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ABSTRACT  

Concrete has long been the most popular choice for constructing key infrastructural elements such as sewer pipes, 

water treatment facilities, industrial floors and foundations. However, many field cases from all around the world 

have shown that concrete elements in these environments are severely damaged due to biogenic and/or chemical 

sulfuric acid attack. Since high alkalinity is required for the stability of the cementitious matrix, concrete is highly 

prone to acid attacks, which decalcify and disintegrate the hydrated cement paste to various levels based on 

exposure conditions and type of concrete. Numerous studies have been conducted to enhance the durability of 

concrete and understand the influence of key mixture design parameters on its resistance to sulfuric acid attack. Yet, 

there is dearth of information on the behaviour of a new type of cement in North America, which contains a high 

level (5 to15%) of interground limestone powder (portland limestone cement: PLC), under acidic attack. Hence, the 

aim of this study is to investigate the effect PLC with or without supplementary cementitious materials (SCMs) on 

the durability of concrete exposed to acidic attack. The study comprised 13 weeks (90 days) immersion of test 

specimens in 5% sulfuric acid solutions with pH in the range of 0.1 to 2.5. Physical and microstructural results 

reveal that PLC may improve the resistance of concrete to sulfuric acid attack, whereas the SCMs had a mixed effect 

on the results.  
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1. INTRODUCTION 

Acid attack on concrete is known since 1895 (Olmstead and Hamlin 1900) and the extent of this durability issue is 

quite global and widespread. The increase in reported attacks by acidic media on concrete structures has drawn 

much attention to this topic in recent times likely due to the growing sources of acidic media resulting from 

population growth, and in turn increased urban activities and industrialisation (Duchesne and Berton 2013). 

Concrete is particularly prone to acidic attack since it is highly alkaline, and thus it engages in reactions whenever 

exposed to acids or salts triggering reactions similar to acids (e.g. ammonium-based salts). Significant quantities of 

free acids, in the form of leakages and random spillages, may occur in industrial environments. However, sulfuric 

acid (H2SO4) attack in sewer pipes is the most widely reported attack on concrete by inorganic acids (House and 

Weiss 2014; O’Connell et al. 2010; Islander et al. 1991; Parker 1951), which is also referred to as microbially 

induced corrosion (MIC) of concrete since sulfuric acid is generated by bacterial activities. MIC in wastewater 

collection and treatment systems is well-documented in North America, Europe, the Middle East, South Africa and 

Australia (House and Weiss 2014). A report in 1991 estimated that the repair or replacement of only 25 miles of 

corroded concrete sewer pipe, due to sulfuric acid attack, in Los Angeles County would cost $130 million (U.S. 

EPA 1991). In addition, sulfuric acid attack on concrete can also originate from backfilling with pyratic aggregates 

(Hobbs and Taylor 2000; Tagnit-hamou et al. 2005) or use of pyratic aggregates in concrete (Tagnit-hamou et al. 

2005). Hence, development of preventive measures to mitigate acidic attack on concrete is of utmost importance for 

key infrastructural facilities in urban, industrial and agricultural zones. 
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It has been reported that for concrete made with acid resistant aggregates (e.g. quartz), only the cement paste matrix 

is vulnerable to acid attack (Beddoe and Dorner 2005). On the other hand, if concrete is made with carbonaceous 

aggregates such as limestone and dolomite, an additional neutralization reaction (between acids and aggregates) is 

expected. The degree of neutralisation offered by limestone aggregates depends on their porosity. For aggregates 

with lower porosity, the reaction with the acid takes place only at the aggregate surface adjacent to the pore solution, 

whereas for aggregates with higher porosity, acid ions also get into the pores, which amplifies the neutralization 

process due to the higher exposed surface area (Beddoe and Dorner 2005). Indeed, the acid neutralization effect 

offered by limestone is limited by the fixed volume of limestone aggregate in concrete. Hughes and Guest (1978) 

compared the resistance of concrete mixtures incorporating ordinary portland cement (OPC or GU) and siliceous or 

limestone aggregates to sulfuric acid solutions with concentrations of 0.016% and 0.020% by mass. The authors 

reported that the surface of concrete with siliceous aggregates was more uneven than that with limestone aggregates. 

