Western University

Scholarship@Western

Centre for Decision Sciences and Econometrics . . .
Economics Working Papers Archive

Technical Reports

1985

Auctions with a Stochastic Number of Bidders

R. Preston McAfee

John McMillan

Follow this and additional works at: https://irlib.uwo.ca/economicscdse tr

b Part of the Economics Commons

Citation of this paper:

McAfee, R. Preston, John McMillan. "Auctions with a Stochastic Number of Bidders." Centre for Decision Sciences and Econometrics
Technical Reports, 9. London, ON: Department of Economics, University of Western Ontario (1985).


https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicscdse_tr?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicscdse_tr?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/econwpa?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicscdse_tr?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.lib.uwo.ca%2Feconomicscdse_tr%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

THE CENTRE FOR DECISION SCIENCES
AND ECONOMETRICS

Auctions with a Stochastic Number of Bidders

R. Preston McAfee and John McMillan

TECHNICAL REPORT NO. 9
DECEMBER 1985

Centre For Decision Sciences And Econometrics
Social Science Centre
The University of Western Ontario
London, Ontario N6A 5C2




Qé/

AUCTIONS WITH A STOCHASTIC NUMBER OF BIDDERS*
R. Preston McAfee and John McMillan
Revised: November 1985

ABSTRACT
Auction theory is generalized by allowing the number of bidders to be

stochastic. In a first-price sealed-bid auction with bidders having constant
absolute risk aversion, the expected selling price is higher when the bidders
do not know how many other bidders there are than when they do know this.

Thus the seller should conceal the number of bidders if he can. Moreover, a
bidder's ex ante expected utility is the same whether or not there is a policy
of concealing the number of bidders: concealment therefore Pareto-dominates
announcement. With risk-neutral bidders, the optimal auction is the same

whether or not the bidders know who their competitors are.
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1. Introduction

Asymmetric information and imperfect competition are the two essential
ingredients of the theory of auct;.ons.1 But it is presumed in the existing
auction models that one piece of information is common knowledge: all bidders
know how much competition they face. 1Is it appropriate to model the bidders
as knowing who their competitors are?

In an English auction, a bidder often cannot identify his rivals. The
other bidders may be acting on behalf of anonymous principals. Not all the
people present are active bidders. Bidders use subtle signals to hide their
bidding. "Such signals may be in the form of a wink, a nod, scratching an
ear, lifting a pencil, tugging at the coat of the auctioneer, or even staring
into the auctioneer's eyes - all of them perfectly legal. This method of
communicating bids gives the process of bidding an aura of secrecy." (Cassady
{1, pp. 149-150]).

In a sealed-bid auction, there is still less reason to suppose that
bidders know the number or the identities of their competitors, since the
bidders do not assemble together in one place. With some government-contract
bidding, the government invites selected contractors to submit bids. In this
case, the government knows in advance the number of bidders. The government
therefore has available an extra policy instrument for fostering competition
among the bidders, in addition to choosing the form of the auction, setting
reserve prices, etc: the government can choose either to conceal or to reveal
the number of bidders.2

Are the results of auction theory sensitive to the assumption that each
bidder knows exactly how many bidders there are? This paper will show that

they are. First, if the bidders are risk averse (with constant absolute risk



aversion) the seller's expected revenue in a first-price sealed-bid auction is
higher if the bidders do not knoﬁ how many bidders there are than if they do
know this. Second, with risk-neutral bidders, the optimal direct,
incentive-compatible auction is the same whether or not the bidders know the
number and the identities of the other bidders. However, knowledge about the
set of bidders still matters, because if different bidders have different
(albeit Bayesian consistent) expectations over the set of bidders, then if the
set of bidders is not known, the optimal auction cannot be implemented using a
first-price sealed-bid auction, although it can be implemented using an
English auction.

