

Each voter can check if his/her vote was counted
VEV offers a great enhancement to usual electronic

voting processes, in that every user can check if his/her
vote is in the ballot (which means it has been counted).
The system will provide the option to check the votes
(check the ballot), and the voting strategy identification
will be displayed. This means that users can count the
votes that were cast and can recognize their own vote
among the displayed votes.

Voters can change their minds
When the election process progresses, an individual

voter can become aware that the desired candidate was
not voted for, and thus the system provides the option to
re-vote. The system allows users to change their minds
multiple times, as VEV supports a multiple re-vote
function.

4. The underlying protocol

VEV uses the public-private key paradigm to encrypt
information. In this system, the user’s identification
number (id) and the voting strategy number (v) (which is
a numeral representation of the candidate’s name) are the
two prime numbers that are being used. There are three
different algorithms designed to perform calculations with
these two prime numbers and returning one large number
as a result. It is randomly chosen in the program which
one of the three algorithms is used when the voting is
performed.

4.1 The algorithms

Function 1
The first function uses the multiplication function as

the underlying calculation. As a result, the product of two
prime numbers is returned.

Function 2
This function first calculates the product of two prime

numbers. Then it swaps the values of the individual bytes
within the binary representation of the product (namely
copies the value of last byte into the byte before the last,
and the value of the second last byte into the last byte).
The same swapping operation is done to the third and
fourth last byte of the product.

Function 3
This function first calculates the product of two prime

numbers. Then it flips (replaces with the complementary
value) the values of the individual bits within the binary
representation of the product. The algorithm changes the
values of bit positions: 3,6,7,12,15.

The fact that both of the prime numbers are randomly
generated for each user and for each voting strategy
provides great security for the system. The standard RSA
cryptosystem uses the same p and q throughout its
lifetime where in VEV the probability that the same two
numbers will be used twice is very close to zero. The
major part of the private key constitutes the fact that there
exists a system-defined index that uniquely identifies each
candidate. Even if the intruder is able to factor the voting
strategy function result, having two prime numbers would
not give him any reasonable answer. The secret lies in the
knowledge of indexing the candidates and having the
function inverses. For this particular reason the usage of
25-bit long prime numbers provides sufficient security to
the voting system. The prime numbers are being
generated using the constructor for BigInteger class from
the Java programming language library. The method
returns a randomly chosen, 25-bit long positive integer
that is a prime number. The probability that the newly
generated number represents a prime number will exceed
(1 - 1/2100). The execution time of this constructor is
proportional to the value of the probability parameter (in
our system the probability parameter is 100). In addition,
each newly created number is checked once again by
isPrime() function from the Java class library.

5. The Voting Scenario

In the remainder of this paper, ‘voter’ and ‘user’ are
synonymous, ‘server’ is used to describe the software
implemented and executed on the network’s main
computer and ‘client’ represents the computer program
that provides the graphical interface to the user, and
allows for communication between the server and the
voter.

5.1 Phase 1: Preparation

VEV publishes the number of eligible voters and the
deadline for the response.

Figure 1 Phase 1 – Confirmation interface

 In order to be able to vote, each voter has to confirm
(Figure 1) his intention to vote and only those who
respond will be allowed to cast the vote later. There will
be a specified period of time when the voters can respond.

5.2 Phase 2: Voting Scenario

When the date for the user’s response passes, the
system enters the phase of the main voting process. The
voting system running on the server is constantly waiting
for the user to connect. The voter starts using the system
by entering the username and the password that was
previously obtained from the system’s administrator (for
example this could be at a pre-voting booth for
authentication and password issuing at the voting site).
Then the system authenticates the user. If the system
recognizes the user it makes all functionality available to
this person (such as vote, re-vote or view the existing
votes, see: Figure 2). If the voter is not a recognized
person (either the username or the password does not
match the records) the user is treated as a guest to the
system and the only things that are available for viewing
are the existing votes.

Figure 2 Phase 2 – User can chose the action

If the recognized user chooses to cast the vote for the first
time the system creates the identification number for that
user.

When the eligible user wants to cast a vote for the first
time the client will randomly generate a 25-bit long prime
number (id) which will be used to uniquely identify that
particular user. In the next step of casting a vote the user
chooses the candidate that he wants to vote for. The
system displays the names of the election candidates and
the user chooses one of them.