According to another study (De Belie et al. 2004), the smoother surface texture is because that limestone aggregates 

degrade progressively in layers; the surface of the aggregates and surrounding matrix are exposed to the same acidic 

media, which implies that the paste and the aggregates have a similar rate of deterioration. Chang et al. (2005) 

investigated the resistance of different concrete mixtures incorporating siliceous and limestone aggregates made 

with binary and ternary binders containing blends of fly ash, silica fume and blast-furnace slag to 1% sulfuric acid 

solution with a pH of 1.27 to 1.35. The results showed that mixtures prepared with limestone aggregates had higher 

residual compressive (crushing) load compared to that of the corresponding ones with siliceous aggregates. 

Irrespective of the type of aggregates, concrete made with both binary (GU and slag) and ternary (GU, slag and 

silica fume) binders were less resistant to the acidic exposures than the concrete made from single binders (GU) in 

terms of the residual crushing load. Nevertheless, specimens made from ternary cement (containing silica fume and 

fly ash) had the best performance in terms of visual assessment and mass loss results (Chang et al. 2005).  

 

It was reported that using up to 15% limestone filler (ground in a laboratory mill to a specific surface of 370 m2/kg) 

as replacement of GU can improve the resistance of concrete to sulfuric acid (Ghrici et al. 2007). Bassuoni et al. 

(2007) showed that limestone fillers (specific surface of 3200 and 12000 m2/kg) and aggregates (coarse and fine) 

perform well in sulfuric acid media with moderate aggression (3% sulfuric acid solution with a pH of 2), but higher 

fineness (specific surface of 12000 m2/kg) of limestone fillers comparatively accelerated the rate of mass loss of 

concrete in a highly aggressive (5% concentration with a pH of 1) sulfuric acid solution. Recently, a new type of 

cement has been introduced to the North American market which contains a high level (up to 15%) of interground 

limestone powder (portland limestone cement: PLC). This product is manufactured by intergrinding clinker with 

limestone and natural gypsum on an industrial scale rather than blending limestone powder as filler. A detailed study 

(Marzouki et al. 2013) found that by intergrinding more limestone with clinker ( 0-35% replacement) the specific 

surface of the resultant cement gradually increases (from 260 m2/kg to 480 m2/kg). This study showed the possibility 

of improving strength gain by finer grinding of clinker with limestone and argued that PLC up to 25% limestone 

replacement can perform similar to ordinary portland clinker over time. While there are a number of studies on the 

hydration and strength characterization of concrete made from PLC (e.g. Marzouki et al. 2013; Ramezanianpour et 

al. 2009; Tsivilis et al. 1999) and its response to durability issues such as sulfate attack (e.g. Ramezanianpour and 

Hooton 2013), alkali aggregate reactions and chloride ions penetration (Ghiasvand et al. 2015; Thomas et al. 2010), 

there has been dearth of information on the beneficial effect, if any, of PLC on the performance of concrete 

subjected to acidic media. Therefore, the objective of the current study was to investigate the response, in terms of 

physico-mechanical properties and microstructural features, of concrete made with PLC without or with 

supplementary cementitious materials (SCMs) to a high concentration sulfuric acid solution.  

2. EXPERIMENTAL PROGRAMME 

2.1 Materials and Mixtures 

The cements used in this study were general use cement (GU) and portland limestone cement (PLC) that includes 

approximately 12% interground limestone by mass of clinker, which meets CSA A3001; six mixtures were prepared 

in this study, some of which contained Type F fly ash and silica fume as SCMs meeting CSA A3001 (2013). To 

achieve a constant workability level (slump of 75 to 125 mm) for all mixtures, a high-range water reducing 

admixture, based on polycarboxylic acid and complying with ASTM C494 Type F (2015), was used at dosages in 

the range of 200 to 400 ml/100 kg of binder. Well-graded natural gravel (9.5 mm) was used as coarse aggregate; its 
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specific gravity and absorption were 2.65 and 2%, respectively. The fine aggregate was well graded river sand with 

a specific gravity, absorption, and fineness modulus of 2.53, 1.5% and 2.9, respectively. 

