Western University

Scholarship@Western

Centre for Decision Sciences and Econometrics

Technical Reports Economics Working Papers Archive

1986

The VPRT: A Sequential Testing Procedure
Dominating the SPRT

Noel Cressie

Peter B. Morgan

Follow this and additional works at: https://irlib.uwo.ca/economicscdse tr

b Part of the Economics Commons

Citation of this paper:

Cressie, Noel, Peter B. Morgan. "The VPRT: A Sequential Testing Procedure Dominating the SPRT." Centre for Decision Sciences and
Econometrics Technical Reports, 11. London, ON: Department of Economics, University of Western Ontario (1986).


https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicscdse_tr?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicscdse_tr?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/econwpa?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicscdse_tr?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages

THE CENTRE FOR DECISION SCIENCES
AND ECONOMETRICS

The VPRT: A Sequential Testing Procedure
Dominating The SPRT

Noel Cressie
Peter B. Morgan

TECHNICAL REPORT NO. 11
MARCH 1986

Centre For Decision Sciences And Econometrics
Social Science Centre
The University of Western Ontario
London, Ontario N6A 5C2

Department of Economics Librasy

APR 15 1986

l University of Western Ontario

owa




/93%
ISSN: 0831-4454
ISBN: 0-7714-0731-9

THE VPRT: A SEQUENTTIAL TESTING PROCEDURE

DOMINATING THE SPRT

By Noel Cressie and Peter B. Morgan
Iowa State University and University of Western Ontario
Abstract

Under more realistic assumptions than those usually imposed in the
sequential analysis literature, a variable-sample-size sequential probability
ratio test (VPRT) of two simple hypotheses is found which maximizes the
expected net gain over all sequential decision procedures. The VPRT also
minimizes the expected total sampling cost and, under slightly more general
conditions than those imposed by Wald and Wolfowitz (1948), reduces to the
one-observation-at-a-time sequential probability ratio test (SPRT). Finally,
the ways in which the size and power of the VPRT depend upon the parameters of

the decision procedure are examined.
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1. Introduction

The sequential probability ratio test (SPRT) for testing two simple
hypotheses is shown by Wald and Wolfowitz (1948) to be optimal in the
following sense. Of all size a« tests having the same power, the test which-
requires on average the fewest observations is the SPRT. How then can the
claim in the title of our paper be made?

The assumptions underlying the Wald-Wolfowitz resul£ need to be stated
explicitly, to expose the rather specific nature of their result. More
general (and more realistic) assumptions can then be entertained. First Wald
and Wolfowitz assumed that the sequential experiment to determine the true
hypothesis has no fixed truncation time T, within which a decision has to bé
made. The real world does not operate without deadlines, and indeed use of
the SPRT in sequential clinical trials is always modified to ensure
termination of the trial in a fixed time (Armitage, 1985). What optimality
results are available for these truncated decision procedures?

Second Wald and Wolfowitz assumed that the cost of sampling each
individual observation is a constant c and that there is no start-up cost co.
More realistic cost functions show an often substantial start-up cost for an
experiment (e.g. purchase of equipment, planning, pilot experiment) and a
decreasing unit cost as time goes on and the experiment is made to run more
efficiently. What optimality results are available for a more general cost
structure? |

Third Wald and Wolfowitz implicitly assume the payoff received for
deciding upon one hypothesis or the other is independent of when that decision
is taken. In some circumstances however, delay of the decision depreciates

the payoff (e.g. indecisiveness on where to locate a rapid transit



station affects all potential commuters detrimentally). Thus we have included
the discount factor t (0 < t < 1) as a control variable in the decision
procedure; Wald and Wolfowitz implicitly assume v = 1. What happens to their
result when the discount factor is less than one?

Finally, until recently it has always been assumed that a sequential
procedure only takes one observation at a time. Group séquential sampling,
usually with constant group size, has been suggested by éhosh (1970, p. 224)
and Pocock (1977). Gupta and Hiesgke (1984) present sequential selection
procedures based on sample sizes that differ from one time point to another.
In all these studies, the sample size is either assumed to be known in some |
way, or is chosen in a (perhaps stochastic) ad hoc manner. Is there an
optimal choice of sample size? And is there an analogue of the Wald-Wolfowitz
theorem for the variable-sample-size sequential procedure?

This article addresses all of the questions above, using dynamic
programming.to develop an optimal procedure we call the VPRT

(variable-sample-size-sequential probability ratio test) that dominates the

SPRT. It will be seen that under the assumptions made by Wald and Wolfowitz
(1948), the VPRT and SPRT are identical. However it will be shown that under
the more realistic model, the SPRT's disadvantage can be substantial.

At almost the same time as Wald and Wolfowitz published their optimality
results, Arrow, Blackwell, and Girshick (1949) gave different proofs of many
of the same results. Indeed their assumptions are more general (although they
stili do not take into account a discount factor and variable sample size),
their proofs are more direct, and their approach foreshadows the use of
dynamic programming in constructing optimal decision procedures. In addition,
they establish optimality results for the SPRT in the multi-valued decision

problem, something we will take up in a subsequent paper.

¥
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One of the assumptions we do not attempt to generalize here is the
independent and identically distributed nature of the sampling from fixed
distributions. Irle (1984) shows optimality of the SPRT under minimal
assumptions on a stochastic process generating the observations
(one-at-a-time); and Quang (1985) shows that robust (one-at-a-time) sequential
testing of two contaminated distributions leads to an SPRT based on the
least-favorable pair.

Section 2 sets out formally the notation and the model structure already
alluded to above. Section 3 establishes the existence of a sequence of uniqﬁe
pairs of probabilities that completely describe the stopping rule of the |
optimal decision procedure. In Section 4 the optimal decision procedure is
shown to be equivalent to a probability ratio test (the VPRT) which dominates
the SPRT and which, under the Wald-Wolfowitz assumptions, reduces to the
SPRT. Section 5 offers comments on how the size and power of the VPRT are
constructed. Concluding remarks are given in Section 6. To enhance the
readability of the paper we have collected the proofs of our results into an
appendix, and left their statements and surrounding discussion to the main

body of the paper.

2. MODEL STRUCTURE AND NOTATION

Consider the set Q = {wo, wl} of the states of nature. Which of wo or
wl is the true state is unknown, however observations drawn from an
observation space X according to the cumulative distribution function (cdf) F

provide information from which a decision can be made. Assume F has a density

(or probability mass) function f.



Let T denote the number of decision points available to the decisionmaker
and let t € {1,..., T} denote the t-th decision point, 1 < T < @; when T < @
we have a truncated decision procedure. In other words a decision about the
true state of nature can be made or put off at any of the t = 1,...,T-1
discrete time points, but a decision has to be made by time T.

The decisionmaker's intial information, at t=1, is: complete knowledge of
{F(x;w): x € X} for given w € Q, an initial information Qector yl, and a
prior probability p1 for the event {w:wb}. The truncation time T is also
known.

Sampling from X is costly. In particular, c(nt) is the cost incurred ag
time t if nt > 0 observations are demanded at t. For nt 2 1 these

observations are denoted by x ,...,x and are received by the
tl tn

t
decisionmaker at time t+l. It is assumed that c(0) = ¢0 20, c(n) is

monotonic strictly increasing with n, and that c¢(n) is unbounded above (co is

the "overhead” or "fixed cost of sampling").

Upon receiving x = (x P ) forn > 1at t,
t-1 t-1,1 t-1,n t-1
t-1
the decisionmaker augments the information vector yt-1 by xt-1 to generate the

current information vector Ve (for t=2,...,T); that is

(
Y = {Y } ’ t=1
1 1
y €Y = Y » t > 2 and n =0 (2.1)
t t t-1 t-1
n
t-1
Y X (X X) » t>2and n > 1.
| t-1  i=1 t-1

It is not yet clear how the "right" decision about w is to be made, but

it is clear that a sequential rule will have to be considered.



