Document Type

Article

Publication Date

11-26-2014

Journal

ACS Appl Mater Interfaces

Volume

6

Issue

22

First Page

20479

Last Page

20486

URL with Digital Object Identifier

10.3109/0284186X.2014.970666

Abstract

We formed p-i-n heterojunctions based on a thin film of BiFeO3 nanoparticles. The perovskite acting as an intrinsic semiconductor was sandwiched between a p-type and an n-type oxide semiconductor as hole- and electron-collecting layer, respectively, making the heterojunction act as an all-inorganic oxide p-i-n device. We have characterized the perovskite and carrier collecting materials, such as NiO and MoO3 nanoparticles as p-type materials and ZnO nanoparticles as the n-type material, with scanning tunneling spectroscopy; from the spectrum of the density of states, we could locate the band edges to infer the nature of the active semiconductor materials. The energy level diagram of p-i-n heterojunctions showed that type-II band alignment formed at the p-i and i-n interfaces, favoring carrier separation at both of them. We have compared the photovoltaic properties of the perovskite in p-i-n heterojunctions and also in p-i and i-n junctions. From current-voltage characteristics and impedance spectroscopy, we have observed that two depletion regions were formed at the p-i and i-n interfaces of a p-i-n heterojunction. The two depletion regions operative at p-i-n heterojunctions have yielded better photovoltaic properties as compared to devices having one depletion region in the p-i or the i-n junction. The results evidenced photovoltaic devices based on all-inorganic oxide, nontoxic, and perovskite materials.


Find in your library

Share

COinS