 

The water-to-binder ratio (w/b) and total binder content for the six mixtures were kept constant at 0.4 and 390 

kg/m3, respectively. Single binder (control) mixtures were prepared from 100% GU or PLC, while blended binder 

mixtures incorporated GU or PLC with either 30% fly ash (Type F) or 5% silica fume (SF) as a replacement of the 

total binder content. The proportions of the concrete mixtures are given in Table 1. Concrete was mixed in a 

mechanical mixer to prepare triplicates of prismatic specimens (50×50×285 mm) and cylindrical specimens 

(75×150mm), which were cured at standard conditions (22±2˚C and 98% RH) for 28 days according ASTM C192 

(2015). 

2.2 Acid Exposure 

After curing, the initial physico-mechanical properties (mass and compressive and splitting tensile strengths) of the 

concrete specimens were determined. Afterwards, 18 concrete prisms and 18 concrete cylinders (three replicates per 

each mixture) were fully immersed (approximate ratio between the volume of acidic solution and total volume of 

concrete specimens immersed in the solution = 2) in a high concentration (5% by volume) sulfuric acid solution to 

facilitate accelerated and aggressive exposure conditions similar to Bassuoni and Nehdi (2007) and Roy and Arjunan 

(2001). Concrete elements such as foundations (groundwater containing sulfuric acid due to oxidization of pyrite in 

backfill), industrial floors of chemical plants, basement walls of buildings near chemical plants and superstructures 

(due to acid rain) are susceptible to chemical attack by sulfuric acid. While all these exposures can be simulated by 

chemical immersion tests, sewage pipe systems suffer a special type of biogenic sulfuric acid corrosion and may 

require a combination of both chemical and microbiological tests. The present study adopted chemical immersion 

tests to assess, in general, the acid resistance of concrete made of PLC compared to GU counterparts, in order to 

cover a wider spectrum of applications involving acidic media. GU and PLC specimens were fully immersed for two 

consecutive 45-day (i.e. 90 days) time intervals in aggressive sulfuric acid solutions with an initial concentration of 

5%. After the first time interval (45 days), the solutions were renewed with fresh ones. Each group (GU and PLC) of 

mixtures had its own acid bath to provide similar acidic environments for the GU and PLC mixtures and isolate the 

neutralization effect (if any) to the PLC mixtures. In both time intervals, the initial pH (0.1) of the solution increased 

rapidly and reached an average value of 2.5 without any pH control. It is worth mentioning that there is currently no 

standardized procedure to test the resistance of concrete to sulfuric acid attack; the test regime adopted herein 

simulates very aggressive chemical exposure conditions that may occur under severe field conditions. 

Table 1: Proportions of mixtures per cubic meter of concrete 

Mixture 

ID. 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Fly Ash 

(kg/m3) 

Silica 

Fume 

(kg/m3) 

Coarse 

Aggregate 

(kg/m3) 

Fine 

Aggregate 

(kg/m3) 

 28 day 

Compressive 

Strength 

(MPa) 

GU group        

GU 390 156 - - 1228 614  55 

GUF 273 156 117 - 1200 600  46 

GUSF 370 156 - 20 1212 606  65 

         

PLC group        

PLC 390 156 - - 1228 614  60 

PLCF 273 156 117 - 1200 600  47 

PLCSF 370 156 - 20 1212 606  62 
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2.3 Tests 

The compressive and splitting tensile strengths of concrete cylinders and prims at 28 days were determined 

according to ASTM C39 (2015) and C496 (2011), respectively. Specimens were extracted from the solution weekly, 

rinsed three times within the solution to remove loose reaction products, blotted with a paper towel and left to dry at 

20°C and 50% RH for 30 min before visual assessment and recording their masses. For each specimen, the 

cumulative mass loss at the end of each week (MLt) was calculated by:  

 

[1]  100×
M

)-M(M
=ML

i

it
t  

 

where, Mt is the mass of specimen at time t (kg), and Mi is the initial mass of specimen before exposure to sulfuric 

acid (kg).  