T
DEFINITION 1. A terminal decision rule 8§ is a sequence {St}t=1 where
ét: Yt » {0,1}; Gt(-) = 0 if “0 is chosen and ét(-) =1 if 01 is chosen,
for t =1,...,T.
At any decision point t a choice is made between collecting more
observations or terminating sampling. If sampling is terminated then § is

used to choose between wo and wl. The payoffs to these choices are defined

by the payoff function U: @ x {0,1} - R, where for given t and yt,

u , ifd(y)=0andw=ow
00 t 0
u , ifd(y)=0andow-=u0
01 t 1

U(w,8(y )) = ) , (2.2)
t u , if &y ) 1 and o
10 t

]
€

]
€

.

u , ifé(y)=1and o
11 t

Typically u00 > ulo and u11 > u°1, since correct decisions are usually
rewarded more generously than incorrect decisions.

In the decision-theory literature, payoffs are often expressed as negative
losses, by way of a prespecified loss function. Which one uses is really a
matter of taste; those readers familiar with loss functions should have no
difficulty thinking in terms of payoff functions.

Although most sequential procedures specify that one further observation
is taken whenever sampling is continued, we wish to entertain the possibility
of continuing by drawing none, one,_or more observations at a time. We will
see later that an optimal choice of these sample sizes may lead to a

substantial improvement over the one-at-a-time sequential procedures.

T
DEFINITION 2. A sample-size rule v is a sequence {vt} where

vt: Yt * N U {0}, the set of non-negative integers, for t = 1,...,T.
+



T
DEFINITION 3. A stopping rule S is a sequence {sf}t=1 where S;: Y, » {0,1};

st(°) = 0 if sampling continues at t and St(°) = 1 if sampling is not

"

continued at t, for t=1,...,T. Then by definition, ST(O) =1.

A decision rule is made up of an S, a v, and a §, and operates as
follows. At time t the decisionmaker's observation vector is yt. Two
mutually exclusive alternatives are to be considered. One alternative is to
terminate sampling at t and use 6t to select a state of ﬁature from Q. The
other is to continue to sample at t by drawing “t(yt) = nt additional
observations from X. Which is chosen is determined by St(yt), and
the payoff and cost functions offer a precise way of valuing the two

alternatives.

DEFINITION 4. A decision rule d is an ordered triple (S, v, §), of a
stopping rule S, a sample-size rule v, and a terminal decision rule §.

We conclude this section by outlining the form of the optimal decision
rule. Let pt be the decisionmaker's posterior probability at t of the event
{w=mo}. By Bayes' Theorem, for t = 1,...,T-1 and nt >0,

f(x ;0 )p f(y w )P (2.3)
t 0 ¢t t+1 0 1

P _ = = .
t+1 f(x ;0 )p + f(x ;0 )(1 -p ) f£¢( jw )p  + £¢( jw )(1-p )
t 0 t t 1 pt yt+1 0 p1 yt+1 1 pl

If nt = 0 for any t € {1,...,T-1} then pt+l = pt.

Also the unconditional cdf over X at t is
F (x) := p F(xj0 ) + (1 - F(x;
t pt v“’o pt) ’01)
where := means "is defined to be". At time t the expected net gain (taking

into account both payoff and cost) of a terminal decision reached using



0, ifu p +u (1 -p)J)2u p +u (1 -p)
00 t o1 t 10 t 11 t

§ (y) = (2.4)

t t

1, ifu p +u (1l-p)<u p +u (1 -p)
00 t 01 t 10 t 11 t
is

E [U(w,8 (y DIy ,p) =max {u p +u (L -p),u p +u (1-p )}, (2.5
11 :

W t t t t o0t 01 t 10 t t

where E denotes the expectation with respect to the measure on @ defined by
()

the posterior probability pt. Should the decisionmaker sample until t=T is
reached, then sampling must terminate and a terminal decision must be taken.

Thus the expected net gain at t=T of the decision procedure is

T

V(y ,d,p) :=E [U(w,8 (y D]y ,p 1. (2.6)
TT T © T T T T

Backward recursion and the optimality principle of dynamic programming can

now be used to construct a sequence of maximum expected net gain functions:

T

V (y ,d,p ) := max{E [U(w,8 (y M|y ,p 1,
t t t ) t t t t 2.7

max {-c(n ) + tE [V (y ,d, ) n ]1}}; t=1,...,T.
n >0 t P t+l 4l Per1 Iyt'pt' £ Tt

That is, V:(yt,d,pt) is the larger of the expected net gain of stopping at t
and the expected net gain of continuing to sample by demanding n: additional
observations. The sample size n: is itself optimal in thét it maximizes the
expected net gain of continuing. That a dollar tomorrow is worth less than a
dollar today is expressed through 1, the discount factor between decision
points; 0 < t < 1. Spahn and Ehrenfeld (1974) introduce the idea of an

optimal sample size but in the less realistic case of T = », T = 1 and 3

u =u .
00 11



Let D denote the set of decision rules. Formally, the problem we wish to
*
solve is: Find a decision rule d € D such that for any given Ve € Y, and
any py € [0,1],
T * T
Vi(y,.d Py) 2V (y,,4,p), VAED ; t =1,...,T. (2.8)

Such a d* is called an optimal decision rule.

Thus an optimal decision rule for the unknown parameter o is a function
of prior information and sample data that maximises expeﬁted net gain by
optimising not only on stop/continue decisions but, in addition, on sample
size choices. Morgan and Manning (1985) show that implicit in the
construction of the maximum expected net gain functions described in (2.7) is

the existence of an optimal decision rule d* = (S*,v,&%), where

* * T %
(a) d := {8 } such that § : ¥ - {0,1} and
t t=1 t t
r'0, ifu p +u (I-p)>u p +u (1-p)
00 t 01 t 10 t 11 t
*
§ (y ) =4 2.9a
¢ Yt ( )
1, ifu p +u (1-p)<u p +u (l-p)
. 00 t 01 t 10 t 11 t
* x T *
(b) v := {v } such that v : Y -» N U {0} and
t t=1 t t +
* T *
v (y ) = argmax {-c(n ) + tE [V ( d n 2.9
£ 7t %t t Ft £+l 41’ ’pt+1)lyt'pt’ t”' ¢ )

: *

for t € {1,...,T-1}, and vT(yT)
x x T x

(e) 8 := {Sg}i.y such that s,: Yy » {0,1} and

0



“
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0, if + 1 . + -
max {uoopt u ( pt) ulopt ull(l pt)}

01

% T *

*x x
S ( ) = 2 - C(\’ (Y )) + tE [V (Y sd ’ ) v ( )]
£t t Foobel el Tra Iyt'pt' £t

(2.9¢)

|1, otherwise,

%
for t € {1,...,T-1}, and ST(yT) = 1.
*
In effect, d is simply a statement that, to maximize the expected net gain

from any stage of the decision problem, the decisionmaker should discover and
choose the alternative which, at that stage, offers the highest expected net
gain.

The reader may wish to note here that since Vi(yl.d*,pl) is a maximum
expected-net-gain function constructed employing backward induction and the -
optimality principle of dynamic programming, it is equivalent to define an
optimal decision rule as any d* which satisfies:

Vg(yl,d*,pl) > vi(yl.d,pl). v d € D, any given ¥y» and any p, €[0,1].(2.10)
For an example of this construction applied to the usual sequential decision

procedure, see Ferguson (1967, pp. 315-317).

