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ABSTRACT  

Two-stage concrete (TSC) is a special type of concrete in which coarse aggregates are pre-placed in the formwork 

and subsequently injected with a grout. Beneficiating fly ash in TSC grouts increases TSC sustainability through the 

ecological use of large quantities of fly ash, reduced carbon-dioxide emissions associated with cement production, 

and enhancement of resource productivity of the concrete industry. Limited research has explored the effects of 

using high volume of fly ash as partial replacement for cement in TSC grout mixtures. Therefore, the flowability of 

grout mixtures incorporating various fly ash addition rates (i.e. 0%, 30%, 50% and 70%) was evaluated using the 

flow cone method and spread flow test. Correlations between the efflux time and spread flow for the grout mixtures 

were developed. Results show that increasing the fly ash addition reduced the grouts efflux time while increasing its 

spread flow. The optimum high-volume fly ash dosage for achieving high flowability and acceptable TSC 

compressive strength was identified. 
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1. INTRODUCTION 

Two-stage concrete (TSC) is a special type of concrete that is produced by first placing coarse aggregates in the 

formwork and then voids between the coarse aggregate particles are filled through injecting a special grout mixture 

(Abdul Awal 1984; Najjar et al. 2014). The ability of the TSC grout to flow and penetrate around the aggregate 

particles is of paramount importance in TSC production (ACI 304.1 2005). Therefore, special measuring techniques 

are used to evaluate the flowability of TSC grouts, including the flow cone method and spread flow test (Abdelgader 

1996). The grout used in TSC normally consists of ordinary portland cement (OPC), well graded sand, water and 

chemical admixtures (ACI 304.1 2005).  

 

Nowadays, fly ash (FA) has been used in the concrete industry to improve the performance of concrete in its fresh 

and hardened states. The use of FA in concrete mixtures provides ecological disposal of large quantities of fly ash, 

reduced carbon- dioxide emissions from cement production, and enhancement of resource productivity of the 

concrete industry. Partially replacing OPC with 33% class F fly ash was recommended to produce TSC grouts with 

an acceptable flowability (ACI 304.1 2005). However, limited data on TSC grout mixtures made with high volume 

FA addition and the corresponding TSC compressive strength are available. Therefore, the effect of fly ash addition 

rates (0%, 30%, 50%, and 70%) on the flowability of grout and the corresponding compressive strength were 

investigated in this study. Moreover, a relationship between the grout efflux time and the spread flow was 

developed.  
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2. EXPERIMENTAL PROGRAM 

2.1 Materials and Grout Mixture Proportions  

Ordinary portland cement (OPC) was used in the grout mixtures. Fly ash (FA) was used as partial replacement for 

OPC. Physical and chemical properties of the used binders (i.e. OPC and FA) are listed in Table 1. Silica sand with a 

fineness modulus of 1.47 and a saturated surface dry specific gravity of 2.65 was used as a fine aggregate. To 

control the flowability of the grout mixtures, a poly-carboxylate high-range water-reducing admixture (HRWRA) 

was used. Crushed limestone coarse aggregate with a maximum nominal size of 40 mm, a saturated surface dry 

specific gravity of 2.65 and water absorption of 1.63 % was used.  

Table 1: Chemical Analysis and Physical Properties of OPC and FA 

 OPC FA 

SiO2 (%) 19.60 43.39 

Al2O3 (%) 4.80 22.08 

CaO (%) 61.50 15.63 

Fe2O3 (%) 3.30 7.74 

SO3 (%) 3.50 1.72 

Na2O (%) 0.70 1.01 

Loss on ignition (%) 1.90 1.17 

Specific gravity 3.15 2.50 

Surface area (m2/kg) 371 280 

 

Several grout mixtures were prepared using different dosages of FA (0%, 30%, 50%, and 70%). All grout mixtures 

had the same sand-to-binder ratio (s/b = 1.0) and different water-to-binder ratios (i.e. w/b= 0.35, 0.45, 0.55). Table 2 

shows the TSC grout mixtures used in this study. Moreover, several trial grout mixtures with different dosages of 

HRWRA were tested to study the flowability of grouts and identify the optimum mixture that meets ACI 304.1 

recommendations.  