 

After 90 days of exposure to 5% sulfuric acid solutions, all cylindrical specimens were tested for residual splitting 

tensile load relative to that of companion specimens stored in the curing chamber (22±2˚C and 98% RH) for the 

same period of time, according to Equation 2:   

 

[2]    100×
L

-LL
L=

c

ca
  

 

where, L is the average change in splitting tensile load of specimens from a specific mixture, La is the average 

splitting tensile load of the specimens immersed in the acidic solution for 90 days, and Lc is the average splitting 

tensile load of the corresponding specimens stored in standard curing conditions for 90 days.  

 

To investigate the degradation mechanisms within the surface of specimens, microanalysis was conducted on 

fracture surfaces from selected mixtures, which were examined using scanning electron microscopy (SEM). These 

samples were carbon coated and examined under the secondary mode of SEM; in addition, energy-dispersive X-ray 

analysis (EDX) was also used to characterize the crystals identified during the SEM investigation. To complement 

the observations from SEM, thermal analysis using differential scanning calorimetery (DSC) were conducted on 

powder samples extracted from the surface (0 to 20 mm) of selected specimens exposed to the sulfuric acid attack. 

This powder was prepared from carefully extracted fracture pieces (not including large coarse aggregate) of 

specimens, which were pulverized to fine powder passing through sieve #200 (75 μm). 

3 RESULT AND DISCUSSION  

3.1 Visual Assessment 

Immediately after immersion in the solution, the acid started to react with all the concrete specimens from the GU 

and PLC groups as indicated by numerous air bubbles rising up to the surface of the solution. Since the first day of 

exposure, white powdery material (identified as gypsum by DSC) deposited progressively on the surface of all 

specimens, with no notable differences among specimens from the single or blended binders in the GU and PLC 

groups throughout the entire exposure. Continual leaching of gypsum led to an off-white residue in the bottom of 

containers with a consistency similar to cement paste. At the end of the first week of immersion, all the specimens 

had exposed aggregates, and with the progression of acidic reactions, they became significantly exposed with 

incidental disintegration of coarse aggregate. After 45 days of exposure, when the solution was renewed, debonding 

of aggregate from the paste was notable. At the end of exposure (90 days), all specimens generally had uneven 

surfaces (due to using siliceous aggregate) surrounded by soft paste, which implicates the decomposition of the 

cementitious matrix at and near the reaction zone with the acidic solution. Figure 1 depicts the visual progression of 

damage at different ages of exposure. At the end of the exposure, the manifestations of damage were comparable for 

specimens made from the single and blended binders in the GU and PLC groups. Thus, other physico-mechanical 

parameters and microstructural features are needed to evaluate the relative performance of the mixtures.  
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Figure 1: Feaures of damage of concrete specimens immersed in the 5% sulfuric acid solutions after 1 (left),7 

(middle) and 13 (right) weeks.  

3.2 Mass Loss 

The trends of mass loss for specimens from all mixtures exposed to the 5% sulfuric acid solutions are shown in 

Figure 2, and the total mass loss of the mixtures with its standard error bars is shown in Figure 3. After 90 days of 

exposure, the mass loss of the GU and PLC mixtures ranged from 18 to 23% and 20 to 23%, respectively. Since the 

first week of exposure, notable mass loss of about 4 to 5% was observed for all the mixtures, and the rate of mass 

loss continued to increase up to the fourth week of exposure. Subsequently, the rate of mass loss was minimal or 

unchanged between the fifth and seventh week of exposure, due to absorption of solution and the increase of the pH 

in the solution up to 2.5; however, the rate of mass loss increased sharply from the seventh week up to the end of 

exposure due to renewing the sulfuric acid solutions. At the end of exposure, concrete mixtures made from GU and 