Milgrom and Weber [12] showed that, in many circumstances, it is in the

seller's interest to reveal any information he has. This paper exhibits a

different set of circumstances in which the seller should conceal information.3

In Section 2, we examine the effects of the release of any affiliated
information by the seller in a first-price sealed-bid auction with bidders who
are risk-averse (having constant absolute risk aversion) and have private
values. In the independent-private-values case, we prove that the seller
earns more revenue on average when information is concealed than when
information is revealed. Interestingly, the bidders are on average equally
well off under either policy. 1In particular, these results apply to
information about the number of bidders. Thus, if the seller can choose
between concealing and revealing the number of bidders, the policy of
concealment is better in the Pareto sense than the policy of revelation.

In Section 3, we allow the bidders to be different ex ante, in the sense
that their valuations of the good are drawn from different distributions. In

addition, they may have different priors on how many bidders are present as

s
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long as these priors are Bayesian consistent. Thus, revealing the number of
bidders is not the only issue, fof the seller could also reveal the identities
of the bidders, as they are not ex ante the same. If the bidders are risk
neutral, the seller is indifferent between revealing and concealing the
bidders' identities; his expected revenue is the same in either case. To
prove this, we construct the optimal auction, extending the optimal-auctions

literature to the case of unknown bidders.

2. Information Release
In this section we consider a first-price sealed-bid auction; no reserve
price is imposed by the seller. The bidders have symmetric private values,

drawn from a density f. Assume f is continuous and f(x,s) is strictly

m —
positive if x € X (x,x). Here x is an m-tuple of values, with m the number
1=

of potential bidders, and s represents information which may be available to
the seller. Initially, we do not require the values to be drawn
independently: thus our model is more general than the
independent-private--values model, but more special than the general symmetric
model of Milgrom and Weber [12].

Following Matthews [4] and Milgrom and Weber [12], we assume the bidders
have the same constant-absolute-risk-aversion utility function,

-\w
1 e
uw) = ——————, (1)
A

for some constant A > O.

Using the notation of Milgrom and Weber [12), represent by xl the value

of agent 1 and by Y = max{xz,x ..} the first (highest) order statistic of

3"

the other agent's values. Let

F (ylx) = Prob(Y < ylx1 = x), (2)
Y
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f (y|x) = -—-F (y]|x). . (3)
v yl a7 Y yl
Note that

aF(l) £ (x|x)
— X X
x Y y d Y *
—_— = — log F (x|x) - ——, (4)

F (ylx) dx Y F (x]|x)

Y Y

y=x

Consider a symmetric Bayes-Nash equilibrium. Suppose all the bidders
other than bidder 1 use a bidding function B(xi). The function B can be
assumed to be increasing, since no agent will ever choose to bid in a
nonincreasing portion (simply because, in a nonincreasing portion, it would be
in the bidder's interest to reduce his bid, as by doing so he pays less and
obtains the good with a higher probability). Thus bidder 1's expected
utility, if he bids b and has value x, is

- AMx - D)

1 -1
U(b, x) = -[1 - e IF (B (b)|x). (5)
A Y

If B is a Nash strategy, then applying the Envelope Theorem to (5) yields

d 9
— U(B(x))x) = — U(b, x)
dx ox
b = B(x)
-A(x-B(x)) 1 -M(x-B(x)) 9 -1
= e F (x|x)+-[1-e ]1—F (B (b)|x)
Y A x Y b=B(x)
f (x]x)
d Y
=F (x|x)+[—1logF (x|x)- ——— —AJU(B(x),x) (6)
Y dx Y F (x]|x)

[the last step using (4) and (5)]. Direct integration, using B(0) = 0 and

FY(OIO) = 0, yields that the Nash bidding function B must satisfy:4

(s
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(6

£ (v]v)
+ Aldv}da. (7)

X X
U(B(x),x) = F (x]x)] exp{-J [
Y o a FY(VIV)

We say that information is affiliated if the vector of values x together
with the information variables satisfies the definition of affiliation given

by Milgrom and Weber [12, p. 1098].

THEOREM 1. The public revelation of affiliated information in a first-price

sealed-bid auction cannot increase any bidder's utility.

