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ON ROBUSTNKESS OF TESTS OF LINKAR RESTRICTIONS IN REGRESSION MODELS

WITH ELLIPTICAL ERROR DISTR1LBUTIONS

by

Victoria Zinde ‘Walsh and Aman Ullah

1. Introduction

Testing a set of linear restrictions in a regression model is usually
performed with the help of the F-statistic, or the statistic based on the
likelihood ratio (LR). More recently two other procedures, the Lagrangian
Multiplier or Rao Score (RS) test due to Rao (1947) and Silvey (1959), and the
Wald (W) test (1943), have become popular with econometricians; see, for
example, Breusch and Pagan (1980) and Evans and Savin (1982).

A statistic can be called numercially robust over a class of error
distributions if its values are independent of the specific error distribution
from that class. If the statistic is such that no matter which error
distribution from the class of distributions is considered, the test criterion
remains unchanged then the statistic is inferentially robust over that class.

1f the statistics F, LR, RS and W are constructed based on the
assumption of the spherical normal error distribution (normal error with the
covariance matrix ozl), then F and LR are numerically robust against the
class of all monotonically decreasing continuous spherical distributions, but
RS and W are not. However, all these statistics are inferentially robust over

this class, thus the test conclusions reached under the assumption of



normality will not be overturned if the error distribution is spherical.

These results are derived by Ullah and Zinde-Walsh (1984), (1985).

a

In this paper we consider the issues of numerical and inferential

robustness of F, LR, RS and W tests, based on the assumption of spherical

1

normality, against the general class of elliptical error distributions (errors
with the nonscalar covariance matrix I). We provide the necessary and
sufficient conditions of numerical robustness for the class of covariance
matrices often used in econometrics, for example, autoregressive (AR), moving
average (MA) and heteroscedasticity. Our investigation shows that for these
covariance matrices the numerical robustness of test statistics under
consideration is rare. Our results are more general than those given in Ghosh

and Sinha (1980) and Sinha and Mukhopadhyaya (1981) who consider only

»,

intra-class covariance structure. Also, while Khatri (1981) gave conditions

for numerical robustness in terms of pairs of data and covariance matrices,

e

robustness over classes of covariance matrices considered here has not been
examined in his paper.

our investigation also showed the limitations of exact inferential
robustness. We therefore looked into the robustness of tests by developing
bounds for critical values which will ensure that the conclusions based on the
usual tests are not affected against a particular class of distributions.
Bounds for critical values of test statistics for t and F-tests for
first-order AR, MA and ARMA processes have been tabulated (for normal errors)

by Vinod (1976), Vinod and Ullah (1981) and Kiviet (1980). Their calculations

.

involve the knowledge of all the eigenvalues of the matrices which

characterize these processes and are quite complex. The situation becomes
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more complicated for higher order ARMA processes. Our method offers bounds
which are cruder for the specific processes considered by Vinod and Ullah and
Kiviet, but they have the advantage of calculational simplicity and
generality, i.e., they provide critical values that guarantee robustness of
the test conclusions, for any I matrix, over wide classes of error
distributions, and would utilize only the highest and lowest eigenvalues of
the covariance matrix.

The plan of the paper is as follows. Section 2 develops the notation
and definitions. Section 3 deals with the problem of numerical robustness and
some applications. In Section 4 we examine the question of robustness of test
conclusions and provide our bounds on the critical values of statistiecs.

Finally, the proofs of the lemmas and theorems are presented in Section 5.

