 

environmental chamber with cycling temperature and RH. Cycles consist of one week at temperature = 20°C [68°F] 

and RH = 82% followed by one week at temperature = 40°C [104°F] and RH = 31%. 

Property  Coarse aggregate Fine aggregate  

Potential alkali reactivity (Mortar-bar method) (%) 0.05 - 
Absorption (%) 1.11 1.09 

Crushed particles (%) 68.00  - 
Flat/elongated (%) 6.00  - 
Micro-deval (A) (%) 11.00 17.00 

Soundness (freeze-thaw) (%) 2.20  - 

Soundness (MgSO4) (%) 3.90  - 

Specific gravity (apparent) (%) 2.73 2.73 

Specific gravity (dry) (%) 2.65 2.65 

Specific gravity (SSD) (%) 2.68 2.68 

Unit weight (kg/m3) 1734  1512  

Materials finer than 75-μm (sieve # 200) (%) 0.90 2.10 
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3.4 Visual Inspection 

Concrete cylinders were visually inspected for up to six months of sulphate exposure. The visual rating of concrete 

surface damage was rated according to the rating system proposed by Malhotra et al. (1987).  In this system, 

concrete can be rated on a scale of ten based on its surface scaling and mass change as shown in Table 4. 

Table 4: Visual rating system for damaged concrete (Adapted from Malhotra et al. 1987) 
Rating Grade Rating Description 

0 Less than 15% of surface aggregates are exposed 

1 More than 15% of surface aggregates are exposed 

2 50% of surface aggregates immediately below the surface are exposed 

3 80% of surface aggregates are exposed 

4 Surface aggregates are exposed over 20% of their perimeter 

5 90% of the surface aggregates are exposed over one half of their perimeter 

6 95% of volume of specimen remaining 

7 80% of volume of specimen remaining 

8 60% of volume of specimen remaining 

9 20% of volume of specimen remaining 

10 Specimen disintegrated 

 

3.5 Mass Loss 

Concrete cylinders from each mixture were transferred to the exposure condition after measuring their initial mass 

using a balance with an accuracy of 0.01 g [0.00035 oz.]. Before measuring their initial mass, all concrete cylinders 

were air-dried in the laboratory at temperature = 23°C [73.4 °F] and RH = 70% until constant mass was reached. 

The mass loss was calculated according to the following equation: 

 

[1                                                                                                                                                                   

 

Where; (t) is the time, Mi is the initial mass of the cylinder; Mt is the mass of the cylinder at time (t). 

4. RESULTS AND DISCUSSION 

4.1 Visual Inspection  

Figure 1 shows salt crystals on concrete surface. During the first week, salt precipitation (efflorescence) appeared 

above the solution level (5% of sodium sulphate) on the drying surface of the concrete cylinders when exposed to a 

temperature of 20°C [68°F] and RH of 82%. According to previous studies (Thaulow and Sahu, 2004; Haynes et al. 

2008), this exposure condition can lead to mirabilite formation. In the second week, the exposure was altered to a 

temperature = 40°C [104°F] and RH = 31%, a condition conducive to thenardite formation. It was observed that the 

volume of the precipitated salt on the concrete surface decreased compared to that in the first exposure. This is due 

to the conversion of mirabilite to thenardite, which results in a volume reduction of about 314% according to Tsui et 

al. (2003). 

 

Table 5 reports the visual rating for concrete cylinders after six months of exposure to physical sulphate attack. 

Scaling of concrete surfaces started to appear above the sulphate solution level approximately a month after the 

exposure (4 cycles of wetting and drying). The exposure was continued for up to six months (24 cycles of wetting 

and drying) and all concrete cylinders were inspected to diagnose the level of damage.  
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Figure 1: Salt crystals on concrete surface 

 

Figure 2 illustrates the damage above the solution level for the cured concrete cylinders made with w/b = 0.60. 

Higher surface scaling above the solution level was found in the cured concrete specimens incorporating pozzolanic 

minerals compared to that of the specimens made with  100% OPC at a w/b = 0.60.  Figures 3 and 4 show the cured 

concrete cylinders made with w/b = 0.45 and 0.30 after six months of physical sulphate exposure. Concrete 

cylinders having a w/b = 0.45 achieved similar results to that of cylinders made with w/b = 0.60, but with 

significantly less damage. For the cured concrete cylinders with w/b = 0.30, no surface scaling was detected after six 

months of sulphate exposure. For the non-cured concrete cylinders, an increase in damage was observed in 

comparison to their cured counterparts. 

 

 

 
                   (a)                                         (b)                                         (c)                                      (d) 

 

Figure 2: Cured concrete cylinders made with w/b = 0.60 after six months of physical sulphate exposure: (a) 

concrete made with OPC, (b) OPC + 25 % FA, (c) OPC + 8 % SF, and (d) OPC + 8% MK. 
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                         (a)                                       (b)                                      (c)                                       (d) 

 

Figure 3: Cured concrete cylinders made with w/b = 0.45 after six months of physical sulphate exposure: (a) 

concrete made with OPC, (b) OPC + 25 % FA, (c) OPC + 8 % SF, and (d) OPC + 8% MK. 