Table 2: TSC Grout Mixture Proportions 

Grout Mixture 

No. 

Grout Mixture 

Notation 

Binder (kg/m3) Sand 

(kg/m3) 

Water 

(kg/m3) OPC FA 

C-0.35 100OPC 960 -- 960 335 

F3-0.35 70OPC-30FA 670 290 960 335 

F5-0.35 50OPC-50FA 480 480 960 335 

F7-0.35 30OPC-70FA 290 670 960 335 

C-0.45 100OPC 875 -- 875 390 

F3-0.45 70OPC-30FA 610 265 875 390 

F5-0.45 50OPC-50FA 440 435 875 390 

F7-0.45 30OPC-70FA 265 610 875 390 

C-0.55 100OPC 805 -- 805 440 

F3-0.55 70OPC-30FA 595 210 805 440 

F5-0.55 50OPC-50FA 405 400 805 440 

F7-0.55 30OPC-70FA 210 595 805 440 

2.2 Experimental Procedures  

The grout mixture was mixed for 6 minutes using a high-speed mixer according to ASTM C938 (Standard Practice 

for Proportioning Grout Mixtures for Preplaced-Aggregate Concrete 2010). Immediately after mixing, the grout’s 

efflux time was measured according to ASTM C939 (Standard Test Method for Flow of Grout for Preplaced-

Aggregate Concrete - Flow Cone Method 2010). The flow cone test consists of measuring the time of efflux of 1725 

ml [0.06 ft3] of the grout through a specific cone having a 12.7 mm [0.5 in.] discharge tube (Figure 1). Moreover, the 

spread flow was used to determine the flowability of the grout. The basic principle of the spread flow test is that a 

fixed volume of grout (i.e. 250 ml) is filled into a cylinder then poured from a height of 1 cm on a scaled plate 



 

MAT-715-3 

(Figure 2). The distance that the grout flows along the plate is an indication of the flowability of grout (Abdelgader 

1996). The mixing and flowability measurements were conducted at room temperature (23±2C) [73.4±3.6F]. 

  

 

 
Figure 1: Grout flowability measurement using flow cone method. 

 

 
Figure 2: Grout flowability measurement using spread flow test. 

 

The compressive strength of grouts that achieved the recommended grout efflux time (i.e. 35 to 40± 2 s) was 

evaluated on 50 mm [2 in.] cubic specimens at ages of 7, 28, and 56 days according to ASTM C 942 (Standard Test 

Method for Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory 2010). 

Immediately after demolding, specimens were moved to a moist curing room (T = 25C [77F] and RH = 98%) until 

the testing age. Furthermore, cylindrical TSC specimens (150 mm  300 mm [3 in.  6 in.]) were prepared. The 

molds were first filled with coarse aggregates and then the grout was injected into the voids. Specimens were 

covered with wet burlap to prevent surface drying. After 24 h, specimens were demolded and cured in the moist 

room described above. At each testing age (i.e. 7, 28 and 56 days), the compressive strength of TSC was evaluated 

according to ASTM 943 (Standard Practice for Making Test Cylinders and Prisms for Determining Strength and 

Density of Pre-placed-Aggregate Concrete in the Laboratory 2010). 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 Effect of FA Addition Rate on Flow Properties of TSC Grouts 

Table 3 reports efflux time and spread flow results for grouts incorporating different FA dosages. It can be observed 

that the FA replacement rate had a significant effect on the grout flowability along with the effect of the w/b ratio. 
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For grouts with 0% HRWRA, it can be observed that the efflux time decreased as the w/b ratio increased, while the 

grout spread flow increased as the w/b ratio increased. For example, the F3-0.45 grout mixture exhibited 41% 

shorter efflux time and 68% greater spread flow compared with that of the F3-0.35. This can be attributed to the fact 

that increasing the w/b ratio results in a higher amount of free water in the grout mixture (i.e. excess water), which 

acts as a lubricating agent between the solid particles, leading to greater grout flowability (Kismi et al. 2011). 