Proof. From (5), a bidder's expected utility conditional on winning is

M(x)

1l
{[1— exp{-A(x-B(x)}]

f (v,v)
x X Y
[ exp{-] [————— + A] dv}da. (8)
o a F ( )

v,V

1]

Thus

£ (x[x)

Y
1 - N+ —— ] (x). 9)
F (x|x)

m (x)
x| x

n

Define a ficitious bidding function B* by
X - BX(x) = II(x). (10)
From (9) and (10),

£ (x]|x)

Y
BX'(x) = [x - BX(x)] [A + ——]. (12)
Fy(xlx)

Now choose functions gy(xlx) and Gy(xlx) to satisfy

g (x|x) £ (x]x)
Y Y
(12)

— e A ——]
G (x|x) F (x|x)
Y Y



Hence gY(xlx)/[GY(xlx)] satisfies Lemma 1 of Milgrom and Weber {12, p. 1107].

Hence the ficitious bidding function B* satisfies the hypotheses of Theorem 16

(n

of Milgrom and Weber [12, p. 1109]; in particular, B* satisfies the Milgrom -
Weber equation (7). Applying this result, we conclude that EB* is
nondecreasing with the release of affiliated information, and so, from (10),
Ell is nonincreasing with information release. Q.E.D.
For the special case of risk-neutral bidders, B* = B, Thus:the seller
cannot make himself worse off by revealing information in the first-price
sealed-bid auction. This is Theorem 16 of Milgrom and Weber [12, p. 1109].
However, only in the case of risk-neutral bidders is it necessarily the
case that releasing information cannot lower the expecied revenue in the
first-price sealed-bid auction. With risk-averse bidders, the expected
revenue can fall. To see this, denote by B(x,s) the equilibrium bid when the =
seller reveals affiliated information s, and by B(x) the bid when the seller
conceals the information. Then for risk-averse bidders (A > 0), Theorem 1
implies

E{exp{AB(x,s)}]1 > Elexp{AB(x)}]1 , (13)
{Y < X} (¥ < x}

where the last term on each side is the indicator function. This does not
necessarily imply that EB(x,s) > EB(x), so it does not necessarily imply more
expected revenue for the seller. We conclude from (13) that, in a first-price
sealed-bid auction with risk-averse bidders, the seller may either increase or
decrease his expected revenue by revealing affiliated information.

Consider now the more special independent-private-values model. With

“

valuations drawn independently, FY(ylx) = Fy(y), and (4) becomes
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£ (x|x)
Y

— = — log F (x) ' (14)
Fy(xlx) dx Y

Thus (7) becomes
-log(Fy(x)—Fy(a))

U(B(x),x) = F (x)] e e da
Y (o}
(15)

[}
Sy
o
~
f
~r
[~
R

What are the effects of the seller's releasing some affiliated
information s in the independent-private-values model? Denote by FY(x,s) the
distribution of the first-order statistic of the others' values when the
bidder knows the information s. Note that the distribution when he does not
know s, FY(x), is equal to ESFY(x,s), where Es is expectation with respect to
s.

THEOREM 2. In a first-price sealed-bid auction in which bidders have

independent private values and constant absolute risk aversion, any bidder

with given valuation is equally well off whether the seller has a policy of

revealing or concealing affiliated information.

Proof. The ex ante expected utility of a bidder with valuation x under a

policy of announcement is, from (15),

X AMa-x%)
E U(B(%x,s),x) = E [ e F (a,s)da
s s o Y

X Ma-X%)
e

I

E F (a,s)da
o s Y

x Aa-x)
| e F (a)da
o Y

EU(B(x),x). Q.E.D.



The foregoing result compared the policies of concealment and revelation

from the point of view of a bidder who knows his own valuation. There is

(L}

another notion of ex ante, namely, the situation before bidders know their own

valuations. Theorem 2 implies that

X
| E U(B(x%,s),x) Prob(xl= x)dx = | U(B(x),x) Prob(X1= x)dx. (16)
s o

(o]

Thus bidder 1, before he draws his valuation x, is indifferent between the two
policies.
Which policy will the seller choose?

