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The Distribution of the. Stein-Rule Estimator in a
Model with Non-Normal Disturbances

John L. Knight]

1. Introduction

In recent years the Stein-rulg estimator has attracted a great deal
of attention from econometricians. Ullah (1974) derived the exact moments
of the estimator while Srivastava and Upadhyaya (1977) examined its various
properties via the small o asymptotic approach. This approach was also
used by Ullah, Srivastava and Chandra (1983) to examine its properties
under non-normal disturbances. The approximate distribution was derived
by Ullah (1982) while most recently, Phillips (1984) has derived the
exact distribution and given an alternative derivation of the moment
formulae of Ullah (1974).

It is the purpose of this paper to extend the approach of Phillips
(1984) to examine the distribution and moments of the estimator under éhe
assumption the disturbances follow a non-normal distribution of the
Edgeworth or Gram-Charlier type. We use the technique developed by
Davis (1976) and used by the author in other.contexts to examine the
effects of non-normal disturbances (see, e.g. Knight (1983a, 1983b, 1984a,

1984b)) .

2. The Model and Notation

Consider the linear regression model
y=Xp+u (M

where y is a vector of T observations on a dependent variable, X is a Txm

1This paper was written while the author was visiting the Department of
Economics, University of Western Ontario. Thanks are due to the department
for both financial and secretarial assistance.



observation matrix of full rank m < T of non-random independent variables,
and u is a vector of disturbances where each uy (i=1,...,T) are iid with
some unknown non-normal distribution with mean 0 and variance 02. Following
Phillips (1984) we assume that T '

viz b is given by b = T-lx'y and the Stein-rule estimator given by

a s
r=[1- E‘(gf;)]b

where s = y’My with M= 1 -X(x’x)’1x' and a is a scalar constant. We further
assume that 0 <a < 2(m-2)/(T-m+2) and m 2 3.

Phillips using the above model with added assumption of normality for
the ui's derived, via the use of fractional calculus, the exact pdf of r.
1f we now allow the non-normal distribution of the ui's to be well approximated
by an Edgeworth or Gram Charlier distribution we can, by use of the technique

of Davis (1976) in conjunction with the approach of Phillips (1984), readily

derive the pdf and the moments of r.

3. The Density of the Stein-rule Estimator

In seeking to approximate the distribution of r under the assumption
the ui's are independently distributed with non-normal distributions we may
apply the method of Davis (1976) as follows.

Step 1. Obtain the distribution pdf(r‘TD of r under the model

y=Xp+TM+u (2)
where 1 is an arbitrary vector and the elements of u are normal with zero
mean and variance 02.

Step 2. Compute the required distribution pdf(r) = E(pdf(r|TD) where the

“expectation" is to be calculated as if the ﬂi’s were independent random

e

vectors with zero mean and variance and the same third and higher order

X'X=1 and thus the OLS estimator of B o

o

\9



cumulants as those of ui's.

In carrying out Step 1 we can utilize the results and approach of
Phillips (1984) quite extensively. We first note that under (2) and the
assumption of normality we have that b ~ N(B + %'X'ﬂ, (UZ/T) - I),

s/o‘2 ~ x'z(T-m),A) where A = -15 M7 and b and s are independent.

20
From Phillips (1984, equation (3)) we have the characteristic

function (cf) of r given by

cf(t) = E(eltT)

J exp(it’b - 1(as/Tb’ b)tb)pdf(b) pdf(s)dbds

Now noting that

2
pdf(s) = pdf(x'2 (T-m,N) * @
which may be written as a linear combination of central xz we have

)‘jem)L

S . par(C(Tmen) - ©)

pdf(s) = X
3=o

Therefore we may readily apply the results of Phillips (1984, equations
(4) through (11)) replacing (T-m) with (T-m+2]), B with pk=p + = X'7 and (3)
in place of pdf(s).

Thus equation (10) in Phillips (1984) now becomes:

[--] j ) i )
cf(s) = £ e X explis(p’+ 3 WH)h -o%s’n'n/2r] {(1+21sC ) (T-m+23)/2 @
j=o Je x

- explx’ ((B +% %’ 1) +1s0%h/T) + 0" x/21) }eo

where Cx-=a02h'8x/TAx and we can readily find2

2Note the pdf(y'ﬂ) can also be considered the pdf of y under mis-
specification of the form of excluding relevant explanatory variables. 1In
this case if the true model is (1) and the estimated model y = X1s]+ uy where
I BV
+ u then A = BZBZ'

202

up = X8,



1/2 »  -Aj
paf(y=h'z|D =(——) = &=
2ng“h"h j=o *

.

o ((T-mt2)/2), K
o (260 -

[(d2) ke:q:»{ ~T(y-p*’ h-02x’ h/T-z) 2/96%h’h }] =0

. exp{x’'p*+ oox’ x/2T1]__,

where 1
Bx=p + s X' =p+Y¥

Thus
paE(y=h'z[D=(—55) I I

k
[(-2¢)) " -
amo’h’h j=o k=o *

(5)
. [(az)kexp{-T(y-B'h-sz'h/T-z-‘P’h)2/20'2h'h}]z=o .