 

Moreover, it can be observed that the efflux time decreased as the FA addition rate was increased. For example, at 

w/b = 0.55 and 0 % HRWRA, grout mixtures F3 and F7 exhibited 48.6 % and 62.9 % shorter efflux time compared 

to that of the control grout mixture (C). Also, it was found that the grout spread flow increased as the FA 

replacement rate increased. For instance, at 0% HRWRA dosage, the spread flow of F3-0.55 and F7-0.55 was 1.2 

and 1.6 times that of control grout, respectively. This is because FA addition reduces frictional forces among 

particles due to the spherical shape of its particles, which have smooth vitreous surfaces, leading to a lubricant ball-

bearing effect, thus facilitating mobility (Yung et al. 2013). Moreover, FA particles can be adsorbed on oppositely 

charged cement particle surfaces, preventing flocculation and enhancing particle dispersion, which consequently 

results in better flowability with higher amount of free water, leading to a shorter efflux time (Kismi et al. 2011). 

3.2 Effect of HRWRA Dosage on Flow Properties of TSC Grouts 

Adding adequate dosages of HRWRA into grout mixtures had a great effect on the grout’s flowability as illustrated 

in Table 3. The higher the HRWRA dosage, the shorter was the efflux time and the greater was spread flow of the 

grout mixture. For instance, increasing the HRWRA dosage from 0% to 0.4% shortened the efflux time of the grout 

mixture F3-0.45 by about 73% and increased the spread flow of the same grout mixture by 88%. The poly-

carboxylate admixture prevents the binder-water agglomeration and formation of flocs through its steric repulsion 

mechanism. Furthermore, it has unique poly-ethylene oxide side chains, which move in water and steer the binder 

grains to disperse evenly into the grout mixture (Safiuddin 2008). Hence, the addition of the HRWRA reduced the 

inter-particle friction (i.e. flow resistance) between solid particles, and hence improved the grout’s flowability. 

3.3 Relationship between Efflux Time of Grout and Corresponding Spread Flow 

Based on the results presented in Table 3, it can be observed that grout mixtures having a short efflux time resulted 

in a high grout spread flow. In fact, the relationship between efflux time of TSC grouts and corresponding spread 

flow has not yet been defined. Therefore, an empirical relationship between efflux time and spread flow of grout 

mixtures based on the results of this study was proposed (Figure 3). As mentioned above, the flowability of the grout 

mixture is mainly affected by the amount of water used, which depends on the amount of required water to cover 

powder particles and fill the inter-granular porosity in the mixture. Therefore, this relationship is significantly 

affected by the w/b ratio used in the grout mixtures as illustrated in the proposed equations (Eq. 1, 2 and 3).  

[1]  S = 101.15 × T(-0.233) (w/b = 0.35) 

[2]  S = 113.74 × T(-0.412) (w/b = 0.45) 

[3]  S = 118.34 × T(-0.534) (w/b = 0.55) 

 

Where S is the grout spread flow (cm) and T is the grout efflux time (s). The proposed equations were assessed 

statistically based on the fraction absolute of variance, which yielded 0.866, 0.925 and 0.893 for Eqs. 1, 2 and 3, 

respectively. Moreover, the proposed Eq. 2 was validated using further experimental results of efflux time and 

corresponding spread flow for various grout mixtures made with w/b = 0.45. It was found that Eq. 2 achieved 

reasonable prediction relation to experimental results as shown in Figure 4. It is believed that, the grout flowability 

is of paramount importance since it directly affects the TSC engineering properties. Therefore, these proposed 

equations can be used to estimate the required grout spread flow based on the recommended efflux time for TSC 

applications.  
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Table 3: Results of Grout Flowability (Efflux Time and Spread Flow) 

Grout 

Mixture 

Number 

Grout Efflux Time (sec) Grout Spread Flow (cm) 