THEOREM 3. 1In a first-price sealed-bid auction with independent private

values, concealing information does not decrease the seller's revenue.

Proof. From Theorem 2,

tw

1 -A(x-B(x,s)) 1 -A(x-B(x))
EF (x,s)~[1-e ] =EF (x,s)-[1-e 1, (17)
s Y A sY A

from which

AMB(x,s)-B(x)]
E F (x,s)e = EF (x,s), (18)
s Y s Y

or
A[B(x,s)-B(x)]
Fy(x,s)e

E [ ] = 1. (19)
s E F (x,s)
s Y

Thus, by convexity,

A[B(x,s)-B(x)]

F (x,s)e
E A[B(x,s)-B(x)] Y
es <EI ] =1, (20)
s E F (x,s)
s Y

which implies EgA[B(x,s) - B(x)] < O, with strict inequality if F, depends on

s and N\ # 0. Q.E.D.

[[Y



Equality holds in (20) if and only if either the bidders are risk
neutral (that is, A = 0), or the.information does not alter the probability
distribution over the highest of the other bidders' valuations (that is,
FY(x.s) does not depend on s.) Apart from these two special cases, the policy
of concealment results in strictly higher revenues than the policy of
revelation.

Milgrom and Weber {12] obtained the following results. With
risk-neutral bidders, the release of information by the seller raises the
expected selling price in a first-price sealed-bid, Vickrey, or English
auction. With risk-averse bidders releasing information raises the price.in
an English or a Vickrey auction. The results obtained above show that, in a
first-price sealed-bid auction with risk-averse bidders (the case not examined
by Milgrom and Weber), information release can result in either an‘increase or
a decrease in the expected price.

The tendency for the selling price to rise after information release
when bidders' valuations are affiliated is caused by what Milgrom and Weber
[12] and Milgrom [10]) called the linkage effect. A rough intuition for this
is as follows (for a more precise description, see Milgrom [10]). It is
intuitively clear that, in general, any reduction in the variance of the
bidders' estimates of the item's value increases bidding competition and
drives up the price. The release of information links bidders®' estimates to
the public information: it reduces the advantages from private information.
In other words, the release of information has a similar effect to a reduction
in the variance of perceived valuations.

Theorems 1 and 3 above show that, with risk-averse bidders in a
first-price sealed-bid auction, there is, in addition, a contrary tendency for

the release of information to drive down the price. To understand this
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effect, consider the case when it exists in isolation of the linkage effect,
that is, when bidders' values are independent. 1In this case, a policy of

revealing information would not on average change bidding behavior in the

{a

Vickrey or English auction: the expected second-highest valuation remains
unchanged. The bidders may be better off, however, because, with constant
absolute risk aversion, revealing information reduces the risk premium
(Milgrom and Weber [12, Theorem 20, p. 1115]). 1In contrast, in a first-price
sealed-bid auction with risk-averse bidders, revealing information does change
bidding behavior. If the revealed information is good news then each bidder
knows that his rivals will bid more aggressively, so he must do likewise.

Bad news similarly generates less aggressive bidding. Thus the policy of

revealing information results in a higher variance of bids than the policy of

14

concealing information. It therefore results in a lower price on average. We

shall call this effect the bid-dispersion effect.

Milgrom [10] pointed out that linkages increase the randomness in
bidders' payoffs. The foregoing results are consistent with this. From
Theorem 2, bidders with independent private values in a first-price sealed-bid
auction are indifferent between the policy of revealing information and the
policy of concealing information. From Theorem 3, bids are on average lower
with information revelation. It follows that the risk-averse bidders must be
faced with more risk under revelation than under concealment.

Thus the bid-dispersion effect is absent from a Vickrey or English
auction or when bidders are risk neutral; it operates by itself in a
first-price sealed-bid auction with risk-averse bidders having independent e
valuations; and it operates counter to the linkage effect in a first-price

sealed-bid auction with risk-averse bidders having affiliated valuations.
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The usual examples of information that can be revealed by the seller (an
expert's appraisal of a painting, a geological survey of an oil well, etc.) do
not apply to the independent-private-values model, since each bidder is
assumed to know the value of the item to him. There is, however, one type of
information that is useful to a bidder when valuations are independent:
information about the amount of competition.