2. Definitions and Notation

We consider the general linear regression model
(2.1) y =XB +u
where y is an nXl vector of observations, X is an nXp known matrix of rank
p < n, B is a pXl unknown parameter vector and u is an nXl disturbance

vector such that

-n % u'2~1u
(2.2) o(u) = o |E| f£(

2
(<]

with a monotonically decreasing f, and positive definite I. If I = I, the
distribution (2.2) reduces to a spherically symmetric distribution.
Oour problem is to test a set of r linear restrictions H°=RB = 0 against

HI:RB: # 0, where R is an rXp known matrix. Under this hypothesis, following



Ghosh and Sinha (1980, p. 338), we can rewrite the model as
(2.3) y = xoBo + u,
where xo is an nXm known matrix of rank m < p.
We denote by F, LR, RS, and W the values of the statistics calculated
according to the usual formulae under the assumption of multivariate normality

of u. F can be written as

-

(y-X B )'(y-X B )
oo oo

(2.4) F=1

~ -~

(y-XB) ' (y-XB)

q
- 11 -, q = n-p
r

~ ~

where B, and B are the respective least squares estimators of B, and B,

and LR, RS and W can be expressed through F, respectively, as

r r r
(2.5) LR =n log(l + - F), RS =n-F/(1+ -F), W=n-F.

r
q q q q
We introduce the following projection matrices:

-— ) - ]
(2.6) P=X(X'X) 'X'; A=IP; P =X (XX) 'X;A =IP.
o o [+ I o) o [o] o

where I is the identity matrix. The following properties can be easily

verified:

(2.7) rank P > rank P ; rank A < rank A ; PP =P ;
(] o [+ o

AA = A; PX =X; PX =X_.

o] o o
u'Au
[o]
Using (2.6) and noting that (1 + - F) = ” we can rewrite (2.4)
q u'Au
and (2.5) as
u'(A -A)u u'Au
o q o
F = ———— -} LR = n log H
u'lu r u'Au
(2.8)
u'(A -A)u u'(A - Au
o [+
RS = W=

u‘'Au u'Au
o

(%

L}

w



If u is in fact distributed as spherical normal, all the statistics have
the known distributions. If the error distribution is spherical, i.e. is
given by (2.2) with I = I, we denote the values of the appropriate

LR,, RS, and W, .
¢’ ¢ ¢ ¢
If the distribution of u is elliptically normal, we denote the

corresponding statistics by F

statistics by FX‘ LRz, RS. and Wz.

b
It is known that

- o -
(y-XB )'E (y-XB )

o ol o ol q

(2.9) FX = [ - 1] -

~ -~

-1
-XB )'Z -XB )
(y Bz (y Bz

is the familiar F-statistic for testing H,, with
- , . -

-1 -1 -1 -1 -1 -1
(2.10) B =(X: X) XI y; B = (X't X) X't vy.
ol o o 0 L

Further, as in (2.5) we have

r r r r
(2.11) LR =nlog(l +-F); RS =n-F /(1 +-F ); W =n-F_.
t q I I q I q I z qQq I

For a general elliptical distribution in (2.2) denote the appropriate

statistics by F LR £ RS Ullah and Zinde-Walsh (1984, 1985)

’ ,» W .
¢'z ¢ ¢lz ¢lx

have analyzed the numerical robustness of LR, RS and W tests against
spherically symmetric distributions. In particular, they have shown that

2.12) LR=LR ; RS = ¢ 'RS.; W=p_ W,
(2.12) LRy; RS = ¢ 'RS,; W = o, "W,

where ¢¢ and p¢ are constants which depend on the spherical distribution

é(u). Thus LR is numerically robust but RS and W are not.
The elliptical distribution (2.2) can be transformed into a spherical by

the substitution u = z”v. Thus for this case, from (2.12) we easily obtain

-1 -1
(2.13) LRy = LR, o; RSy = ¥ RS, i Wy = p "W, .

Here LRz is numerically robust against non-normality, but RSz and wz are

not .



3. Main Resuits on Numerical Robustness

It was mentioned in Section 2 that Ullah and Zinde-Walsh (1984, 1985)
analyzed the numerical robustness of F, LR, RS and W against spherically

symmetric distributions and of F LRz, RS, and Wz against elliptically

z

symmetric distributions. Here we look into robustness of F, LR, RS and W

x’

(under spherical normal) against elliptical normal distributions by comparing

the values of these statistics with the values Fz, LRE' RSz and wz as in

(2.9)-(2.11).