. )\je-)"exp (x’ g+ o‘zx' x/2T +x’ ¥} ]x=°

Now (5) may be rewritten as
Y (T-m+2k) T-m
20 o 2 2
T k -A
pEy[D=(—3) = = . Me™ -
2nc"h'h k=0 j=o j!k'.(-—z—)
A
[ aZ-2v'na + (Y021 -
20°h’h

(6)

[(-28,)"(32) Fexp

. exp(x'B + o’zx"x/ 2T+x"¥) ]

z2=0
X=0
where
A= (y-B'h-crzx'h/T-z)] .
Noting that
T-m
- Gzt

J 2 Im Im
§'¥1m_.'1"'1F1(2+k’2’)‘)
j=o0 (T)jj-

and also that

e



-A T-m -m _ o I-m
e 1 1( 2 + k’ 2 ) h)" F ( k’ 2 K)

we have
12°  ((T-m)/2),

k k
2no h'h) kfo {_‘k_:"_ [(-2¢) [((d2) " -

pdf(y |T) = (

exp| 2 {Az' ZY'hA'l'(Y'h)Z}]] . exp(x'5+0'2x'x/2T+x"{f)]

20“h’h x=o0

Z=0

T -
*F R SR, AN (7

Equation (7) completes Step 1. In order to perform Step 2 it is necessary
to take expectations with respect to T of (7). We note that 1) is involved in
¥ and also in A. Although the associated exponentials can be expanded and
term by term expectations derived the process seems very complicated. To
overcome these complications and to facilitate the taking of expectations we

can further apply the differential operator to isolate the terms in Y. This

is easily achieved by noting

exp { {-2Aw’h+(\1!'h)2}+x'\l’}

2crhh

= {expl—5— (-24h3q+ (h'3)%) +x'3q] - e ¥}

20“h’h q=o
Therefore
1/2 = ((T-m)/Z)k
pd£(y M) = ( )z ——— [(-20)" ()"
210 h h k=0 *
(8)
. [exp{ [-28h'3q + (h'30) 21 +x"2ated Y111 .

20 h h =

q=o

X=0

zZ=0

F]('k’ (T-m)/2, 'X)

Thus to find the unconditional density and hence Step 2 we now only require



to consider the expectations with respect to 1 of the terms in the expansion

of

q'y

e ¢ 1F1(-k’ (T-m)/2, -})

i.e., terms of the form
&

@’ ohh = e o'z’ - vy )
Ul Ul
For a Gram-Charlier expansion and correction terms for skewness and kurtosis
we require 24+3 <4,
From Appendix A we have the required expectations and substitution

into (8) yields the unconditional pdf of y given by

12 © ((T-m)/2)
pE(Y) = (——) T (—— 1(-26) “1(30)"
2nc"h'h k=0 )

. expl-’l‘(y-s'h-crzx'h/'r-z)2/20'2h'h] .
.+ lexp{[T(2(y-8'h-o"x'b/T-2)h’ 3 - (') ) /20’0 B +x' ;] - (g

1o 3 o, ST
' 1 4 T-m 2 s T-m 2
+K, 7 Z Pj+((-k)2/2(—"2 )2)2 My ((-k),/2(55~ )1)2 Py ij]}

.+ exp(x'B+0%x'x/2m)11]__,
Z=0
q=0

where p 3 is the jth element in the vector :},— Xq and ij is the j':h diagonal

element in the matrix M. In order to simplify the above expression it is
necessary to evaluate the derivatives with respect to q at the point q =0. That

is we require

¢ ’ 2, 3
exp[Bh'3q - B,(h'30) " +x N ]{1 +C.% py+C )7 pyMyy + (10)

4 2 ; 2
+Cy = pj+C4 zmjj +Cg = P ij}]q=°



where

C, = K3/31; C, = kas/(T—m)

1 2
. C =K, (- m
Cy = KR, /4L;5 Cy = K, (-K), /21 (5 )2

¢, = R/ (T-m); B, = 2TA/20%h’ h3 B, = 1/20%h’h

From Appendix B we have that (10) reduces to

K K
3 4
1+378,+77 85,

where s,| and 82 are given in (B.6), (B.7) of Appendix B.