Suppose there is a finite set of potential bidders x. The set of
active bidders is drawn from %, and the number of bidders is statistically
independent of the bidders' valuations. Preserve symmetry by supposing that
all active bidders perceive the same probability distribution over the number
of active bidders. It is clear that information about the number of active
bidders is at least weakly affiliated, so that the hypotheses of the model are
satisfied by this particular type of information. Moreover, the distribution
of the highest of the other bidders' valuations, FY(x,s), clearly depends
nontrivially on s when s represents information about the number of active
bidders. Hence, provided A > 0, condition (20) holds with strict
inequality. Thus, in a first-price sealed-bid auction with independent
private values and strictly risk-averse bidders (having constant absolute risk
aversion), the seller's expected revenue is strictly higher when he conceals
the number of bidders than when he reveals it.s

In an extension of the present analysis, Matthews [6) has shown that the
result that the seller prefers to conceal the number of bidders continues to
hold when the bidders have decreasing absolute risk aversion. However, the
bidders prefer a policy of revelation when they have decreasing absolute risk
aversion, and a policy of concealment when they have increasing absolute risk

aversion.
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In an English auction, the price is the same whether or not the number
of bidders is known, since in either case the bidding stops at the

second-highest valuation. In the independent-private-values model with

e

risk-averse bidders, the English auction and the Vickrey auction yield lower
revenue for the seller than the first-price sealed-bid auction with the number
of bidders known (Riley and Samuelson [15]); in turn, as we have seen, this is
dominated by the first-price sealed-bid auction with an unannounced number of
bidders. Thus, with risk-averse bidders, the auction form considered above,
the first-price sealed-bid auction with the number of bidders concealed, is
the best of the simple auction forms from the point of view of

the seller.

[}



o

&)

(-1

13

3. The Optimal Auction with a Stochastic Set of Bidders

What is the optimal auction when the number of bidders is unknown? For
the sake of tractability, we restrict attention now to the case of

risk-neutral bidders.

Suppose there is a finite set of potential bidders % = {1,2,...,n}.

Let BA denote the probability that A C ® is the set of active bidders. The
bidders have Bayesian-consistent prior probabilities over the set of active
bidders.

The process by which potential bidders become active bidders (that is,
the determination of the probabilities BA) is regarded as exogenous. For
example, in the case of government-contract bidding with particular firms
invited to submit bids, the government chooses the bidders on a rotating basis
from a list of qualified firms (McAfee and McMillan [9, Ch. 8]).

Drop last section's assumption that potential bidders are identical.
Suppose instead that potential bidder i independently draws his wvaluation xi
from a distribution Fi’ which may vary from bidder to bidder; assume Fi(O) =0
and let F; = fi. Thus informing bidders about the number of active bidders is
now not the only issue; bidders also may or may not be informed about the
identities of the other active bidders. The perceived probability of any
potential bidder actually bidding may depend upon his valuation distribution

Fi. (For example, it may be that a potential bidder who values the good
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highly is more likely actually to submit a bid than a potential bidder with a
low valuation. Thus it is possible that, if Fl(x) < Fz(x) for all x, then
’ ’ . ti
ﬁ{l}UA > B{z}UA for all A, 1, 2 ¢ A.) Although valuations are drawn
independently from the Fi's, this formulation admits some perceived
correlations among valuations. (For example, suppose the set of bidders is
. = = o =}
{1,2,3,4,5}; (Vx)Fl(x) = Fz(x) > F3(x) Fa(x), 3{1’2’5} %,
B = ‘%, B, = 0 for all other A. Then it would appear to potential
{3,4,5} A
bidder 5 that the other bidders' valuations were correlated.)