GU with silica fume (GUSF) had relatively higher total mass loss (about 17% and 4%, respectively) than that of the 

corresponding specimens made from PLC. This trend might be due to the acid neutralization effect offered by the 

limestone component (12% by mass of clinker) in PLC. However, specimens made from the GU and fly ash binder 

(GUF) yielded less mass loss (reduction of 12%) than that of the PLCF specimens. Within the GU group, the 

standard error bars (Figure 3) indicate that the use of 30% fly ash had a significant effect on the average mass loss 

results, as it led to 24% reduction in mass loss compared to the control specimens (GU). Comparatively, the 

combination of 5% silica fume with 95% GU had no significant effect on the mass loss results. For the PLC 

mixtures, incorporation of fly ash with PLC (PLCF) had no significant effect on the mass loss results (overlapping 

range of error bars with the PLC specimens), while incorporation of silica fume notably increased the amount of 

mass loss by 13% compared to the control (PLC) and fly ash (PLCF) specimens. The higher mass loss of concrete 

prepared with silica fume in comparison to mixtures (PLC containing 6-20% limestone) without silica fume under a 

sulfuric acid exposure has also been reported in other studies (e.g. Girardi et al. 2010). Indeed, the mass loss results 

suggest that the type of binder affect the behavior of concrete in the acidic solution; thus, the reaction and sound 

zones in the mixtures, were further studied by thermal and microscopy analyses (Section 3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Average mass loss with time for mixtures with: (a) GU, and (b) PLC. 
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Figure 3: Average mass loss after 90 days of exposure. 

 

3.3 Change of Splitting Tensile Load 

The common approach in previous studies on the resistance of concrete to sulfuric acid attack is to determine mass 

loss and residual compressive strength of specimens to evaluate the relative performance of various concrete 

mixtures. Since the development pattern of flexural and tensile strengths is similar to that of compressive strength 

(Hooton et al. 2007) and concrete in practice frequently fails under tensile stresses, the current study focused on 

determining the change in splitting tensile load following the recommendations of  Miletić et al. (1998) and 

Bassuoni and Nehdi (2012). The change in splitting tensile load (crushing load at failure) of all mixtures is depicted 

in Figure 4. At the end of exposure, GU specimens had a slight increase in the splitting tensile load (about 6%), 

while the splitting tensile load for the PLC specimens was almost unchanged. The highest loss in splitting tensile 

load was observed for the specimens made from the GU and fly ash binder (GUF), even though these specimens 

yielded the lowest mass loss (18%) among all the mixtures. Similarly, the PLC specimens comprising fly ash 

(PLCF) had the highest loss (10%) in the splitting tensile load in the PLC group. Specimens containing silica fume 

had a mixed trend in terms of the change of the splitting tensile load, as GUSF specimens had minor loss (1%), 

while the PLCSF specimens had a loss of 8% despite that specimens from both mixtures showed a comparable mass 

loss of about 23%.  

 

 
Figure 4: Change of the splitting tensile load of all mixtures after 90 days of immersion in the 5% sulfuric acid 

solutions.  

 

 

22 
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Figure 5 illustrates the relationship between the mass loss and change in splitting tensile load of specimens. It can be 

observed that there is a scatter of data among the six mixtures, with counterintuitive trends in the sense that mixtures 

with lower mass loss (e.g. GUF and PLCF) had higher loss in the splitting tensile load and vice versa. While some 

researchers (e.g. Chang et al. 2005) argue that the use of crushing load provides a more reliable indicator than the 

mass change for assessing the deterioration of concrete in acidic environments, others (e.g. Miletić et al. 1998, 

Bassuoni and Nehdi 2007) showed that these two parameters are not correlated. Previous studies (Bassuoni et al. 