Conclusions about robustness against general elliptical distributions

will follow in view of the relationships (2.13). We also note that we derive

the results for parametric classes of I matrices often used in economic
literature.

For deriving the conditions under which Fz (or LRX) is numerically
robust over some class of I given the data matrix X, we consider

| o
(3.1) R =1+ -F
z q I

r
and examine the conditions under which iz =9 for?2 =1+-F.
o o q

Consider a class Qp of matrices I with I = (I-HP) where Hp is some
k
symmetric matrix over some parameter space B ¢ R, p = (pl,...,pk) ¢ B with

Ho = 0 for P, = e = = 0 and Iy'prI < y'y for all possible y, p € B.

Py
We now state the following lemmas which are used in the proof of

Theorem 1.

s



Lemma 1

Over all ¥ ¢ Qp, kz can _be represented as

(o]
Yy'Ay+y'ATAYy
o

opo
(3.2) L =
z y'Ay + y'AT Ay
P
where
i i i
© m+l 2 2 m+l
(3.3) T =L [, r L-1) H AH ... AH ]
P ii +...¢+1 =1 P
1 m+l

and Tp has a similar representation with A, replacing A in (3.3), with A and

Ao defined by (2.6).
Lemma 2

Suppose that for some symmetrix matrix T

(3.4) (Y‘AOTAoy) * (y'Ay) = (y'ATAy)(y'Aoy).

Then AOTAO = SAO; TA = 6A, where 0 is some constant.
Theorem 1

Suppose that Hp is a polynomial or a convergent series in the parameters

PverPy with symmetric matrices as coefficients. Then if T(rl....,rk) is

r r
. 1 k m
the coefficient of p ,...,p in T H

,m=2Z%r and if & =12
i P o

it follows that

(3.5) AT(r ,...,r,)A =606(r ,...,C )A
o 1 k' o 1 o

).

for some constant e(rl,...,r

k

For proofs of the lemmas and Theorem 1 see Section 5.



Remark 1 Suppose that A HkA =0, A, k=1,2,..., where © is a scalar
R opo k,p o e 7Y - —
function of P veesaPye Then Qz = Qo.
To prove the above statement one only needs to note that
k k

AHA=AAHAA=A0, AA=6_ A
P opo k,p o k,p

and to substitute into (3.3), (3.2).

Theorem 1 and Remark 1 give the necessary and sufficient conditions for
the constancy of 12 and therefore for the numerical robustness of F, RS, LR
and W statistics against elliptically normal errors that can be described by a
variance-covariance matrix I e QP, Qp = {}ZII:'—1 = I—Hp with HP being a
polynomial or convergent series}.

The stringency of these conditions makes numerical robustness an
exception rather than the rule. No process with non-trivial Hp gives rise to
robust statistics for all possible X and Xo. therefore numerical robustness
has applications mainly for experimental design. Also, of course, one can
always check if the observation matrix X just happened to lead to statistics
numerically robust against a particular process in the errors, but if so it
would be strictly a matter of luck. We show that our results generalize those
on experimental design with intraclass covariance structure by Ghosh and Sinha

(1980) and examine the possibilities for numerical robustness over

heteroscedastic and ARMA processes.

3.1 Implications for Intraclass Covariance Structures

The result of Ghosh and Sinha (1980, Theorem 3.1) follows as a special

]
case of our theorem. Indeed, they considered I = (1-p)I + p 1n X ln'

- -—I < p <1, where 1 is a column vector of ones, and hence
n- n

L]

(s

e



'
1n X 1n = nQ, where Q is a projector of rank 1 onto the subspace spanned by

-1 1 pn
1. Here £ = ~——[I - —————— Q). Direct application of Theorem 1
n 1-p (1+(n-1)p)

to &' implies that AOQAo = er. Since rank AO > rank A > 1, it follows
that 6 = 0, Aol X l'Ao =0, Aol = 0, therefore 1n is the eigenvector of both
Po and P as stated in the result of Ghosh and Sinha. It is just as easy to

verify that Theorem 3.2 of the same paper follows from our results.