3. THE OPTIMAL DECISION PROCEDURE

The problem described in Section 2 is formally a special case of a
decision problem analyzed by Morgan and Manning (1985). There they provide a
proof (1985, Theorem 2, p. 937) of the existence and a deécription of a
maximum-expected-net—gain decision procedure under conditions which include
the decision problem described in Section 2. Accordingly, we refer the reader

to this result and do not consider the existence question further.
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The goal of this section is to establish properties of the
ﬁaximum—expected—net—gain functions {V:(-): t=1,...,T} from which it follows
that the optimal decision procedure has the same very simple and intuitively
appealing form that the usual sequential decision procedures have. The
results presented are linked by informal and intuitive explanations of their
validity and importance; the formal proofs are collected into the Appendix.
Briefly, we show that each of the expected-net-gain funétions V:(yt.d*,pt) is
the maximum of functions which are both continuous and convex with respect to
pt. These results allow us to establish the existence of two unique critical
probabilities ptL and ptU that partition the unit interval into three
intervals: an interval where % is chosen, an interval where w, is chosen,
and an interval where sampling is continued.

We begin by reminding the reader that for finite T, the last member of the
sequence of maximum-expected-net-gain functions is

Vi(yr,d*,pr) = max{uoopT + u01(1 - pT). Ug1Pp + ull(l - pT)}. (3.1)
This is clearly convex and continuous with respect to pT, and only depends on

the data y through pT. Now notice that
T

vT ( ,d* ) = max{u +u (1 - ), u +u (1 - )
o1 Yo Pry 007 -1 01 Pea’® Y10Pr1 11 Ppq’
T *
max f{-c(n ) + tE vy ,d,p)ly ,p ,.,n 1}} (3.2)
n_2 0 T-1 FT L TT T ‘T-1 T-1 T-1

is the maximum of three functions, the first two of which are linear with

respect to pT 1 and the third is the maximum of functions which are each

linear with respect to pT 1 since they depend upon pT 1 linearly through

T * . . .
FT—l( ). Because vT—l(yT-l’d 'pT—l) iz the maximum of functions linear in

pT 1’ it is a function which is convex and thus continuous with respect to

P . Once again dependence on the data is only through . This
T-1 8 P yT-l . y & p'1'-1

argument may be extended to establish the general result for V:.
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T *
LEMMA 3.1, Given T < =, t € {1,...,T} and Y¢ € Y, then Vt(yt,d +Py) is
a convex and continuous function of Py € [0,1].

Proof: See the Appendix.

’

Figure 1 shows how these results translate into plots, given here for

*
t=l. The figure shows Vg(yl.d .pl) as the solid line. This is

r . .

u +u (1 - ) S € [0
1op1 11( p1 H p1 ( .plL]
T * T *
V(y ,d ,p ) ={max {-c(n ) + tE [V (y ,d ,p )]y ,p ,nl}; p € ( )
171 T ]n >0 1 Fo22 P Iy1 A P ST AT
1 1
u +u (1 -p) s PEI[ s 11,
00’1 © ‘o1 1 PR E P
(3.3)

Figure 1 here

So we see that, for the case illustrated, the optimal decision procedure says

"choose w if p = Pr(w=w ) is smaller than or equal to plL," "choose wo if

*
P, is larger than or equal to p,,," and "collect n, extra data if p, is
1 1 1 1

between
P and pyy”. The quantity ﬁ is the value of the prior probability p; for

which the decisionmaker values equally the terminal alternatives of choosing

w_or of choosing ml. The figure suggests that there will exist only one

root to each of the equations

T * .
u p +u (1 -p)=max {-c(n ) +<E [V (y ,d ,p )|y ,p ,n ]}, (3.4)
001 01 1 n >0 1 F 2 2 2 1 1 1
. 1 1
and
T *
u +u (1 - ) =max {-c(n ) + TtE [V (y ,d ) nl}. (3.5)
o1 " "1 P = R0 1 IR R P! ly1'p1' 1

1 1
Let plL be the root of (3.4) and plU the root of (3.5). These solutions exist

provided
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Figure 1
A A
T ' ‘
vl(yl’d*’Pl) = mx{Ew[U(msaf(yl)) Iylip]_l’
u
11
Tu,,=C.
11 "% %00
| - -
: ------ - TUOO Co
! Ssq ._,.--“’ o
| PR N {
] _——"" So I
——""1‘ = \i‘\ :
Yo1 - ! { \‘$\
| 1 | \\‘s
: ! b,
] i I Se
I ! ] Sso
| : i \\\
I 1 | e
| 1 t Ssq
] | : ‘\,u
} ' ! 10
! H !
0 PiL 4 P1y 1

<
—
+

The maximum-expected-net-gain function for t=1. Intervals [0,? )

1, (
i’ PPy
[plu,ll are respectively where wl is chosen, where sampling is continued, and

where mo is chosen.

e
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u p+u (L-p)=u p+u (1L-p)
00 o1 o1 11

T * -
<max {-c(n ) + tE [V (y ,4 ,p ) nl}. (3.6)
n >0 1 Foo272"0 P, lyl'p' 1
1 1
The essence of the proof of the existence and uniqueness of p1L and Piy

subject to (3.6) is simply that the endpoints of the convex function of pl,

T %
max {-c(n ) + tE_ [V (y ,d ,p )|y ,p ,n 1}
n >0 1 Fo272'0 ' |y1 Pyt
are Tull - co (for p1 = 0) and tuoo - c0 (for p1 = 1); since the discount

factor t < 1, and the overhead co > 0, these endpointé are smaller than or -
equal to u11 and uoo respectively. This, (3.6), and the convexity of the
curve make it obvious that plL and plu must exist and be unique. The argumeht
may be repeated for any t = 2,...,T-1, giving the following result.
THEOREM 3.1. Given 2 < T < », t € {1,...,T-1} and-yt € Yt, if

* T * -

-c(v (y)) +tE [V (y d ) »P =pl
et Pl e’ Pen lyt PP

>u p+u (1L -p)=u p+u (1-9p),
00 01 10 11

then there exist pyp,, Py € [0, 1], pP¢g, < ﬁ < Pgy» such that the
*
maximum-expected-net-gain (optimal) decision procedure d is:
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stop sampling and choose w , ifp € [0, p 1] '
1 t tL

defer a terminal decision and

*

collect v (y ) further observations, if p € (p ,p )

t t . t tL tu

stop sampling and choose w if € [p 1].
P samp 8 o ’ Pt tU’

Proof: See the Appendix.

The reader familiar with the literature on the development of SPRT's will now
have recognised that the above result opens the way to re-expressing the
optimal decision procedure d* as a likelihood-ratio test akin to the SPRT; iﬁ
this form we call d* the VPRT.

We now establish a monotoni;ity property of the V:(-) functions and show
that this implies the sequence {(ptL.th)}:;i of continue-sampling intervals
is nested. It is intuitively clear that the maximum value functions VZ(p,d*)

are monotonically increasing in T; that is, having the opportunity to draw

more samples of data cannot reduce the expected-net-gain of the optimal

decision procedure.

T *x
LEMMA 3.2 Given t € {1,...,T} and pt € [0,1], Vt(yt.d ,pt) is a monotonic

increasing function of T.

Proof: See the Appendix.

T ©

LEMMA 3.3 {vt} is uniformly convergent to Vt, vt>1.

=

Proof: See the Appendix
Figure 2 illustrates the content of the next two results. With an
arbitrary choice of t=1 the figure shows some members of the monotonically

increasing sequence of VZ functions. The continue-sampling regions

(ptL(T)' th(T)) increase with T, approaching a limiting interval



(s

“@

(13

15

Figure 2
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The continue-sampling intervals at t for termination times T, T+l and « are
respectively (p (T),p (T)), (p (T+l) (T+1)) and (p (=) (»)) =
P VAP PPyt TP ' Pry Pen' ™ Py
x %
(pL,pU). The continue-sampling intervals increase in a nested manner with T

due to VE(pt,d*) being an increasing function of T.
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(ptL(c); ptu(w)) which is the continﬁe—sampling region when the decision

problem has no finite truncation time (T=wx).

.

THEOREM 3.2 For given t > 1 the sequence {(PtL(T). ptu(r))};;t is nested,
increasing and convergent to (ptL(w). th(O)).

Proof: See the Appendix.