The numerical encoding for every voting strategy (e.g.
name of candidate) should be a large prime number. The
voting system is able to handle as many as 24 candidates
to be voted for. The number 24 provides the opportunity
for the unique encryption of each voting strategy. First, all
numbers that end with 1,3,7,9 between 10 and 100 are

selected (the underlying reason for that is the fact that the
prime numbers end with 1, 3, 7, 9). This way a set of two
digit numbers has been created (hereafter called indexes).
For every index from the set, an election candidate is
assigned. When the user chooses to cast a vote for a
particular candidate, a random 25-bit prime number (v) is
generated such that the first digit is equal to the first digit
of the index and the last digit of v is the same as the last
digit of an index. E.g.: Say we have an election candidate
Anna S. Initially the system had assigned an index
identification number to her that is 51. If the voter decides
to cast the vote for Anna S. the client’s program will
randomly generate the prime number 5…..1 (first and last
digit match the index).

Next, the user sends the pair of integers (id, f (id, v)) to
the system where f is a randomly chosen encryption
function (one of three algorithms that are explained in
section 4); id is the identification tag generated for the
user, and v is the candidate’s name represented in the
number; f (id, v) is the result of the encrypting method
that takes id and v as its parameters. The system does not
know the connection between the username and the id tag
(or the voting strategy). The only association that is
known to the system is the connection between the id tag
and the vote function f (id, v). The user is asked to write
down (see: Figure 3) his identification number (id) and
the result of the voting strategy function. He is also
informed by the system to keep these numbers secret.

Figure 3 Phase 2 – voting procedure

When the server-side receives the numbers, it publishes
the voting function result to the screen.

After each vote is cast, the system publishes the voting
results. For each election candidate the system displays
f(id,v) to the screen. (see: Figure 4) This way the user can
check the correctness of his vote and the distribution of all
votes. Publishing the voting strategy will serve an
additional function. Every election candidate will be able
to check if the votes were counted correctly. This might
be of great importance for the candidates, because

elections have been known to be won by a difference of
just a few votes.

Figure 4 Phase 2,3 – Display of the election
results

Furthermore the listing, on a website for example, of the
total votes with voting function result for each candidate
as they are submitted to the system can prevent vote
buying.

6. The underlying algorithm

The primary advantage of public-key cryptography is
increased security and convenience. The private key never
needs to be transmitted or revealed to anyone. This
section explains the major steps that have to be taken in
order to implement VEV whose security is based on the
usage of the public-private key paradigm.
It has been assumed that the server is running on the main
computer and is constantly waiting for a client to connect.
It is also anticipated that every user possesses the
knowledge of his username and password. The italic type
characters will be used to indicate the processes occurring
on the server-side of the voting system.

6.1 Step 1: Authentication

1. Voter starts the execution of the client-side program.
2. Client asks the user to enter username. (see: Figure 5)
3. Server-side application checks if the name exists on

the list of users that are eligible to vote.
4. If the name exists, the user is asked to enter the

allocated password; otherwise the user is considered
to be system’s guest.

5. In case that the username exists, the server checks if
the password matches the username (if the password
does not match, the user is considered to be a guest).

Figure 5 User authentication

6.2 Step 2: User operations

Phase 1 (the time allocated to acknowledge user-
responses with the willingness to vote)
1. Client displays the number of users that are eligible to

cast a vote.
2. User chooses the option to confirm voting or the

option to exit.
3. If user chooses to confirm voting the server records

user’s willingness to vote.
4. Client displays the “Thank you” message and informs

the user about voting dates.

Phase 2 (the time allocated for the actual voting)
User chooses to vote
Server checks (using username and password) if the user
has voted already.
1. If the user did not cast his vote yet, the client randomly

generates a 25-bit long prime number and assigns it
as an identification number to that particular voter.

2. The message is displayed on the screen asking the user
to take a note of this number and not to reveal it to
anyone.

3. Client displays the names of the election candidates,
and asks the user to choose one of them.

4. User types in the number of the candidate for whom he
wants to cast the vote.

5. Client randomly generates a 25-bit long prime number
called voting strategy that meets the index
specification.

6. Client performs one of the encrypting functions (called
also a voting function; there is a random choice made
to use one of the three available encrypting methods)
on the user’s identification tag and the voting strategy
number.

7. Client displays the result of voting function to the user.
The user is asked to write the number down and to
keep it confidential.