3.2 Implications for Heteroscedastic Errors

Theorem 1 also provides a characterization of the class of
heteroscedastic £ for a given A and restriction R over which iz = QO: it
is required that ¥ = YOI + A, where the diagonal matrix A is such that

AAO = 0, this implies that the A matrix has a block-diagonal structure with a

block of zeros.

3.3 Implications of Theorem 1 for Autoregressive (AR) Error Structures

The matrix £ © is known for autoregressive processes of order k,AR(Kk).
If we set all but one of the parameters of AR(k) - P aP v Py equal to

# 0, Py = 0 for i # k, then £ ' reduces to the matrix

zero: p,

2 . . . .
I+ pC1k + p Czk. Here Clk is the matrix with elements (Clk)ij equal to -1 if
|]i-j| = k and O otherwise, and C2k is a diagonal matrix with elements (Czk)ij

equal to -1 if k < i = j < n - k and 0 otherwise. We shall denote this
process AR(k,0). A necessary condition for constancy of kz for AR(k,0) is

that Aoc1 Ao = er. where Ao is a projector of rank no less than 2. This

k

implies that C1 should have at least two identical eigenvalues, which is true

k

only if k > g +1. If k > g + 1 then Clk has a kernel of dimension

n - 2(n-k) = 2k - n > 2. In this case 12 is constant for all Ao that



10

project into the intersection of the kernel of the matrix Clk and of either

the image or the kernel of C_,. Then, of course, 6 = 0 and AC A = YA
2k o 2k o o

with vy = 0 or 1. It is not hard to check that for these k and Ao this

suffices for constancy of Qz.

3.4 Implications for the Moving Average Error Structure

The class of MA(k,0) error structures where all but the parameters of
order % are zeros is represented by I = 02[(1+w2)1 + wcak]' where c1k is
the same as for the AR(k) structure. We denote o’ (1 + w) by y and w/(1+w2)

by p. Theorem 1 can be directly applied to this class of I after noting

1

- 2 2.2
that £ = (147 )(I+pC 4+ C o

AC.A =6A . It can be easily seen that for the particular C_. in the MA
o 1k o o 1k

error structure |w] < 2 always. Therefore the theorem applies to all p

+...). For this I, 22 is robust only if

such that |p| < 172. Since p = w/(1+w2), this condition on p is satisfied

for any w. So the condition Aoc1 Ao = er is necessary and sufficient for

k
robustness over all possible MA error structures.

Here again if k > ; + 1, matrices Ao which result in robust test
statistics, exist. Such an Ao would project onto the kernel of C;k'

Thus we conclude that there are some data structures that produce
statistics that are robust over AR and MA error processes of sufficiently high
orders (which do not include lower order components). We also notice that the
higher the order of the error process the larger the class of data matrices
that give robust statistics. This is hardly surprising since in the limiting
case processes of order higher than the dimensions of the data will not affect
the statistics at all.

We also note that in general the larger the number of equal eigenvalues,

including zeros, of H (or the larger the dimension of any projector in the

canonical representation of the symmetric matrix H) the more possibilities for

numerically robust statistics.

«

X
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Note that if lz = Qo, then F = F¢,2 and LR = LR¢’2, but unless the

distribution is elliptical normal RS # RS¢ 5 and W # w¢ e

4. Inferential Robustness and Bounds on Critical Values

e e e t—————————————————tr

1f two test statistics are such that one is a monotonic function of the
other, then any probabilistic statement about one implies a similar statement
about the other. Thus if one falls beyond a critical value for some level of
the test, so does the other. Therefore, as was stated in Ullah and
Zinde-Walsh (1985) (and can be seen immediately from (2.12)) RS and W are
inferentially robust over the class of all spherical monotonic error
distributions.

Here we examine the inferential robustness of the test statistics F, LR,
RS and W, calculated under the assumption of spherical normality, for general
elliptic distributions. To emphasize this we denote the statistics by F(Z),
LR(Z), RS(EL) and W(Z). Since the test statistics are inferentially robust
against spherical distributions it will not make any difference to our
conclusions whether the statistics bear the subscript ¢ or not.