Figure 2 here

A That the continue-sampling intervals (ptL(T). th(T)) widen in a nested
manner as T increases follows from the expected net gain of continuing to

sample being an increasing function of the number of intervals remaining to

the truncation time T. Of course when T =® then Pep(®) = p: and

Peyl®) = p; are independent of T because the passage of time does not reduce

the number of periods remaining for the decisionmaker. This limiting case of =
time-invariant boundaries for the continue-sampling interval is not unfamiliar

to those studying the limiting case of the one-at-a-time sequential decision

procedures (see Ferguson, 1967, pp. 355-356) with the difference that the

one-at-a-time procedure's continue-sampling region (pL, p&) c (p:, p;). The
containment will be strict in many circumstances since the optimal sample size
tp draw when continuing sampling will often not be unity. A class of problems
for which (pi, p&) = (p:, p:) is described in Theorem 4.2.

In the next section we write out the VPRT explicitly in terms of the
likelihood ratio, develop its optimality properties, comp#re these to the
p:opérties of the SPRT, and demonstrate that the VPRT always dominates the

SPRT.

"
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4. THE VARTABLE-SAMPLE-SIZE-SEQUENTIAL PROBABILITY RATIO TEST .

The goal of this section is to extend the pioneering works of Wald and
Wolfowitz (1948) and Arrow, Blackwell and Girshick (1949) from the class of
pure sequential (one-at-a-time-sampling strategy) decision procedures to the
more general class of decision procedures described in Section 3. This is
done by first introducing the variable-sample-size-sequential probability
ratio test (VPRT), second explaining the optimality ptopérties of the VPRT,
and third demonstrating the dominance of the VPRT over the SPRT in both the
Arrow-Blackwell-Girshick sense of maximizing expected-net-gain and in the
Wald-Wolfowitz sense of minimizing the expected total.number of observations
needed to reach a choice for w, under either state of nature and amongst ali
decision procedures of a given size.

Given T < =, any-t € {1,...,T} and yt € Yt,
define the likelihood ratio

f(y ;o)
t o

kt' £( )
o)
Vel

We define a wide-sense sequential probability ratio test procedure
T
(WSPRT) for given T < », as a sequence {(st'“t'ét’At’Bt)}tzl where
St: Yt » {0,1}; vt: Yt - N+U {0}; ét: Yt » {0,1}; At,Bt € R+U {0}
with 0 < A < Btg o, and where the decision rule is, for any given

te{,...,T-1} and yt € Yt,

S ( land § (y ) =1 , iIfF 0O KN <A
t yt) t yt I A

st(yt)
observations collected , if At < xt < Bt (4.1)

0 and (y ) extra
Ve

S(y)=1and § (y ) =0 , iIf B <A .
t t t t t. t
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In words, (4.1) says that if ht € [O,At] then sampling should stop and_w1
be chosen; if xt € (At'Bt) then sampling should continue by collecting
n = vt(yt) additional observations; and if xt € [Bt,w) then sampling

t
should stop and 00 be chosen.

Let W denote the class of wide-sense sequential probability ratio
tests. We wish to demonstrate the breadth of this class. Obviously the
usual one-at-a-time sequential probability ratio tests afe in W, with
vt Z1, Vt>1l. Less obviously, the ﬁeyman—Pearson test (Neyman and
Pearson, 1933) based on a fixed sample size n is also in W, with “1 = n and
82 = 1. Moreover, truncated sequential procedures such as a 2-sample testv
based on the likelihood ratio are in W, with s3 = 1.

Due to Wald and Wolfowitz's (1948) optimality result, we use the SPRT as
the "yardstick" against which to measure the performance of any member of W.
By relaxing the sampling restriction vt =1, Vt>1, we create the
possibility of discovering a more flexible form of WSPRT which dominates the
SPRT. Below we demonstrate that the maximum-expected-net-gain decision
procedure d* described in Section 3 is equivalent to such a test; this test is
the VPRT, which we now describe.

From Theorem 3.1, the optimal decision at t is as follows:

Choose w iff p € [p ,1] which, rewritten, is
0 t tu
f(Yt;uo)P1
»11. (4.3)

€ [p
Cf(y @ ) + f(y ;0 )(1-p ) tu
yt 0 p1 yt 1 pl
That is,

£y j0) - (-
yt 00 th)pl

_— (4.4)

<
t fyijwo) ~ p (1-p)
£’ 1 w1

choose wb iff 0 < A

L]
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Similarly,
(1-p )p
tL 1
choose w iff —— <A (4.5)
1 p _(1-p) t
tL 1
and

* *
continue to sample by collecting ng = v (yg) further observations iff

1- -
( pw)p1 (1 ptL)p1
(4.6)

T A< (1-p )
Pev' ™ Py PPy

These simple rearrangements show that the optimal decision procedure dx
can be rewritten as the following WSPRT: Given T < =, define the sequence
X X % T
{(St.vt.ét.(l-ptu)pl/ptu(1~p1). (l—ptL)pllptL(l-pl))}t=1 where, given
* *
te{1,...,T-1} and Ye € Yt’ the functions St: Yt*{o,l}. Uy Yt¢N+ U {0},
*
ét: Y, » {0,1} are defined by (2.9), where Py and Pyy are as defined in

Theorem 3.1 and where

(1-p )p
* * tu 1
S(y)=1landd(y)=1 ,if 0K\ & —m—
t t t t t p (1-p)
tu 1
* *
S(y ) =0and v (y )
t t t t
(1-p Dp (1-p Jp
tu 1 tL 1
extra observations collected, if ——————— < A < —————— (4.7)

(1-p) t (1-p.)
th pl ptL pl

(1-p_)
* ptL pl

x

S(y)=1and § (y ) =0 iIf A € —m .

£t tt ’ t " p (1-p)
tL 1

Define (4.7) to be the VPRT.
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Since the set of all WSPRT's W C D, the set of all decision procedures,

and since the VPRT is an element of W, it follows that the VPRT maximizes the

"w

expected net gain over all WSPRT's.

The model's assumptions are very genergl; virtually the only
restrictions put on the decision problem so far are that co > 0 and c(n) is
strictly increasing (even this can be relaxed, provided expected values rémain
well-defined). The optimality theorems of Morgan and Haﬁning (1985, Theorems
2 and 3) show that the VPRT dominates the SPRT. This should not be
surprising. The SPRT is a very special type of WSPRT where vt(o) =1 at
every decision point t, and this restriction will be ipconsistent with
achieving ﬁighest expected net gain in many circumstances. What then of thé
famous Wald-Wolfowitz result that the SPRT dominates "all" tests of the same

or smaller size whatever the state of nature? In the remainder of this

iv

section we show how the Wald-Wolfowitz theorem is a special case of the
results of our more general model.

\ The Wald-Wolfowitz theorem finds a test procedure of a given size and
power that minimizes the expected total number of observations needed to
choose from Q = {uo,ml}. when either one of wo or ml is the true state of
nature. Their result that the SPRT is optimal in this sensé relies on some
special structure in addition to that of just one-at-a-time sampling; that is,
e(n) =en, t =1 and T = ®». Our explanation of their result is to first
show that if v = 1 then, for either state of nature, the vaT (given by

(4.7)) minimizes over W the expected total sampling cost incurred before a

choice for w is made. When c(n) = cn is imposed, this is equivalent to

L]

minimizing the expected total number of observations. When the extra
restriction T = » is added as well, we are able to show the VPRT coincides

with the SPRT; thus the Wald-Wolfowitz theorem emerges as a special case of
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our more general optimality results.
We have seen that the optimal (expected-net-gain maximizing) decision
procedure d* is equivalent to the VPRT given by (4.7). The following result

shows the VPRT is also optimal in the sense that it minimizes the expected

total cost of sampling.