 

 

 
                       (a)                                       (b)                                            (c)                                     (d) 

 

Figure 4: Cured concrete cylinders made with w/b = 0.30 after six months of physical sulphate exposure: (a) 

concrete with OPC, (b) OPC + 25% FA, (c) OPC + 8% SF, and (d) OPC + 8% MK. 

 

Table 5: Visual rating for concrete cylinders after six months of exposure to physical sulphate attack 

 
 w/c = 0.60  w/c = 0.60* w/c = 0.45 w/c = 0.45* w/c = 0.30  w/c = 0.30* 

OPC 2.20 3.80 0.65 0.95 0 0 

OPC + 25% FA 5.80 7.50 2.25 2.85 0 0 

OPC + 8% SF 5.00 6.25 1.20 1.55 0 0 

OPC + 8% MK 5.50 6.95 1.35 1.80 0 0 

    *Non-cured 
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4.2 Mass Loss 

The mass loss was observed for all concrete cylinders that were partially immersed in the sodium sulphate solution 

and exposed to cyclic temperature and RH. Figure 5 shows the mass loss after 6 months of exposure to physical 

sulphate attack. During the first month, concrete cylinders gained mass due to water absorption, particularly for 

those with higher w/b. For example, cured concrete cylinders with w/b = 0.60 gained higher mass than the cured 

cylinders made with w/b = 0.45 and w/b = 0.30, respectively. In addition, at the same w/b ratio, 100% OPC concrete 

cylinders gained higher mass than that of samples incorporating pozzolanic minerals. For the non-cured concrete 

cylinders, the mass gain was higher than the cured concrete cylinders. Approximately one month later, concrete 

cylinders started to lose mass. Higher mass loss was observed for the non-cured concrete cylinders than for their 

cured counterparts. The highest mass loss was detected for those concrete cylinders made with w/b = 0.60 and 

incorporating pozzolanic minerals. A similar trend was observed for concrete cylinders made with w/b = 0.45 but 

with less mass loss. However, all concrete cylinders made with w/b = 0.30 did not exhibit any mass loss.  

 

 

 
                                             (a)                                                                                   (b) 

  

Figure 5: (a) Mass loss for cured concrete cylinders made with w/b = 0.60, (b) Mass loss for cured concrete 

cylinders made with w/b = 0.45. 

 

After six months, the portion of all concrete cylinders immersed into the sodium sulphate solution was found mostly 

intact. This finding indicates that the mass loss occurred due to damage of the concrete surface above the solution 

level. Since the concrete surface above the solution level was exposed to evaporation, supersaturation of the sodium 

sulphate solution can be reached. Therefore, crystals can grow from the supersaturated solution and generate high 

tensile stress, leading to damage and mass loss of the concrete above the solution level. In addition, high 

crystallisation pressure can be achieved through cycling the temperature and RH, resulting in accelerated damage.  

 

Results indicate that the vulnerability of concrete to damage due to physical sulphate attack depends on the pore 

structure, which is similar to natural stones or rocks. Using pozzolanic minerals in concrete exposed to physical 

sulphate attack was found to escalate the surface scaling. This finding can be related to the fact that pozzolanic 

minerals refine the concrete pore structure and increase the volume of pores with smaller diameters. Since pores 

with smaller diameter tend to increase the capillary rise on the concrete surface, a larger amount of solution will be 

exposed to evaporation, leading to a higher supersaturation. Thus, salt crystals will grow and apply higher pressure, 

resulting in larger surface scaling and increased mass loss of the concrete. In case of increasing the w/b, the volume 

of the pores and their connectivity can be increased, leading to higher capillary rise and increased salt growth on the 

concrete surface. Therefore, more damage can occur as shown in this study. In addition, it was found that curing the 

concrete for 28 days led to less surface scaling. This finding can be attributed to the fact that curing the concrete 

increases the solid volume of the concrete (Mehta and Monteiro, 2006), leading to a decrease in the total volume of 

the pores and their connectivity.  
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5. CONCLUSIONS  

In this paper, the durability of concrete exposed to an environment prone to physical sulphate attack was 

investigated. Several conclusions can be drawn based on the results: 

 

• The performance of concrete exposed to physical sulphate attack depends on the concrete’s pore structure rather 

than its chemical composition.  

• Reducing the w/b ratio improved the durability of concrete under physical sulphate attack. This can be explained 

by the fact that reducing the w/b ratio reduces the total volume of the pores and their connectivity, resulting in 

less capillary rise and surface scaling. 

• Moist curing the concrete for 28-days before exposure to physical sulphate attack reduced the damage.  

• Partially replacing the ordinary portland cement with pozzolanic minerals escalated the damage from physical 

sulphate attack since pozzolanic minerals refine the concrete pore structure, leading to higher capillary rise and 

more surface area for evaporation. 
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