Consider the variate S(I) = F(Z) ;, where

u'Au
(4.1) S(%) =

u'Au
2

with A, = A, - A, A, = A as defined in (2.6). The critical values for S(I)

%
depend on the matrix I. Indeed, consider the transformation u = I v, then

% %
vViZAZ VvV
(4.2) sS(%) = —m——
% %
VvViIZAZLI VvV
2

where v is spherically symmetric. Denote S(1) by S.
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We observe that as long as S(I) is inferentially robust over a class Q
of T matrices all the statistics F(I), LR(Z), RS(I) and W(I) are
inferentially robust over Q as well. We assume that I e Q. .

Denote by 0(n) the group of orthogonal nXn matrices in the Euclidean

space R". For any T ¢ 0(n) the distribution of S and of S(I) in (4.2) is

invariant with respect to the transformation T: R s R

Lemma 3:

For a positive definite matrix 2% and any two mutually orthogonal

3 3
idempotent matrices Al. A2 there exists T ¢ 0(n) such that Ai = T'IAAiEkT is

a diagonal matrix for i=1,2.

Proof: See Section 5.

This lemma allows us to rewrite S(I) by substituting w = Tv as

(3

w'Aw

b §
(4.3) S(k) = ’
W'Aw

2

where we can write

A
b

diag(pl,...,uk, o.--o)) ‘l. S LU _<_ llk, k=‘P—m

(4.4)

A diag(0,..0, u el ) M

2 p+1' " ''n p+15"'< n
where diag(...) denotes a diagonal matrix with given diagonal elements.
A similar transformation for S yields

w'Qw
2

(4.5) S =
w'Qw
2

with Q, = diag(1,..1,0,..0), where the first k elements equal 1, and Q, =

e

diag(0,..,0,1,..1) where the last n-p elements equal 1. Note that the

transformation of S may be performed with a matrix from 0(n) different from



[
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T, but the distributions of S(X) and S are not affected by an orthogonal
transformation of the spherical variable.

Clearly the following inequality holds

¥ ]

1 k
=8 < 8(L) £ — 8.
] H

n p+l

It follows from (4.3) that all the values for S(Z) within the bounds given by
(4.6) are realized for some w. Therefore a sufficient condition for
inferential robustness is that "1/"2 = uk/pp.

However, this type of condition is hardly less restrictive than those
demanded for numerical robustness.

We thus seek bounds on the critical values of the statistics F(I),
LR(Z), RS(Z), W(I) which will assure the test conclusions over some class
Q(> I) as long as the respective values calculated according to (2.4) and
(2.5) are outside of these bounds.

Since A;’ Az are projectors with eigenvalues equal to 0 or 1 the
eigenvalues of AX% are bounded by the eigenvalues of 2%. Denote km the

ax
highest and A_. the lowest eigenvalue of I, by &, the ratio A __ /A . .
min z max min

Clearly
(4.7) AL, WQWLSWAWLSA wQ.w

min i i max i
Therefore

-1
(4.8) 82 S £8(2) £ 628.
This inequality holds irrespective of Al. A2 and the particular I, and only

reflects one characteristic of I--the ratio of the highest to lowest

eigenvalues. The bigger 62 is the more I is distinguished from I for which

éd = 1.
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For any two statistics S1 and S2 with S1 < S2 everywhere their
cumulative distributions Gi(X) = Prob(Si < x) i=1,2 are related:
G (x) 2 G _(x),
1 2

and therefore for some level of the test the critical values satisfy:

From this observation and (4.8) we obtain the following theorem.