THEOREM 4.1: Let a* and B* respectively'denqte ﬁhe type.I and type II error
probabilities for the VPRT with given values,of u ,u ,u ,u ,
00 01 10 11
and 1 { T< e, t =1, and a given non-negative monotonic strictly
increasing sampling cost function c¢(n). Let D(a*,B*) denote the set of all
the WSPRT's with type I error probability no larger than a* and type II error
probability no larger than B*. Let Ts denote the stopping time variable of
the WSPRT. The VPRT minimizes the expected total sampling cost
T -1

s x %
E[tZ1 c(nt)lw] over D(a ,B ) under either state of nature, w = wo or

W =0 .

1
Proof: See the Appendix.

If the additional restriction c¢(n) = cn is imposed, so that minimizing
Ele(n)] is equivalent to minimizing cE[n], then a corollary reminiscent of,

but still more general than, the Wald-Wolfowitz theorem is obtained.

COROLLARY 4.1: Under the conditions of Theorem 4.1 with ¢(n) = cn and
T -1

: s
¢ > 0, the VPRT minimizes the expected total sample size E[tzlntlwl

over D(a*,B*) under either state of nature, o = % or w = w, .

Proof: See the Appendix.
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Corollary 4.1 achieves a generality beyond that of the Wald-WOlfowité
theorem by establishing the minimum-expected-total-sample-size result for
éither a finite or an infinite truncation time T, and by allowing possibly
ﬁore than one observation to be collected at each decision point.

Now notice that when c(n) = cn it is never optimal for the decision-
maker to defer making a terminal decision by doing nothing; that is, at least
one extra datum is always gathered whenever the decisionAis to not stop.

T -1
' - s
When the SPRT is used vt(°) =1, vt=1,...,T-1, so that E[tzlntlw]
is also the expected number of periods before stopping:. However, when the
VPRT is used and c¢(n) = cn, v:(yt) 21, vt=1,...,T-1 and the expected
total sample size is minimized so, on average, the VPRT user not only needs
fewer observations but waits fewer periods before stopping than does the SPRT

user.

COROLLARY 4.2: Under the conditions of Theorem 4.1 with ¢(n) S en, ¢ > O,
tﬁe expected time taken by the VPRT to reach a terminal decision is smaller
tﬁan or equal to the expected time taken by the SPRT to reach a terminal
decision, under either state of nature, w = w or o = wl.
Proof: See the Appendix.

To the above results we could now add the remaining special structure of
the Wald-Wolfowitz theorem and demonstrate their result to be a special case
of the above. However, a more informative route is to proceed by establishing

a set of conditions more general than those of Wald-Wolfowitz and sufficient

for the VPRT to reduce to the SPRT. The Wald-Wolfowitz theorem then follows

as a special case.

(]

[t}
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THEOREM 4.2: The VPRT and the SPRT coincide under the conditions of Theorem
4.1 Wwith T = =, co = 0, ¢(n) > 0, and ¢(n) - c(n-1) a non-decreasing -
function forn > 1 .

Proof: See the Appendix.

Theorems 4.1 and 4.2 show the Waid-Wolfowitz result is unnecessarily
restrictive when it assumes c(n) = cn with ¢ > 0. The SPRT minimizes
expected total sample size under the above conditions fof quite general cost
structures.

The intuition behind Theorem 4.2 is rather simple. First consider the.-
effect of finite T. Suppose T = 2 only. Then an SPRT'will allow the
decisionmaker just one datum before a terminal decision has to be made. 1In
contrast, the VPRT would typically dictate a single sample of several
observations be collected. In cases when T < «» (and especially when T is
small) we should therefore anticipate the VPRT's expected net gain to exceed
that of the SPRT. Second, the effect of a discount rate t < 1 is to
penalize delay in reaching a terminal choice for w by reducing the present
value of terminal payoffs. The way to reach a terminal decision more quickly
is to gather observations more rapidly than one-at-a-time. Thus when 7 < 1
we should see the VPRT's expected net gain exceed that of the SPRT. Third,
the effect of a positive fixed cost of sampling co > 0 is also to penalize
delays in reaching a terminal choice for o since delay means at least one
more fixed cost co must be suffered. Thus, again the SPRT;S
one-at-a-time-sampling strategy will typically have a lower expected net gain
than the VPRT's flexible sampling strategy. Finally, when the incremental
sampling cost function c(n) - c(n-1) is not monotonic increasing it is
possible for the average cost per observation to be lower for some n > 2 than

it is forn = 1.
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These cost savings can be exploited by the VPRT since its more flexible
sampling strategy allows the drawing of samples of more than one

datum, thereby lifting the expected net gain of the VPRT above that of the

SPRT.

5. THE ENDOGENEITY OF SIZE AND POWER

The size and power of the VPRT are'respectively

T
¢(w ) S a := I Pr(choose w at tlw) (5.1)
0 t=1 1 (4]
and
T
¢(w ) S 7 := I Pr(choose w at tlw ). (5.2)
1 t=1 1 1

Using (4.7) we can rewrite (5.1) and (5.2) as

(1- ) =
Piv’™1
$(w) = Pr(A < TR |w)
Pt ™ .
1- 1-p ) 1-
SRl P i pl} n { T )pl}l )
+ | o
= i=1 'p (1-p ) i p (1-p) t~p (Lpy "
iL 1
1- 1- -
7-1 ( piu)p1 ( pit.)pl (1-p)p
£ PoCN. { < ——J}n{x < Hw) (5.3)
i=1 p (1l-p ) i p, (1-p) T

iv 1 iL 1 p(l—pl)

for w € , .
€ fugroy )
REMARK 5.1: a = ¢(wo) and 7 = ¢(w1) are entirely determined by the values

of the payoffs u , the discount rate t, the truncation time T,

,u__,u ,u
00 01 10 11
the decisionmaker's prior probability pl, and the cost function c(n).
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The remark is obvious from (5.3) once it is realized that each of
( ), ( Yooy ( ) are functions only of these
Pic'Pao’ ooy’ Ppog,uPro1y y
parameters of the decision problem and not of the data. The implications of

the remark are rather sweeping; the usual hypothesis testing procedure of

choosing a test of a certain size a which achieves a power v for testing

o= uo against o = ml is implicitly a selection of a subset of values for
» T, T, p, and c(n) that satisfy the restfictions (5.1) and

u_ ,u_,u__,u
00 01 10 11 1
(5.2). This subset has uncountably many members since (5.3) is homogeneous of

degree zero with respect to uo , and c(n); for example, doubling

u U '35

0’ o1’ 10’ 11
-1

o Pro’ o

or v. The essential point we wish to make here is that using the VPRT and

each of these leaves {(p unaffected and so has no effect upon a
choosing a« and v is equivalent to the imposition of a restriction on the
payoffs, discount rate, decision horizon, prior probability and sampling cost
function in a Bayesian decision problem where the goal is to choose a decision
procedure with highest possible expected-net-gain. It is possible then that
the classical testing procedure of (implicitly) choosing the uninformative
prior p1 = % as well as a value for the type I error probability «, is
inconsistent with optimal decisionmaking whenever (as is often the case) the
payoffs, discount rate, truncation time and sampling cost function are
exogenously determined for the decisionmaker; Cressie and Morgan (1986) use
the results developed here to investigate the classical fixed-sample-size
decision procedure and are able to improve upon the Neyman;Pearson (Neyman and
Pearsbn, 1933) approach to testing hypotheses.

Equations (5.1), (5.2) and (5.3) yield an exact description of ﬁow a
and 7 are allocated over the decision points t = 1,...,T. Notice that the
sequence of probabilities summed in (5.3) is a monotonic decreasing sequence

since each subsequent member of the sequence is the probability of the
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preceeding event intersected with another event. This reveals that a« is
"spent” and v is "generated” most rapidly at early decision points; stated

informally, first impressions matter most.

6. CONCLUDING REMARKS

Under more realistic and general assumptions than those usually imposed
in the sequential analysis literature, we have found a sequential decision
procedure that is optimal amongst all procedures that choose between two
possible states of nature using inferences based upon sequentially collected
data. "Optimal"” here means maximizing the expected net gain (payoff net of
sampling costs) from choosing a state of nature (formulating the problem in-
terms of losses leads to identical results). We call the optimal decision
procedure the "variable-sample-size-sequential probability ratio test" (VPRT).