2007; Siad et al. 2010) also did not find any specific relationship between these parmaters and reported strength 

(compressive) gain, relative to the intial strength before exposure, of many mixtures after immersion in acidic 

solutions. The observed results for the change in splitting tensile load (loss or gain) have been affected by multiple 

factors such as the geometry of tested specimens and type of binder. For example, in contrast to testing unexposed 

specimens stored in the curing room, concrete specimens exposed to the acidic solution had a relatively variable 

geometry (uneven surface, Figure 1) along their height leading to planes of stress concentration, load eccentricity 

and non-uniform stress distribution, which might have contributed to reducing the crushing load of some specimens 

(GUF, PCF, PLCSF). The behaviour of GUF and PLCF specimens can be also attributed to the higher later-age 

strength gain of the concrete specimens comprising 30% fly ash stored in the curing chamber (i.e. higher loss in the 

percentage of crushing load, Equation 2), which is typical of Class F fly ash (Mehta and Monteiro, 2014). In 

addition, the crushing load is influenced by the volume of the sound concrete core of specimens or the effective 

volume. It was stated that the inner core of concrete may undergo significant densification in an acidic medium due 

to continual hydration of the paste,  reduction in calcium-to-silicate ratio and polymerisation of C–S–H (Macías et 

al. 1999). This argument may be substantiated by the specimens (GU, GUSF, PLC) that showed comparable or even 

slightly higher splitting tensile load than that of the corresponding specimens stored in the curing room for the same 

time interval. Hence, it can be deduced the mass loss and change in strength of concrete exposed to acidic media are 

two independent parameters; the former reflects the deterioration/decomposition that takes place in the exposed 

surface, while the latter is affected by a number of parameters including the texture of testing surface and alteration 

of the bulk volume of the sound core of specimens.   

 

 
Figure 5: Mass loss versus change in splitting tensile load after 90 days of exposure to 

the 5% sulfuric acid solutions.  

4. THERMAL AND MICROSTRUCTURAL ANALYSES 

Table 2 provides a summary for the DSC analysis of the main phases (ettringite, gypsum, portlandite) in the 

cementitious matrix of all mixtures with their corresponding enthalpies, and Figure 6 shows exemplar micrographs 

from the SEM analysis. After 90 days of exposure, micrographs taken from fracture surfaces of the exposed 

specimens (0 to 10 mm from the surface) indicated that the surface of concrete underwent significant deterioration 

due to the sulfuric acid attack (Figure 6a). As confirmed by EDX, the reaction zones (0 to 2 mm from the exposed 

surface) comprising gypsum crystals (e.g. Figure 6b) with incidental features of ettringite in areas towards the sound 

paste [more than 6 mm from the exposed surface] (e.g. Figure. 6c), where the pH of the matrix was still sufficiently 

high to maintain the stability of ettringite. It is worth noting that the reaction zone within all specimens were notably 

thin (0 to 2 mm in thickness), as the deteriorated surface readily deposited in the containers, and thus the powder 
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samples prepared for the DSC tests contained a considerable part of the sound matrix. The amounts of portlandite, as 

expressed by enthalpy, in specimens from GU, GUSF, PLC, and PLCSF mixtures stored in the curing chamber were 

comparable to that in the corresponding specimens immersed in the acid solutions (Table 2). This suggests that the 

sound part of the exposed specimens had a continual hydration activity, which generally links to the trends of the 

change in the splitting tensile load for these specimens. Specimens incorporating 5% silica fume had less portlandite 

than that in the control specimens (Table 2), which might make the C-S-H more vulnerable to decomposition in 

acidic media. This trend was primarily visible for the PLCSF compared to PLC specimens.    

Table 2: Enthalpies (J/g) of the main phases in the cementitious matrix  

 
After 90 days in the sulfuric acid 

solutions 

After 90 

days in the 

curing 

chamber 

Mixture 

ID. 