Theorem 2:

The critical values Fcr(Z) are located within the following intervals

dependent on §--the ratio of highest to lowest eigenvalues of I:

- .
(4.9)  87'F_<F () <S8 F,

cr r’

Corollary

-1 o §
LR + u log(§ -(1-& )/% ) < LR(Z) < LR + n log(s-(s-1)/% ),

cr cr cr cr
L = exp(LR /n)
cr cr
(4.10)
-1
§ RS n § RS
cr n cr -1
—_———— < RS (2) , 8§ W <W (Z)LKS8W .
-1 cr n+(8-1)RS cr cr cr
n-(1-8 )RS cr
cr

The inequalities (4.10) are derived easily from (4.8) and (2.5).

4.1 Discussion of the Results

The relationship (4.9) has the following immediate interpretations for
the F-test. Firstly, if a class Q of I matrices is such that the biggest
ratio of the maximum to minimum eigenvalues of £ ¢ Q is limited by some &,
then the test conclusions are the same for any I as long as either
F/Fcr > § or Fcr/F > §, where F and Fcr are, respectively, the value of the

test statistic according to (2.4) and the critical value for the hypothesis

"

(34

i



(3]

L]

[y
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test under the spherical normal. Secondly, if F > Fcr (F < Fcr) then the
test conclusions are robust over the class Q of I matrices with § the
ratios of maximum to minimum eigenvalues, such that §(Z) < F/Fcr (8(%) <
Fcr/F)’

Since the relationship for W in (4.10) is similar to (4.9) for F the
same conclusions apply. A simple examination of (4.10) shows that the bounds
on the critical values for RS(Z) are inside the interval [6"1Rscr, 6Rscr]'
thus the conclusions made above hold for RS as well.

The following example demonstrates how our bounds compare to those
obtained by Vinod (1976) and Vinod and Ullah (1981) for the t statistic under
an AR(1) process. Suppose that p = .5. Then the eigenvalues of the
variance-covariance matrix are contained between the asymptotic (T - «)
maximum and minimum eigenvalue, 1 + p2 + 2p =2.25 and 1 + p2 - 2p = .25.
Thus the bounds on the critical value of the t statistic can be calculated
based on the square root of the ratio v2.25/.25 = 3. The critical values
given by Vinod and Ullah are tabulated according to the number of restrictions
p and sample size n. If n=50, p=5, for instance, their Table 4.1 gives 1.14
and 3.93 as the lower and upper bounds, respectively, at the 5% level, whereas
our calculation, which involves only dividing and multiplying by 3 of the
standard critical value, gives .671 and 6.042 as the lower and upper bounds,
respectively.

However, there are three ways in which our results are an improvement.
Firstly, they relate to any I matrices, not just those generated by an AR(1l)
or MA(l) process. Secondly, they require the calculation of the maximum and
minimum eigenvalues of I only, whereas Vinod and Ullah utilized all the
eigenvalues in a much more complicated calculation. Thirdly, our bounds are

independent of A and Ao matrices.
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Note that if the bounds on the positive eigenvalues of AIA and
(AO-A) I (AO—A) can be established they will provide more accurate intervals

for critical values as can be seen from (4.6) and the fact that

1]

u
1

IA
On
re

Recall that under the multivariate normal error distributions Evans and

Savin (1982) have derived for |W/n| < 1 the following relationship

2
(4.11) W-LR=LR - RS =W /2n

generalizing the known inequality
(4.12) W > LR > RS.

Ullah and Zinde-Walsh (1984) have shown that a more complex relationship
exists between the statistics w¢, LR¢, RS<l> when the distribution is spherical
but non-normal. Here, once again, straightforward inequalities relating the
bounds on the statistics can be derived.

For any of the statistics F, LR, RS or W, denote by an upper or lower

bar the upper or lower bound, correspondingly, given by (4.9) and (4.10).

Next we denote

(4.13) F = (F-F)/F and Fo- (F~F)/F.

Similarly, we define LRU and LRL. RSU and RSL’ wu and wL. These ratios show

the length of the interval between the bounds in relation to its upper and

lower point, respectively. Thus they measure the "tightness” of the bounds on

the critical values of the statistics and the following theorem establishes a

ranking of the statistics with respect to this characteristic.
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Theorem 3:

The following relationships hold

(4.14) F, =W_> LR

" g 2 BSys Fo =W >LR >RS

L L L L’
8 Proof:
See Section S.
This theorem demonstrates the relative robustness of the bounds on

critical values for the different statistics. The bounds are the tightest for

RS and are the worst when the F test or the W test is used.