The VPRT is a "wide-sense sequential probability ratio test” (WSPRT);
that is, a sequential probability ratio test where the number of additional
data that may be collected at any given decision point need not be 1, as is

required by the well-known SPRT initially developed by Wald and Wolfowitz

' * *
(1948). Let « and B respectively denote the VPRT's type I and type II
x %
error probabilities and D(a , B ) denote the class of WSPRT's with type I and
* *
type II error probabilities bounded above by « and B . Then the VPRT is

also optimal in the sense that it minimizes the expected total sampling cost

over D(a*, B*) under either state of nature. 1In particular, the SPRT's
expected total sampling cost is at least as large as, and often strictly
larger than the VPRT's. When T =, t = 1, ¢(0) = 0, c¢(n) > O and

c¢(n) - c(n-1) is monotonic increasing for n > 1, the VPRT coincides with the
SPRT. Thus Wald and Wolfowitz's (1948) optimality result can be extended to a

class of cost functions more general than c(n) = cn with ¢ > 0.

(3

L}
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* *
Size @ and power 1-B are endogenous, being functions of the

parameters of the decision problem (e.g. payoffs, priors etc.). Thus fixing
either the size or the power of a test puts restrictions on the values for
payoffs, priors etc. which are consistent wigh the test being an optimal
decision procedure (see Cressie and Morgan, 1986).

The determination of stop-continue boundaries for any particular problem
is a computationally intensive task which is currently béing considered by the
authors.
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APPENDIX
This appendix contains the proofs of Lemmas 3.1, 3.2 and 3.3, Theorems
3.1, 3.2, 4.i and 4.2, and Corollaries 4.1 and 4.2. Since the maximum
expected-net—gain functions V:(yt,d*,pt) depend on the data Ye only through P,
for d = d* (see Section 3), we streamline the notation here and write

T * T *x
Vt(yt,d .pt) as Vt(pt.d ).

T
LEMMA 3.1: Given T < o, t € {1,...,T} and yt € Yt, Vt(pt,d*) is a convex
and continuous function of pt € [0,1].
Proof: Since a convex function is necessarily continuous the proof need

* .
establish only that VT(pt,d ) is convex with respect to P, -

Choose values pt,pt € [0,1], pt # pt » and choose 6 € [0,1].

Define Pg := ept + (1-6)py . Then Vt(pe,d*)

X x T
= max {E (U(w,8 (p Dip ], —ev (p)) +<E [V (p ,d%)]|p 1}. (A.1)
® t e o t o F t+l t+l e

Now, the first component of (A.1) is convex with respect to pt since

E [U(w,s*

w[ (w t(P ))lPe]

[}

t
[}

+ (l-e)pt ) + u11(1-9P

= 1-0 1- - (1-6
max{uoo(ep + (1-0)p ) + u01( ép (1-e)p

(GP - (1-8)p

t
t
]
t
[] [N}
e - -— -
max{ [uoop (1 pt)] + (1 9)[u oPe + u°1(1 P
]

'
0 + - + o -
[ulopt u (1 p )] a- )[ulopt * "‘11(1 P

A
X
o~
[ =4
o
+
t'.’

]
ooPt (1 P, ). "1opt +u (l-pt)}

11 11
+ (1-e)max{uoopt + u°1(1-pt ), uoPe t un(l—pt )}

X | | * [N} (W]
eEw[u(m»ét(Pt))lpt] + (l—e)Em[U(m’at(pt ))lpt 1. (A.2)

.

[

&
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T *
Similarly we can use the fact that E [V (p ,d )|p ] is a linear
F t+1l t+l t
t
function of Py to prove
T
E [V ( d*) ]
Footel ee1’ Ipe
t
T ' T . ]
=6E [V ( a)lp ] + (1-0)E_ [V ( dx) | (A.3)
Fotel Pesr’ 'pt Footel Teel’ 'pt ’

from which it follows that

* T

- E v dx
c(vt(pe)) + T . [ t+1(p )lpe]

t+1’

*x T [}
Of{-c(v (p )) +TE [V (p ,d%)]|p 1}
t o F t+1 t+1 t

* T
+ (1-8){-c(v (p )) +tE [V (p ,d@)|p 1} (A.4)
t o F  t+l t

t+l

X ]

T 1
0f{-c(v (p )) + TE [V ( ,4%) 1}
vt pt ’ F t+1 pt+1 'pt

IA

[ ] T ti

*x
+ (1-0){-c(v (p )) +<E [V (p ,d%)|p 1I}. (A.5)
t t F  t+l t+l t

*x !
The inequality between (A.5) and (A.4) follows because v (pt) and

* (1] . [} fn
v (py) maximize the expected value of continuing, for Pt = PgsPg
respectively. Combining (A.1), (A.2) and (A.5) shows

T T ) T [ ]

Vi(pg,d%) < OV (p,,d%) + (1-8)Vi (p, ,d*). (A.6)

Q.E.D.
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THEOREM 3.1: Given 2 < T < =», t € {1,...,T-1} and y, € Yt. if
|

x T s

‘ .

-c( ) + tE [V ( ,d4%) = pl
vt(p) N F t+l pt+1 Ipt P

[

> uooﬁ + u01(1-f>) = uloﬁ + un(l-f)). ) (A.7) .

then there exist € [0,1], <p< such that the
Per'Pru ’ Per SF S Py
!

haximum-expected-net—gain (optimal) decision procedure d* is:

stop s ling and choose if € [0
P sampling Wl ’ Pt ’ptL]
defer a terminal decision and collect
*
vi (py) further observations y if Pt € (Pyp Pey)
stop sampling and choose w if €[ 1].
P pling o s Pt th'

Proof: For pg € [0,p] define the function

&

*

T
= 1— + - E v pd* ; A.B
s(pt) U 0P + u11( pt) c(vt(pt)) € ( t+1(pt+l )Ipt] (A.8)

e

8 is the sum of two functions which are convex (and continuous) with respect

to p , so g is convex (and continuous) with respect to pt.

t
Comparing (A.7) to (A.8) shows g(p) < 0. Also,

X
g(0) = u, t c(vt(O)) - Ty, = (1—1)u11 +c, > 0. (A.9)

Therefore there exists exactly one root solving g(pt) = 0 for

Pt € [0,p). Denote this root by P¢r- Then

> * T '
u p +u (1-p) =-c(v (p)) +E [V ( dx)|p ]
0t 11Ty 2 t t F ool Ttel’ Ipt

€ [0, )
, PiL .
as = . (A.10)

Py Per ,
€ (p ,pl

tL
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An analogous argument establishes that (A.7) implies the existence

of a unique value pyy € (p,1] such that

“ooPe * Yor PPy E - °‘“:‘pt” " [v:+1(pt+1’d*)lpt]
€ (ptu.ll

as pt = ptu . (A.11)
€ [;,ptu)

Combining (A.10) and (A.11) establishes the result.
Q.E.D.

T %
LEMMA 3.2. Given t € {1,...,T} and pt € [0,1], Vt(pt,d ) is a monotonic

increasing function of T.
£: Vip,.d
Proof: Vt(pt, )

*
= max{E_ [U(w,8,(p,)) Ip,],

x *
- , 8
C(vt(pt)) + rEF [max{Eu[U(m t+1(p

t

t+1))|pt+1]’

X

X
- +...+ TE E [U(w,8§ (p )) ee ]
e( ( € [ AACHLE pT lpTllpT_ll }Ipt }

T-1

v ))
t+1 pt+1

*
< max{Ew[U(m,Gt(pt))lpt],
* *

- + 1E E [U(w,8 ( ) 1,
C(vt(pt)) * Ft[max{ w[ © t+l pt+1 Ipt+1
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* *
- ...+ TE E [U(w,8 1,
°(°t+1(pt+1)) +o..+ T a [max{ [V T(pT))IP,r
-1
* * ,
- + tE [E [U(w,$ ( Nip- 1 1... 1}
c(vT(pT)) T FT( A CTL lpT+1 IpTl}IpT_1 }Ipt
T+l * :
=Vt (pt,d ), V pt € [0,1]. . Q.E.D.
T ©

LEMMA 3.3. {vt} is uniformly convergent to Vt, Vt>l.