8. Client sends the pair (identification tag, voting
function result) to the server.

9. Server stores the vote information in its database.
10. Server records that the user voted already. It is done

to prevent the user from casting multiple votes.
11. When the user chooses to exit, client disconnects and

the link between username and his vote disappears.
If the user previously cast the vote, he is asked to choose
the re-vote option.

User chooses to re-vote
1. Client asks the user for his identification tag number.
2. Client asks the user for his voting function.
3. Server checks if the vote exists.
4. Client displays the names of the election candidates,

and asks the user to choose one of them.
5. User types in the number of the candidate for whom

he wants to cast the new vote.
6. Client randomly generates a 25-bit voting strategy

that meets the index specification.
7. Client performs one of the encrypting functions on

the user’s identification tag and the voting strategy
number.

8. Client displays the result of voting function to the
user. The user is asked to write the number down and
to keep it confidential.

9. Client sends the pair (identification tag, voting
function result) to the server.

10. Server stores new vote in its database and erases the
old vote.

User chooses to check the votes
Client displays all the voting functions to the screen.

The votes are displayed in such a way, that for every
candidate the voting function numbers are displayed in an
ascending order. The user can check if his/her vote was
counted correctly, and the election candidates can verify
the voting results.

User chooses to exit
1. Client displays the “Goodbye” message
2. Client disconnects from the server

7. Conclusion

Voting software cannot be treated in the same way as a
word processor or other applications, as we have even less
reason to blindly trust the vendor – especially when the
whole country’s future is at stake. Most of the recent
news about harnessing electronics for the election process
has been bad. While much work in the USA is aimed at
strengthening the ever-tight security around the software
source code (it has been suggested that the voting
application source code could not be reviewed even if
challenged in court), in Australia there is a contrary

approach with the voting code being made public. It is
often argued [e.g. 9], that the only way to have a
trustworthy system is to open the source code of
cryptographic functions to the public. The algorithm can
really be considered secure when is examined by many
experts. Schneier [14] says: “… [t]he only way to have
any confidence in an algorithm's security is to have
experts examine it.”[10] Australian officials believe that
elections can benefit from involving the voters in the
software development process. The voters can dictate the
requirements including security and functionality of the
voting system. No matter how many election flaws are
found, and despite their severity, electronic voting
systems are here to stay and serve us all. The only
question remains: “How much, or little, trust can we
afford?”

The authors thank NSERC for funding and Shiva Mohan
for the screen shots of VEV.

References:

[1] See election publications from the Organization for Security
and Cooperation in Europe. http://www.osce.
org/odihr/?page=elections&div=reports
[2] Spectrum OnLine 16 August 2004 http://www.spe-
ctrum.ieee.org/WEBONLY/resource/nov02/nbraz.html
[3] Baldauf, S., India's cutting-edge vote: 1st electro-nic
election a big deal. The Seattle Times, April 20, 04
[4] Schulte, B., Jolted Over Electronic Voting Report's Security
Warning Shakes Some States' Trust Washington Post, August
11, 2003; Page A01
[5] Organization for Security and Cooperation in Europe
(OSCE), Office for Democratic Institutions and Human Rights
(ODIHR) ELECTION ASSESSMENT MISSION REPORT, 5
November 2002, Retrieved on 25 August, 04
from:,http://www.osce.org/documents/
odihr/2003/01/1465_en.pdf
[6] Drinkard, J. Election officials conflicted on electronic voting
machines USA TODAY Posted 5/5/2004 7:43 AM Updated
5/6/2004
[7] Mercuri, R., A Better Ballot Box? , IEEE Spectrum 39,
October 2002, Retrieved on: October 9, 2004 from:
http://www.spectrum.ieee.org/WEBONLY/publicfeature/oct02/e
vot.html
[8] Nurmi, H., Salomaa, A., Santean, L.,. Secret ballot elections
in computer networks. Computers and Security, nr.10, 1991,
pp.553-560.
[9] Bruce Schneier is an internationally renowned security
technologist and author. Schneier is best known as a security
critic and commentator. His books are: “Applied Cryptography”,
Secrets and Lies”, “Beyond Fair”.
[10] Schneier, B. Crypto-Gram Newsletter, September 15, 1999,
R e t r i e v e d o n A u g u s t 2 6 , 2 0 0 4 f r o m :
http://www.schneier.com/crypto-gram-9909.html