5. Proofs of the Lemmas and Theorems

Proof of Lemma 1

From (2.9) and (3.1) we can write

(3]

~ -~

1
(y-X 't -X )
y oBoz (v oBoz

4 (5.1) L =
z

~ ~

-1
(y-XB )'t (y-X
y ﬂz) y Bz)

We transform the denominator of (5.1) by substituting

By = (X'271X)~1X'Z™'y and get
(5.2)  y't M[I-X(X'® XY 'XT ly.
Consider

-1 1

(5.3) £t - tx@rTtR)TRes
where £ ' = (I-H ) with |y'H y| < y'y.
We can expand part of (5.3) into a geometric series:

XX (T-DX) 2K = XX K) koo B @ X

-

[I-(X'X)"
= P + PHP + PHPHP + .... + P(HP)k + ...

where P is defined by (2.6). Substituting into (5.3) we get

I1 -H-P- PHP - PHP - ... - P(HP)k - ++. + HP + HPHP + ...

+ (HP)k + ... — HPH - HPHPH - ... - H(PH)k - «.. + PH + PHPH + ...

k k
+ (PH) + ... = A - AHA - AHPHA - ... — AH(PH) A -
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Indeed the last term is obtained in the following way:
) e + ) e - HeE® + P H = A P A
(we have substituted P = I-A). We therefore get that (5.3) can be represented
as
(5.4) A - AHA - AHPHA - ... - AH(PH)k A- ...
Further we can replace P by I-A everywhere in (5.4) to get
i i i
(5.6) A-AH A-AH2A+AHAHA+...+ z (—1)k+1AH 1AH 2A...H k+1A+...

1 4...41 =i
1 k+1

This formula can be easily verified by substitution of P=I-A into (5.4). The
numerator of 22 can be transformed in an analogous manner. This concludes
the proof of Lemma 1.

Proof of Lemma 2

For a given vector y we define mutually orthogonal unitary vectors Y,
] ]
y1 and Y,» such that yiyi =1, 1=0,1,2; yiyj =0 for all 0 <1< j <£2;
Ay = ay ; (A -A)y =By i Py =1vy,.
By substituting into (3.4) we get
(5.7) az(azy'Ty + aBy'Ty + aBy|Ty + Bzy'Ty ) = (a2+B’)(czy.Ty )
177 1% o 1 o’0 177"
We equate the coefficients of all the monomials in @ and B in (5.7)
and get
L] ]
(5.8) YlTYI = YOTYO.
] ]
(5.9) leyo + yoTy1 = 0.
Since T is symmetric, (5.9) implies
] ]
(5.10) leyo = yo‘l‘y1 = 0.
]
Cconditions (5.8) and (5.10) hold for any y. We can denote ley1 by ©,

where 06 is a constant. For any y,

o

[

1K

\ S
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2
y Ty = y'ATAy/a = O,
1 2
where o” = y'Ay, and we have y'ATAy = Oy'Ay.
Similarly, using (5.10) in addition to (5.8), we can show that

[ = ] .
y AOTAoy oy Aoy

Proof of Theorem 1

Consider the expression (3.2) for !z. We can write it as

o
1+y'ATAy/y'Ay
o

opo
(5.11) ¢ =19
z ol + y'AT Ay/y'Ay
P
If Ly = %, it follows that

1 o ] = ] ]
(5.12) (y AoTpAoy)y Ay = (y ATPAy)y Aoy.
The expressions on each side of (5.12) are series in the parameters Py -t

Py
jdentical all the coefficients of monomials have to coincide. Consider P,

of HP. If the two series of the right and left sides in (5.12) are to be

and the coefficient of the lowest power of P, in TP' it is some symmetric
matrix T1 (it is also the coefficient of P in Hp).
We get for 'r1
] ] - 1 ]
(y'A T A Y)y'Ay = (y'AT Ay)y'Ay
thus by Lemma 2,
ATA =6A (and AT A = 6 A).
1 O ) 1

o110

Similar equalities hold for all coefficients of lowest powers in Tp.
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r C