The problem just defined is the optimal-auction problem solved by
Myerson [14], but generalized in one respect: in this problem the bidders
know neither how many other active bidders there are, nor the identities (that
is, the Fi's) of the other active bidders. Myerson's case is obtained in the
analysis to follow by setting BA = 1 and ﬂB = 0 for B # A, where A
represents Myerson's known set of bidders.

We simplify the analysis relative to Myerson's by assuming the

distributions Fi satisfy the following regularity condition:

\

d 1-F (x) :

(21) — | x - i .
dx —_ >0

£ (%)

i

(Compare with Myerson [14, p. 66].) This simplifies the analysis because,
when (31) fails, the seller must randomize (Maskin and Riley [2]).
Suppose the seller values the object at xo > 0. The seller uses an

. . < . . . A Al
incentive-compatible direct mechanism by announcing sets ri Cc RI ', i€a,

. A A . . .
and functions ai: R' | 2 R so that, if the set of actual bidders is A and
. . A . .
the bidders report valuations x , then each bidder i € A pays an amount

a:(xA) and is awarded the good if xA € Fg.

{0

iw
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We use the following notation:

(22) {al,...,a } = A;

1Al

A
(23) (x ,2) =(x ,...,Xx v Zy X 2eeesX );
a

-a a a a
i 1 i-1 i+l lA]
A Y A
(24) T =R \(UT);
o ieA 1
A
(25) dx =dx ... dx dx ... dx H
-a a a a a
i 1 i-1 i+l 1Al

A A
(26) f (x ) =.l'[ f‘(x’);

ieA 1 1
A A A A
(27) A (2) = {x |(x ,z) e}, if i € A;
i -i  -i i
A A
(28) u (2) = | m f (x)dx , if i ¢ A;
i A jeA § § -i
A (z) j#i
i
A A A A
(29) o (2) = | e (x ,z) M f (x)dx .
i j1AlI-1 i -i #i 3§ -i
R JeA

Here (24) defines the set of reports x for which the seller keeps the good.

If the x's represent true evaluations, (23) gives the vector of responses when
bidder i reports z and everyone else is honest. (27) gives the set of others'
valuations for which i wins the good with a report of z. (28) gives the
probability that i wins with the report z, while (29) gives i's expected

payment with the report z. Let £ denote the sum over w satisfying R(w).
w
R(w)
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The incentive-compatibility constraints are
A A
(30) I B [zu (2) - o (2)]
AA i i
iecA
A A
2 LB lzu(z) -0(2) 1, Vz,Vz .
AA 1 o i o
icA
The free-exit constraints are
A A
(31) LB [zu (2) - 0 (2)] 20, Vz.
A A 1 1

icA

THEOREM 4. The seller maximizes his expected revenue by setting F% to

satisfy:
1-F (x ) 1-F (x )
A [A| i i i 3
(32) T ={xeR Ix'- —_ > max[x ,Xx - ———1]}.
i i f (x) o j f (x)
i i i3

Proof. Rewrite the incentive-compatibility constraints:

IA

A A A A
(33) IBlo(2)-0(z)] £Bzlu(z)-u(z)]
AA 1 i o AA i i o

ieA icA
and
A A A A
(34) IR o (2) -0(z)]> LBz Iu(z)-u(z)].
AA 1 i o AAo 1 i o
ieA icA

Divide by z-z and take limits to yield
o

A A
(35) LB [c '(z)] = LB zu '(2),
AA 1 AA i
ieA ieA

should these derivatives exist. The free -exit constraint (31) implies

A A
o (0) < 0; but the seller wants o (0) to be as large as possible, so that
i i

1.3

e

0

L}
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A
o (0) = 0. Hence
i

A A Z A
(36) B o (z)= EB [zu(z) - [ u (t)dt].
AAil A A i o1i
ieA ieA

The seller expects to earn:

A A A A A A A A
37) ¢=zzB{x [f(x)dx+ I [ & (x)f (x)dx }
AA o A i Al i
ieA R
o

1
ieA T icA
i

A A A o A A
=EB{x[1- £ JEf(x)dx]+ I [ o (2)f (z)dz})
AA o i A o1i i

A A A ® A A
=x-xIB I [ f(x)dx+ I LB [ o (z)f (z)dz
0 OoAAieA A i AA oi i
r, ier ieA
i