Proof: The result follows immediately from Dini's Theorem: monotonicity is

established in Lemma 3.2, and continuity with respect.to P € [0,1] of

T *
Vt(p.d ), VT >t > 1, is established in Lemma 3.1.

Q.E.D.

THEOREM 3.2. For given t > 1 the sequence {(ptL(T). pw(T))}T . is nested,

ine i d tt .
ncreasing and convergent to (ptL(Q). th(w))
Proof: For any T > t+1, ptL(T) uniquely solves

* T *
g(pt) = u P+ "11(1'pt) + °(“t(pt)) - TEg [Vt+1(pt+1'd )Ipt] = 0.

t
T+1 * T *

By Lemma 3.2, Vt+1(pt+1,d ) > Vt+1(pt+1,d ), Vv Pty € [0,1].

Define

. * T+1 *

Then g(pt) > h(pt), v p, € [0,1]. 1In particular,
h +1)) = 0 = T)) > h T)). .13
(ptL(T )) s(ptL( )) 2 (ptL( )) (A.13)
In the proof of Theorem 3.1, g (and thus h) is shown to be convex and
monotonic decreasing. Therefore (A.13) implies

(T+1) < (T), VT > t+l. ‘ (A.14)
PeL SR =

v
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An analogous argument establishes that
(T+1) > (T), VT > t+l A.15
th 2 th ’ 2 ( )
which, with (A.14), establishes the nesting of the sequence of the
continue-sampling regions.
*—
By definition P, = ptL(o) solves

* x * x % o x %
t .

and is unique. Since g is continuous in pt it follows that

lim g(p (T)) = g(lim p (T)) = 0; that is
T

tL T tL
¢ * T *
lim{fu p (T)+u_ (1-p (T))+c(v (p (T)))-tE [V (p ,d) (T)1}
T+ 10 tL 11 ptL t ptL F  t+1 pt+1 'PtL
*
=u__ limp (T) +u_(1-limp (T)) + c(v (limp (T)))
10 T3> tL 11 T9= tL t Too tL
@® *x
+TE [V (p ,d)|limp (T)] = 0. (A.17)
Ft t+l  t+l Too tL
Comparing (A.16) to (A.17) shows
x
p =1limp (T). (A.18)
L Too ¢tL
*
An analogous argument proves p = lim p (T).
U T tU

Q.E.D.
THEOREM 4.1: Let a* and B* respectively denote the type I and type II error

probabilities for the VPRT with given values of u0 , , and

u ,u ,u
0 01 10 11
1<{T<»® =1, and a given non-negative monotonic strictly increasing
sampling cost function c(n). Let D(a*,B*) denote the set of all the WSPRT's
with type I error probability no larger than a* and type II error probability

no larger than B*. Let T denote the stopping time variable of the WSPRT.
s
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The VPRT minimizes the expected total sampling cost

T -1
s X X
El I c(n )|w) over D(a ,B ) under either state of nature, mmmb or w=w1.

x T *
Proof: Define a sequence of functions {wt} where ¢ : [0,1]) » {0,1} is
= t
such that
1, if the VPRT makes a terminal decision at t
(p,) (4.19)
¥y = y
0, otherwise,
* x T
Then the stopping time variable T of the VPRT is T = J§ ty
s s t=1

Furthermore the expected net gain of the VPRT, given w = wb, is

Vi(pl.d*;wo)
* X *
= wl(pl)[(l-sl(pl))uoo + sl(pl)ulol
* X * * *x
+ (1-¢ (p N{-cv (PN + ] Y (P I(1-8§ (p NDu + 8 (p)lu ]
11 11 X 2 2 22 00 2 2 10

2

* X * x *
+ (1- - + 1-§ )
wz(pz)){ c(vz(pz)) Ix ¢3(p3)[( 3(p3))u00 + 3(ps)u ]

10
3

...

* * * * : *
+(1-¢y (p Nf{-cv N+ ¢ PIA-E§(PI)u  + & (pHu 1.

-1 T-1 T-1 XT T T T T 00 T T 10

f(x jw )dx }... £(x ;0 )dx }f(x ;w0 )dx }, (A.20)
T O T 3 0 3 2 0 2

where xt is the support of the (vector-valued) variable xt sampled at the t-th

(]

%

(a
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stage. Then (A.20) equals

* * T-1 * * t-1 ol

u [¢ (p )(1-6 (p )) + 2 I w (p )(1-8 (p N« (l-w (p ))f(x HY )dxi

o0 1 1 i=1
t

x -1 :
+ ] (-8 (p)) = (1-¢ (p Nf(x ;0 )dx ]
YT T T i=1 i i i o0 i

* x T-1 * x t-1 *

+u [y (p)é + I (p )8 (p) w (1- £ d
10 v (p 1<p1) z ] v (p P A w (p )) (x 9, ) x,

t=2 Yt t t t t i=s

* T-1 *

+ S 1- f x ; d
IY T(pT) ig ( W (P ))f( w ) x ]
T
5 I F oo a0 * (p )w :a *( ))E( Ydx £( )d
t21 'Y kel Uk Tk Veor Prar gmn ¥y Py RO e K 1% e
t+1
(A.21)

[}

T
u £ Pr(stop at t and choose w |w )
00 t=1 0 0

T
+u £ Pr(stop at t and choose wllwo)

10 t=1
T-1 *
S E[ t c(v (p ))|stop at t+l] Pr(stop at t+llw ) (A.22)
t=1 k k 0
*
T -1
x * s *x
=u (l-a ) +u &« -E[Z c(v (p )]w]. (A.23)
00 10 k=1 k k 0

Similarly, the expected net gain of the VPRT, given w=w1, is

. . x
T T -1
( * * x

vV (p s *
11,4 = 1- - E . A.24
wl) uOIB + ull( B) [k£1 c(vk(Pk))lwll ( )
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Repeating the above arguments for the expected net gain of any other WSPRT

‘ x %
d € D(a ,B ) shows this expected net gain is either

T -1
(A.25)

T s
V(p ,d;w) =u (l-a) +u a~-E[L c(v(pNlwl;a<a
1 1 0 00 10 k=1 k k 0
or
T -1
vT( d;e ) B +u (1-B) E[§ clv (p ) ]w ) B<; (A.26)
yadjw =u - - v W J3 . .
1 p1 1 01 11 k=1 k pk 1 -

* X %
The VPRT d maximizes expected net gain over D(e ,B ) so, from (A.23), (A.24),

(A.25) and (A.26),

X

T -1
* * s *x
(u (1-a ) +u a —E[ L c(v (p N w Dp
00 10 k=1 k k 0 1

*
T -1
* *

s x
- - E[ ¢ -
(uOIB + ull(l B) [k=1 c(vk(Pk))|wll)(1 pl)

-+

T -1
s
( l-a) + - E[ £
uoo( a) uloc [k=1 c(vk(Pk))lQol)Pl

v

T -1
s

+(u B+u (1-8) -E[ £ c(v (p ))]|w I)(1-p ). (A.27)

01 11 k=1 k pk ! 1 p1

% *
Since a <« and B < B, ugg 2 ujg and u3; > upy,
* *

Uoo(l—a ) + Uloa < \.loo(l-c) + uloa (A.28)
and

* *
uOIB + ull(l_B ) < uOIB + 011(1-3) . (A.29)

ta

%
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" Using (A.28) and (A.29) in (A.27) reduces (A.27) to

*x
T -1 T -1

s * s
2(EILE cv(pNlo]l -EILZ cv (p N|w Np
k=1 k k 0 k=1 k k 0 1l

*
T -1 T -1

E[ £ - T _ ) )
+ ( [k"-']. C(\)R(Pk))lwll E[k':l C(\)k(Pk))lo)l])(l pl) (A.30)

But (A.30) holds V pl € [0,1] so allowing p1 + 0 shows

*
T -1 T -1 N
E 2 > E X A.31
[ c(v (p ))Iw 1> [ Wi c(vk(Pk))lwll | ( )
and allowing p1 2 1 shows
*
T -1 T -1 .
E[ 81 C(v (p ))lw 12 E[ Z C(vk(Pk))Iwo]. (A.32)

Together (A.31) and (A.32) are a statement that the VPRT d* minimizes the
expected total sampling cost under either state of nature, mo or wl.