1 k o
Any coefficient of a monomial p ,..., p in T can be
1 P
C +C +...+r
.. . 12 kr
represented as the sum of such a coefficient in I 1 H
r= P

denoted by T(r,,...,rgx), and products of coefficients of lower power monomials

with Ao in between. We can now use induction to show that
(5.13) AOT(rl,...,rK)Ao = e(rl,....rk)Ao.
If (5.13) holds for all coefficients of monomials of lower power, we can
replace such AOTAO by the appropriate er and will arrive at (3.4).
This concludes the proof of Theorem 1.

Proof of Lemma 3:

%, 4 v %, A
Let '1‘i ¢ 0(n) be a matrix that diagonalizes I Aiz : Tiz Ait ‘12.1 = Ai’
where Ai is diagonal. Denote by Qi the orthogonal projector onto the space
of non-zero eigenvectors of ZxAitx.
We show that Q1 and Q2 are mutually orthogonal, thus each Ti can be
represented by the same matrix M1 + Mz + H3 with Mi mutually orthogonal, the

columns of H1 (Hz) formed by the orthonormal system of non-zero eigenvectors

% % % Y
of £ Alz (L Aztb). Suppose that for some vector §, Z%Aitﬁi = A} with A

% -% 2 % -%
# 0, then QiE = §. We have Aiz E=2AL § = Ait = kAiE t, therefore

2—%2. Clearly then for any n such that n = Qin we have

>
™
wn

1]

Z_KQin. For a vector n for which an = an = n one would have

3 = 3 - 1 Y 3 _y
n = EAA z %n = Z&A z %n = (XAA L 6)(26A I A)n =n =0 since AA = 0.
2 1 2 h § 212

>
MI

3
1}

Therefore Q1 and 02 are orthogonal projectors.
This concludes the proof.

Proof of Theorem 3

Represent all the bounds as functions of S = Scr’ by combining (2.11),

(4.9) and (4.10).

(*

(14
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F=(q/r)8S; W=ndS; LR= n log(l + 88); RS = néS/(1+S);
(5.14)
-1 -3 -1 -1 -1
F=(q/r)§ S; W=n§ S; LR=n log(l+§ §S); RS=né S/(1+38 8).

Next we derive directly that

-2 2
(5.15) FU = WU =1-8 73 FL = WL =48 -1;

(5.16) W -LR, = (1 + 8 's)/en(1+88) - &°
(5.17) W -LR = 82 - Wn(1+38S)/0n(1+8 'S);

(5.18) LR -RS, §72(1468) /(1487 1S) - Ln(1+8 'S)/Ln(1+35)

]}

(5.19) LR -RS en(1+88)/0n(1+8 'S) - &7 (1+8 'S)/(1+38S).

L
1t immediately follows from (5.15) that whatever conclusions will be

proved to hold here with respect to W will apply to F as well.

2

Examine (5.16). The expression %n(l + 8 'S) - & * &n(1+3S) is

always non-negative since it equals zero for S = 0 and its derivative with

=1 -1
§ (8s-8 8)
respect to S is and is thus positive. This proves

(148 ) (1+88)

that (5.16) is positive for positive S. Similarly, we show that
62£n(1+6—ls) - n(1+8S) is positive for S > 0, thus (5.17) is positive.
Next, consider the expression
§72(1+88)0n(1+8S) - (148 'S)n(1487'S)
related to (5.18). It is zero for S = 0, its derivative is equal to

-2 14488

é§ n and positive. Therefore (5.18) is positive. Similarly

-1
1+6 S
2 -1 -1
from (1+8S)2n(1+8S) - & (148 S)&n(1+8 §) being positive (identical proof)
it follows that (5.19) is positive.

This concludes the proof of Theorem 3.
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