Therefore under non-normality the pdf of y is given by

12 @ ((Tm)/2) "
5t [(-26) 1(32)" °
i’ o x) 102

pdf(y) = (
an
. exp[-T(y-p’h-0%x'h/T-z)%/26*n'n] - {1+

' ' ) 2.1
+ K351/3. +K482/4. lexp(x’p +°x x/2T) ”x':o
z=0

Clearly, when K3=K4=0, i.e., errors are normal, equation (11) reduces to

that found by Phillips (1984) equation (12).

4, Moments Under Non-Normality

Exact moment formulae may be found in a number of ways. We first
need to find E(yP|TD. This may be done as in Phiilips (1984), by directly
integrating the pdf(yITD or alternatively differentiating the characteristic
function (4). A third approach is to use the technique of Ullah (1974) and
specialize it to our case of non-normality.

Using the cf (4) we have

P
567 I = (-0)° L) ‘a’fps ]
S

S=0



For the mean it is readily seen that the appropriate differentiation

and evaluation at s=o and x=0 gives

e M

IR

E(ylD=p*'h- 2 (T-m23) (¢ exp(x'B* +0°x'x/2) | _

J=0
Now noting that

- A
e A z A

3T

(T-m+2j) = (T-m) +2A

and using results in Phillips (1984, equations (15) to (21)) we have3

e(yID =p#'n -1 (rmr2ijan’pre™™ LA 5 G, 241, o0 (12)
G+ 2

where
g% = Tﬁ*'ﬁ*lZoz
Considering the second moment, i.e., E(y2|TD we have from differentiating

cf(s) n (4)*3

E(y2 [ = (B*'h)2 +02h' h/T
x'p* + crzx' x/ 2‘1‘]

-2(T-m+2A) [C (B*'h+ 0% h/T)e e a3

) 2 s
+ [(T-m) (T-m+2) +47\(T-nri-'l+7\)][§: & B+ x /2T, .

3Note Phillips (1984) chahges his notation from m to n. Thus in
equations (17) through (22) n should be replaced by m for consistency with
the rest of the paper. Also note there ‘is a square missing in the exponent in

equation (13) of Phillips (1984).
4Not:e that in equation (13) (T-m+2k)==E(xf2(T-m,h) and (T-m) (T-m+2) +
LA(T-mH1H) = B 2(T-m,0)) 2.

SAs mentioned earlier the moments of the individual elements of r may be

found alternatively using results of Ullah (1974). 1f we wished to use (13) it
is of course necessary to find expressions for the terms in square brackets

which is a complicating feature of this approach.

"

-
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As a means of examining the effects on the moments of the non-
normality assumption we will only examine the mean via (12). Thus we
now require the expectation with respect to T of (12). This will complete

the second step in the Davis (1976) procedure.
1
T
B=TB'B/20'2 and g= (T]'XB/O‘Z) + (ﬂ'XX'TI/ZTO'Z) . Next we note that using results

We first note that since p* =g + X’ N we have 6% = 8+ g where

in Slater (1960, p. 23)

-0% m m o+

m om s HPp B @
e (G 31, =T (G, G+, 0+9)
o= O
=e I — F, G §'+‘|+n, 0)
n=o0 (-2-+‘l) n!
n

Therefore (12) may be written alternatively as:

E(y D =B'h+% 1 Xh --12- (T-m+ 2x)ah’(s+% .

o (D) _(-9)"T(m/2)
e by B — . 1F](%, té‘-+1+n, 0)
n=o0 n! I‘(§+'l+n)

and using notation introduced by Ullah (1974) by letting

f =e"e T(w/2) F (“—‘-, E+1+n, 8) we have
0,14 m 1712 2
T(E-I-] +n)
ECy | =p'h+: 1'% -1 (T-mk20)ah’ (B+o X' - % (-9 (14)
T 2 T - 0,n+1

n=o0
As with the pdf it is now necessary to consider expectations with respect to
T. This will involve

}E:(-gs)n for n=0,1,2,3,4

E(%h'x"l’l(-¢)n) for 1n=0,1,2,3

E(AP), n=0,1,2 and E(l,},—h'x"ﬂyin), n=0,1 .
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These expectations are given in Appendix C and substitution into (14) gives:

E(Y) =B'h --15- (T-m)ah.'Bfo,1

2f £
Qa3 .04, 3
+Ri—= oMy, -~ 2 gy
g (s
Lk Y SO Gk I SR
+ Rt 5t U Z 48y
20 20
ah’pf af
0,2 0,1
+ —2l g M - s A4M,.}
oot M”72 11
£ 3f £
0,3 . .2 0.4 2 0,5 _ &
s 34 - ——
+K4{UA ZGyy ¢ 28 Gyt g 28
(T-m)af (T-m)af
- A b’ 844641 60 iz 'zigi
o 2
ah’pf ah’pf
0,2 0,3 _ 2
$—2 5o M 5 g M
oh 111 20 1 Myq
af
0,2
+—253 ziginii}
20

where £ = ,-},-xn; g =XB, G=§!,i; xx’ and M=1I -X(x'X)'1x'.