A A A A Z A
=x-x ! IB Jf(x)dx+I [ LB I[zu.(z)»I p (t)dtlf (z)dz]
o o i AA A i AA i oi i
iew ieA T ien ieA
i

A A A A A A
=x-x ILIB [f(x)dx+ X [ZI B{] xf (x)dx
o o iAA A i A A A i
ien r ien ieA r
i i

z A © A
+ [[l-F_(z)]I u (t)dt] - f [l-F.(Z)]u,(z)dz}]
i o i o i i

o
1-F (x )
A A A i i A A A
=x-x LZIB [JE(x)dx+2Z EBI[] [%X - ————]f (x)dx ]
o o, iAA A i AA A i f (x)
ien r, iex ieA T i i
i i
1-F (x )
ii A A A
=x+ I EIB{JIx-x-——]Ff (x)dx}
) i AA A i o f (x)

ier ACw r, i i
i
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1-F (x )

i A A A

IR I J{x-% - —— =} f (x )dx .
ACr A ieA FA i o f (x)
i i

=X +
i

Maximizing & with respect to Fg, subject to F: n Fg =% for i # j,

i,j ¢ A yields, from Stokes' Theorem (Sagan [14, p. 542]),

1-F (x ) 1-F (x))
A i i i3
(38) Ir'={x|x-%x- ———>max [0, x - x - ——""1}.
i A'i o f (x) i o f (x)
1 1 J J

Condition (38) gives the unconstrained maximizer of &. However, & must be

maximized subject to the constraint that the function ¥ u:(z) is

ABA
nondecreasing in z (which is necessary for incentive compatibility). The
regularity condition (21) ensures that the unconstrained maximizer in (38)
does in fact satisfy the monotonicity constraint.
Q.E.D.
Since the payment function a: is contingent on the set of bidders A,
the seller implicitly reveals the set of bidders when he announces the payment
function. However, if the seller wishes to conceal the set of bidders, he can
make payment not contingent on A (provided he knows the probabilities BA) by
using the payment function
A
LB o (2)
AAi
ieA
(40) o0 (z2) = ————.
i I g
The noteworthy feature of Theorem 4 is that the optimal auction does not
depend on the probabilities over the sets of active bidders, BA' Thus the

optimal auction derived by Myerson [14] when the set of bidders is common

knowledge remains the optimal auction when the bidders do not know the set of

bidders. This implies the following result.

a

‘e

1]

[t}
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COROLLARY. The seller's maximum expected revenue with risk-neutral bidders

having independent private values is the same whether or not the bidders know

the set of bidders.

Consider the case in which Fi = Fj = F for all i, j € »: all bidders
draw their valuations from the same distribution. Then Theorem 4 says that
the seller optimally sets a reserve price r satisfying X, =T - (1-F(r))/£f(r)
and chooses the highest remaining bidder (as in Myerson [14) and Riley and
Samuelson [15]). 1If Fi # Fj for some i, j ¢ k, then reserve prices are
again used but the optimal auction discriminates against certain bidders, in
that a lower-valuation bidder can win the item despite the presence of a
higher-valuation bidder. (See Myerson [14] and McAfee and McMillan [8] for
details.)

How can the optimal auction be implemented in practice in the case of
symmetric bidders (that is, Fi = Fj for all i, j ¢ #)? When the set of
bidders is common knowledge, it is well known that the optimal direct,
incentive-compatible auction can be mimicked by either an English auction or a
first-price sealed-bid auction, provided appropriate reserve prices are
imposed (Milgrom [10]), Myerson [14], Riley and Samuelson [15]). Does this
remain the case when the bidders do not know the set of bidders? Suppose that
the bidders' expectations over the set of bidders, while Bayesian consistent,
are not identical. Then the optimal auction can be implemented using an
English auction, because in the English auction, the second-last bidder drops
out of the bidding when the bids reach the value of the second order
statistic; this gives the seller the same expected revenue as the optimal
direct auction of Theorem 4. However, it is important to note that the