Q.E.D.

COROLLARY 4.1: Under the conditions of Theorem 4.1 with c(n) = en and
¢ > 0, the VPRT minimizes the expected total sample size

T -1
x %

s
E[tzlnt'w] over D(a ,B ) under either state of nature, w = uo or w = wl
*
Proof: With c(n) = cn the statement of Theorem 4.1 is that the VPRT d
-1

minimizes cE[ zlvk(p Niw], for w = @, wl. The result follows

immediately. Q.E.D.
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Under the conditions of Theorem 4.1 with c¢(n) = cn,

¢ >0, the expected time taken by the VPRT to reach a terminal decision is

smaller than or equal to the expected time taken by the SPRT to reach a

terminal decision, under either state of nature, w = wo or w = 01.

* '
Proof: Let E[Tslo] and E[Tslwl respectively denote the expected times taken

by the VPRT and the SPRT to reach terminal decisions. The VPRT's sample size

% .
function v has the property that if sampling is continued at t then,

*
necessarily, vi(pg) 2 1. Therefore

*

T -1
*x

* s
E[T -1|jw] < E[ £ v (p)lw], for v = w ,0 . . (A.33)
s k=1 k k 01

The SPRT's sample size function v 1is restricted so that

v =1, ¥Vt

EIT -1|w)
S

1,...,Ts. Therefore

T -1

s
E[ £ v (p )|w]l, for v = 0 ,0 . (A.34)
k=1t ¢t 01

However, Corollary 4.1 establishes that

*
T -1

T -1

s % s
El Ev(p)|wl] <E[ Z v (p)lwl, for v = 0 ,w . (A.35)
k=1 k k k=1t ¢t 01

Thus (A.33), (A.34) and (A.35) together establish

*x ]
‘ ElTglw] < E[Tglw], for o = wg,w;. (A.36)
Q.E.D.
THEOREM 4.2: The VPRT and the SPRT coincide under the conditions of Theorem

4.1 With T = =, co = 0, ¢(n) > 0 and c(n) - c(n-1) a non-decreasing function

for n > 1.

(L}

v

=



39

Proof: At any decision point t for which the VPRT's action of highest
expected net gain is to continue sampling, it is necessary that the VPRT's
sampling rule satisfies v: > 1. The essence of the following proof is to
demonstrate that if ”:(pt) 2 2 then there exists another WSPRT with a
strictly larger expected net gain than that of the VPRT d*. This contradicts
the fact that d* is a maximum-expected-net-gain decision procedure and so
establishes v: = 1 whenever it is optimal to continue. |

For any t > 1 and any Py € [0,1),

@ X *
Ve(pg,d ) = max{E,[U(w,8;(p,)) Ip,],

X X
- E E (U(w,8 =(y :x),p 1,
c(vt(pt)) + Ft[max{ m[ (o t+1(pt+1))lyt+1 (Yt xt) Pt]
* *
- E E U ,6 9 ?
C(“t+1(pt+1)) * F [max{ m[ (w t+2(pt+2))|yt+2 pt]
t+1
.. =(y :x ),p ] 1}. (A.37)
}lyt+1 yt REN }lpt

Also c(n) - c¢(n-1) is a nondecreasing function so
* *
c(1) + c(ve(py)-1) < c(ve(pg)). (A.38)

Substituting (A.38) into (A.37) shows
© *
Vt(Pt;d )

*
< max{E [U(w,8,(py)) |p¢ 1,

x *
-c(1)- -1 E E [U(w,$ )] =(y :x),p 1,
e C(vt(pt) >+ Ft[maX{ w t+1(pt+1 Iyt+1 ~yt £ Pt
* *
- +E [ E [U(w,8 ( » P 1,
c(vt+1(pt+1)) Ft lmaX{ o ka2 pt+2 Iyt+2 pt
' +

oo = M )9 ]} ]}
}lyt+1 (yt x )P, Ipt
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*

x *
- - =1 E E [UV(w,d8 = : ’ ’
c(l) c(vt(pt) ) + Ft[max{ w[ (0 t+1(pt+1))|yt+1 (yt xtl) ptl

*x

E [U(w,8 ¢ NI =(y :x ),p )
o P e R

*

K
-clv ( )) + E  [max{E [U(w,8§ ( )) 1,
tel Teel Ft L © t42 The2 lyt+2’pt
+

..}Iyt+1=(yt:xt),ptl}Iptl}

* *
= max{E [U(w,8§ (p ))Ip ], - ¢(1) + E [max{-c(v (p )-1)
W t t t F t t

t

*

+E [U(w,8 (p Ny
t+

=(y :x ),p ]
@ t+1  t+l e e

1

* *
- e(v (p)-1) + E [U(w,8_ _(p, My, =y :x),p 1,
vt pt &) ¢ t+l pt+1 Iyt+1 yt t pt

* *
~c(v (p )-1)-c( ( ))+E [max{... =(y : ,
vt pt vt+1 pt+1 F t }Iyt+1 (yt xt) pt]}lpt]}

t+l

*
< E [U(w,$ ,
< max{ w[ (w t(pt))lptl

* X
-c(1) + E [max{-c(v (p )-1)+E [U(w,$ ( ) =(y : ’ ’
F { vt pt @ t+l pt-l-l Iyt+1 (yt xtl) pt]

W
t
*x *x
=c(n =v (p )-1)+E {max{E [U(w,d ( )) = X ) ]
e+l ot Tt Pt © t42 Tra2 Iyt+z (yt v P
+

*x
-c(v ( ))+E [max{ee-} =(y :x),p ] =(y :x ),p ] ]
pt+2 F Iyt+2 yt t pt }lyt+1 yt tl) pt }Ipt ’

t+2
t+2

L8

(-3

\\‘ .

[EY
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*
< max{Em[U(U’ ét(Pt)) |Pt] ’

*
- ¢(1) + E_ [max{E [U(w,§ (p Ny
F W t+1 t+l t+

t '

=(y :x ) ]
1 Y Xy P

* *
-c(v (p )-1) + E [max{E [(U(w,8§ (p
t t F t+2

=(y :x ) ]
w 2 TR
t+l

))
t+2 lyt+

*x

-c( +E - =(y :x),p ] =. : , .
c vt+2(pt+2)) Ftl:ax{ }Iy“_2 ¥ X P, }Iyt+1 (yt xtl) ptl}lptl}
+

(A.39)

Comparing (A.37) to the last part of (A.39) shows that if sampling is
continued at t then the optimal procedure of taking v:(pt) further
observations at t is (weakly) dominated by the procedure of taking exactly one
further observation at t and the remaining v:(pt)—l observations at t+l1. If
v:(pt) > 2 then v:(pt)—l > 1 and so c(v:(pt)—l) > 0; but then the last
inequality of (A.39) is strict and contradicts the optimality of drawing
v:(pt) observations at t. Therefore v:(pt) = 1; that is, if the VPRT

continues sampling at t then exactly one additional observation is taken at t,

which means the VPRT is indistinguishable from the SPRT.

Q.E.D.
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