We see immediately that when K3 =K4== 0, i.e., the errors are normally
distributed the mean collapses to that found by Ullah (1974) and Phillips

(1984).

5. Conclusion

The previous sections have shown the usefulness of the Davis (1976)
technique to examine the behaviour of estimations, etc., under a non-
normality assumption on the errors. By extending the results of Phillips
(1984) we are able to give explicit representation of the pdf with corrections
for both skewness and kurtosis. The extension of the technique to examine
moments is straightforward however, as noted, the technique of Ullah (1974)

may prove easier to apply than the direct approach of Phillips (1984).

(LY

3

(L]
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Appendix A

Expectation required for Section 3.

If we let p = -,%Xq then we have

E@®M=0
!

E((p'DD =0
1

; (@D =k 5 7y

1 b 4

‘rT‘-] (e’ D (MM = % (22 Pﬂ‘i“u) =Ky ZpMy,

1
E (M) =0
n
% (' DA (TMm) = % @ p%“iin?.) = K, 5 Py,
1

2

’ 2, _
2 ((Tun®) = K, 2y,
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Appendix B

Evaluation of the derivatives with respect to q required in Section 3.a

exp[Blh'aq -Bz(h'aq)Z-l-x'aq] °Cq T (t.1')(1/'1')3
i
® 9 ' I 2, tand Pt Jeon 3
= T 3T (B1h 5‘1"32(‘\ )+ x &) G i (q Xi/T)
J=0

We note

[ S

B, = [B1h’aq-sz<h'aq>2+x'aq13 ¢ = @x/m’, 31,23,
For 3=1, A =C, {3BIz(q'x’1/T)2(h'x;/T) - 68,5(a'X}/T) (h'x;_/'r)2+ 3}:(q'x’i/1:)2(x'x'1/r)}
For §=2; & =C, (682E(a'X)/T) ('R {/T) 5+ 128,20 81/T) (W'XY/T) (x"X1/T)

+ 62(a'X}/T) (x’x;/r)z- 1znlnzz(h'x;/r)3- 1znzz(h'x;/r)2(x'x'i/1:)}
For §=3; A, =C, {63?):(h'x;/r)3+ 1an1z>:(h'x;/T)2(x'x'i/T) +18B,£(hX}/T) (x'Xi/T)z

+ ez(x’x;/'r)‘*}
For j24 A, =0

Thus

exp[B.h'3q - B (h'30) 2 +x'3q )¢, 2(a X! /1))
1 2 LRt S

- 3_ 1ot 3 2_ r ot 2ot R

c1{(rs1 63132)2(h Xi/'l‘) + (38 632)2(h xi/'r) (x xi/'r) (B.1)
+ 3B1z(h'x;_/'r) (x’x'i/'r)2 + Z(x’x;_/*r)3}

Next consider

exp[Blh'aq-Bz(h'aq)z +x'3q1C,Z(a XY/ TMy

8

1 N ) 2 ) i) 0
o 3T (B.‘h P Bz(h )+ x ) CZZ(q xi/T)Mii

™

Again letting
A, = [B.h'3q-B. (h'30) 2+ x' 3 e, 2(q'x!/T)H
5= 1B 2 2@ X /TIM, o

3Note that in this section (q'X;/T) = p, vhere X, is the ith row of

(o

113

{re
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we have

- - 1,7 1,0
j=1, A -02[312(!1 Xi/T)Mu+Z(x Xi/T)Mu}

1
22, A, =0
3=z, &
Thus

- 0 1,
= CZ{B.IZ(h Xil'l‘)Mn + 5(x xilfr)uu]
Consider now

exp[8,1'3 - B,(h'30) 4+ x' %1 * ¢,5@"x)/D)"

8
8

™
ol |

la

’ tnn2 1] ’ 4
[B,h"3q -B,(h'3a) " +x" 3q1"C,2(q"X;/T) I

™

j=o I
Thus
3=1, & =C,{48,5(a'RY/T > (WXY/T) - 128,5(a' %y /D (0 X /D)