 
HRWRA Dosage % HRWRA Dosage % 

0.0 0.6 0.8 1.0 0.0 0.6 0.8 1.0 

C-0.35 300 390 270 148 8.0 23.0 28.5 34.0 

F3-0.35 153 117 103 86 9.5 32.0 35.5 38.0 

F5-0.35 80 80 77 72 10.0 35.0 38.0 39.0 

F7-0.35 61 54 53 53 12.5 36.0 39.0 40.0 

 
HRWRA Dosage % HRWRA Dosage % 

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 

C-0.45 300 91 39 39 11.5 18.0 23.0 28.0 

F3-0.45 90 34 24 22 16.0 25.0 30.0 33.0 

F5-0.45 39 25 22 20 18.0 30.0 32.0 34.0 

F7-0.45 26 22 20 19 19.0 30.0 33.0 35.0 

 
HRWRA Dosage % HRWRA Dosage % 

0.0 0.1 0.2 -- 0.0 0.1 0.2 -- 

C-0.55 35 25 16 -- 18.0 22.0 24.0 -- 

F3-0.55 18 16 14 -- 22.0 28.5 30.0 -- 

F5-0.55 16 14 13 -- 27.0 29.0 31.0 -- 

F7-0.55 13 13 13 -- 28.0 30.0 32.0 -- 

 

 

 
Figure 3: Relationship between efflux time of grout and corresponding spread flow at different w/b ratios. 
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Figure 4: Experimental grout spread flow versus that predicted by Eq. 2. 

 

3.4 Effect of FA Cement Replacement Rate on Compressive Strength of Grout and Corresponding TSC  

Based on the flowability results discussed above, it can be observed that all grout mixtures made with a w/b ratio = 

0.45 could achieve the efflux time of 35-40 ±2 s recommended for successful TSC production (ACI 304.1 2005). 

Therefore, grout mixtures with w/b = 0.45 having an optimum HRWRA dosage were selected to investigate TSC 

compressive strength development.  

 

Table 4 presents the compressive strength results at different ages for the tested grouts and their corresponding TSC 

mixtures. Generally, the higher the FA partial replacement level for OPC, the greater was the reduction in 

compressive strength. For example, increasing the FA rate in the grout from 30% to 70% resulted in about 15.5 % 

greater reduction in the 7-days compressive strength of TSC than that of the control TSC. This is because grouts 

incorporating FA gain strength slowly due to slower hydration reactions at early-age (Bouzoubaâ et al. 2004).  

 

At later ages (i.e. more than 7 days), TSC mixture incorporating 30% FA exhibited higher strength gaining rate than 

that of the control mixture. The strength gaining rate of this mixture was 1.6 and 3.1 times that of the control 

mixture at 28 and 56 days, respectively. However, the strength gaining rate of mixtures incorporating 50% and 70% 

FA had exceeded that of the control mixture after 28 days. For example, the strength gaining rate of F7 mixture was 

0.8 and 1.8 times that of the control mixture at 28 and 56 days, respectively. Therefore, TSC mixtures incorporating 

FA are expected to achieve comparable or even higher compressive strength than that of the control mixture as the 

strength gaining rate sustained over time (Hwang et al. 2004). 

Table 4: Grout and TSC Compressive Strength Versus FA addition dosage 

Grout 

Mixture 

Number 

Optimum HRWRA 

Dosage (%) 

Compressive strength of 

grout (MPa) at days 

Compressive strength of 

TSC (MPa) at days 

7 28 56 7 28 56 

C-0.45 0.4 33.8 50.4 54.3 25.9 31.5 33.3 

F3-0.45 0.2 27.1 38.5 46.2 14.0 18.9 25.8 

F5-0.45 0.0 21.0 28.0 38.2 12.0 14.1 18.5 

F7-0.45 0.0 13.5 18.0 24.6 10.0 11.8 15.0 
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4. CONCLUSIONS 

In this study, the flowability and compressive strength of two-stage concrete made with various fly ash addition 

rates were explored. The following conclusions can be drawn: 

 

-    The suitable TSC grout mixture proportions and FA partial replacement level for OPC are selected according to 

ASTM C938, which mainly depends on the grout flowability. Grouts with an efflux time of 35-40 ±2 s are 

recommended to achieve adequate properties of TSC. 

-    Partial replacement of OPC with FA significantly improved the TSC grout’s flowability.  

-    Empirical equations for the relationship between the efflux time of grouts and the corresponding spread flow 

were proposed. 

-    The higher the FA partial replacement level for OPC, the greater was the reduction in TSC compressive strength. 

However, the strength gaining of TSC mixtures made with high-volume FA increased after 28 days resulting in 

an increase of the compressive strength over time.  
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