optimal auction cannot be implemented by a first-price sealed-bid
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auction when bidders have different expectations. This is because the bidding
functions of different bidders will fail to coincide; as a result, it is

possible that the highest bidder in the first-price sealed-bid auction is not

1}

the appropriate winner as defined by the optimal r:. Note also that the

;3

converse of this applies: if the bidders have different expectations over the
set of bidders, then only for a measure-zero set of Fi's is the first-price
sealed-bid auction optimal. Thus we have a result contrary to the
Revenue-Equivalence Theorem, even though bidders are symmetric, risk

neutral, and have independent private values.

4. Conclusion
The results of auction theory are sensitive to the assumption that the

set of bidders is common knowledge. In a first-price sealed-bid auction with

\e

bidders who have independent private values and are risk averse (with constant

absolute risk aversion), the expected selling price is strictly higher when

-

the bidders do not know how many other bidders there are than when they do
know this. In an ex ante sense, any bidder is indifferent between the policy
of being told and the policy of not being told the number of bidders. With
risk-neutral bidders, the optimal auction is the same whether or not the
bidders know who their competitors are. However, this optimal auction may not
be implementable using a first-price sealed-bid auction, although it is
implementable using an English auction.

More generally, in a first-price sealed-bid auction with bidders who are

risk averse and have affiliated private values, the release of any affiliated

[

information by the seller generates two opposing tendencies: the linkage
effect, identified by Milgrom and Weber [12], which tends to raise the selling a
price; and the bid-dispersion effect identified above, which tends to lower

the selling price.
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The limits of the foregoing results should be stressed. As Milgrom and
Weber [12]) pointed out, the independent-private-values assumption (used in
part of Section 2 and in Section 3) is restrictive: it requires that each
bidder has no doubt about the value of the item to him, and that there be no
possibility of reselling the item later at some as yet unknown price. The
analysis of Section 2 assumed constant absolute risk aversion: Matthews [6]
showed that some of the results change when this assumption is relaxed. The
results of Section 3 depend upon the assumption of risk neutrality, as is

shown by the results on optimal auctions with risk-averse bidders of Maskin

and Riley [3] and Matthews [4].
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Footnotes

*We thank an Associate Editor and a referee for their perceptive
comments, and the Ontario Economic Council for research support.

1See Milgrom [10, 11] for surveys of auction theory.

2For example, Ontario Hydro, Ontario's electrical utility, has a policy
of keeping secret the number of firms it has invited to submit bids: see

McAfee and McMillan [9, Ch. 8].

3A more detailed comparison between the analysis and results of Milgrom
and Weber [12] and this paper will be given in Section 2.

4Note that equation (6) is the risk-aversion analogue of equation (7) of
Milgrom and Weber [12, p. 1107]. This is the point at which the assumption of
constant absolute risk aversion is used. The differential equation (6)
defining the bidding function B is a linear differential equation if and only
if the bidders have constant absolute risk aversion (McAfee and McMillan [7)).

5How large can the seller's gain from concealment be? Let Y represent

the objective probability that there are n active bidders. In a simulation
with 72 =Y, Yl = 1-y, A =1 and F uniform on [0,1], concealment increases

revenue by 25% for small y, and by 10% for vy = %. 1In addition, the
percentage increase in revenue is a decreasing function of y in this
simulation.

6On optimal auction design with risk-averse bidders and a fixed, known
set of bidders, see Maskin and Riley [3], Matthews [4,5), and Moore [13].

7Note that bidders can have differing expectations over the set of
bidders even when Fi = F, for all i, j € . For example, let there be two

potential bidders: potential bidder 1 always bids, while potential bidder 2
bids with probability « < 1. Let p; denote bidder i's probability that the

number of active bidders is n conditioned on he himself being an active

bidder. Then pi =1-a# 0 = pi.

(S
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