+ t;z(q'x;/'l:)3 (x’x;_/tr)}
3=2; 8, =C,[1 ZB.IZZ(q'Xi/T)z(h'X;./T)2+IE(q'x;/T)z(x'X;/T)Z +
+ 24B.2(q"X{/T) 2(h'x;/r) (x'X{/T) - 488, B,%(q'X;/T) (hR{/T) 3
- 488,7(a"X)/M (b X/D 2K/ + 24825 ("X} /T) )

- 3 1ot 0 3 2 ) ) 2, 4
3, 4, C3{24312(q xi/’r) (h xi/r) + 72812(q°X/T) (b X{/T)(x x;/T)

h|

+ 728,52'X}/T) (h'X}/T) (x’x'i/'r)2 + 265X/ T) (X} /T) 3

- 728%8 (h'x'/r)‘*- 14488 z(h'x'/r)3(x'x'/T)

1B 2 (R Xy 182 1 i
ro? 2, 12 2

- 72322‘.(h Xi/T) (x xi/'r) }
_ _ T IN 3,y 3, 12 2, ol g 2t 2
=4, B, ~C3{2431Z(h X{/T)" +96B;E(h X /T)" (x X{/T) +96B1E(h'X{/T) “(x X{/T)
+ 96312(h’x;/'r) (x'x'i/T) 3, 242(x'x;/'r)4}

325, A, =0

(8.2)



14

Thus

exp (8,130 - B, (030 %+ x 3105 (a'X}/D) )
q=0

_ 4 2 N ) 3. Vot g3t ot
= ¢,{(8; +1231282+1232)2(h X{/1)" +4(8; - 68,8,)Z(M'X}/T)° (=' X}/ T)

+ 4(82 - 38,)Z XD 2 K/D 4 4B (KD XY +
+ z:(x'x;/'r)l‘}

Next

2 2
exp[B,h’3q - B,(h’ %) LK ] =CMp,
. q=0

Further

exp[Blh'aq -Bz(h'aq)2+ x'xq] - CSZ(q'X£/T)2Mn

3

Using A, as before we have

3
. 1. = 1! 1! - ry?
§=15 by =26, {B,Z(@"X /T) (WX /TIM, B,E(h X /TIM,, +

1 - 2 g 1,0
T [B,h’ 3 -B,(h'3) %+ x' ;) - c2(a xi/r)zuhl

I ™

’ U4
+ 2('X /) ("X /TIM 3
3=2, b, = zcs{nfz(h'x;./'r) zuﬁ + 2B1z(h'x1/'r) (x'x; /M, +Z(x'X1/T) zui i}

523, 8,=0

Thus

exp[Blh’aq -Bz(h'aq)2+ x'aq]csg(q'x;/T)zMii]q=o

2 ) r ! ) )
= ¢ {(8] - 28,)Z(h Xi/T)Zrdii+2312(h X,/T) (' X} /TN, + 20X /TN )
Therefore

} ’ 2, ro? 3 ot
exp[B1h X -Bz(h M+ x'q1N +c1>:(q xi/'r) +C22‘.(q XilT)Mn

- 4
+C.2(q xilr)zuﬁ}

ot 4 2
+ C3Z'.(q XI/T) +042M11

(8.3)

(B.4)

(B.5)

(B.6)
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can be found by adding (B.1) to (B.5) and using the facts that
= | Y = - 4 = '
Cq K3/3., 02 2K3k/(T m) ; 03 K4/4.

T . = -
C, =K, (-k), /2 (T‘“‘)z, Cq =K, k/ (T-m)

Thus (B.6) can be shown to equal:

K K
3 4
1+ 3 S1+ Z S2
where

3 3. . 2 2
S, =(B] - snlsz)z(h'x'i/'r) +3(8] - 232)2(h’x1/'r) (x'x;/'r)
+ 3B,Z(h'X}/T) (x'x;/T)2+ z(x'x'i/r)3+ (12k/ (T-m))B,E(h' K} /TIM, (8.7)

+ (12k/(T-m))E(x'X;_/T)Mﬁ
_ 4 2 4 3 ' 3
s, = (& +1znfnz+1232)2(h'x;/r) +4(B] - 68,B,)S(hX}/T)° (x'X}/T)
+ 4(32 - 3B )Z(h'x'/'r)z(x'x'/'r)2+43 s(h'x!/T) (x'x'/'r)3 +
17 7% i i 1 i { (.8)

+ 2z (20,1 G 2)mii

+ 48K/ (T-m)) [(82 - 2B, 5(hK]/TIM, | + 2B, Z(WX{/T) (<X /TIM, +

+ z:(x'x’i/'r)mi 1‘1
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Appendix C

Expectations required in Seetion 4.
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