Ettringite 

(90-

100ºC) 

Gypsum 

(120-135 

ºC) 

Portlandite 

(420-440 

ºC) 

Portlandite 

(420-440 ºC) 

GU group    

GU 13.9 5.2 58.1  56.8 

GUF 8.2 3.8 31.3 16.3 

GUSF 5.3 14.7 38.6 40.1 

PLC group    

PLC 5.6 3.7 52.8 50.9 

PLCF 7.7 5.2 30.7 18.5 

PLCSF 2.9 4.6 37.8 38.5 

 

 

   

 

  

Figure 6: Exemplar micrographs for: (a) deteriorated surface and sound part (GUSF), (b) gypsum crystals in the 

reaction zone (PLC), (c) ettringite rosettes growing in an air void away from the surface (GU), and (d) unreacted fly 

ash particles within the reaction zone (PLCF).  

(a) (b) 

(d) (c) 

Reaction zone Sound matrix 
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For the fly ash mixtures GUF and PLCF, however, the amounts of portlandite in the specimens stored in the curing 

chamber were 40 to 50% that in the corresponding specimens immersed in the acid solution. In the curing chamber, 

there was efficient later-age pozzolanic activity of Class F fly ash as indicated by the consumption of portlandite, 

which augments the earlier discussion in Section 3.3 about the marked loss of strength for mixtures containing fly 

ash. However, when these mixtures were immersed in the sulfuric acid solutions, it seems that the pozzloanic 

reactivity of fly ash was considerably discounted or hindered, as indicated by the increase in the portlandite content 

due to the hydration reactions of the GU component in the binder (Table 2), and the occurrence of numerous 

unreacted fly ash particles in and away from the reaction zone (e.g. Figure 6d), especially that these specimens were 

cured for 28 days only. It appears that the existence of abundantly unreacted fly ash particles, encapsulated by 

gypsum crystals within the reaction zone might help discounting the rate of sulfuric acid attack on the cementitious 

matrix. According to Table 2 and Figure 6d, it can be deduced that fly ash particles acted as inert filler in acidic 

media (Kim et al. 2003), in a similar manner to siliceous aggregate, thus the paste volume vulnerable to acid 

reactions was reduced. Perhaps, if the fly ash specimens were adequately cured (56 days or more) before exposure, 

this filler effect might have diminished. In the PLCF specimens, the effect of fly ash was not magnified by the 

neutralization capacity of the limestone component, as the substitution of PLC by 30% fly ash diluted the amount of 

limestone to about 8% roughly, and the total paste volume of PLCF was more (6%) than that of PLC. Hence, the net 

effect led to a comparable behaviour for specimens made from PLC and PLCF.    

5. CONCLUSIONS 

Considering the high concentration of sulfuric acid solutions, period of exposure, testing methods, and the material 

types as well as proportions used in this study, the following conclusions can be drawn:  

 

 Visual assessment did not show distinctive features of damage among specimens made from the single and 

blended binders in the GU and PLC groups. 

 The mass loss and change in strength of concrete exposed to acidic media are two independent parameters; the 

former reflects the decomposition that takes place in the exposed surface, while the latter is affected by other 

parameters including the testing surface and alteration of the bulk volume of the sound part. 

 Specimens from the PLC mixture had less total mass loss than that of the corresponding specimens from the GU 

mixture, due to the acid neutralization effect offered by the limestone component (12% by mass of clinker) in 

PLC.  

 While 5% silica fume tended to increase the vlunerability of paste to decomposition in acidc media, specimens 

containg 30% fly ash had better resistance to the sulfuric acid attack, as reflected by the mass loss results. GUF 

and PLCF specimens, which were cured for 28 dys, comprised variable sizes of unreacted fly ash particles which 

acted as inert filler in the reaction zone, in a similar manner to siliceous aggregate, thus reducing the volume of 

paste vulnerable to acidic attack.  

 In the PLCF specimens, the effect of fly ash was not amplified by the neutralization capacity of the limestone 

component, since the substitution of PLC by 30% fly ash diluted the amount of limestone powder in the binder; 

hence, the net effect led to a comparable behaviour to specimens made from the PLC mixture.     
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